Anna Katharina Franke (email), Pasi Aatsinki, Ville Hallikainen, Esa Huhta, Mikko Hyppönen, Vesa Juntunen, Kari Mikkola, Seppo Neuvonen, Pasi Rautio

Quantifying changes of the coniferous forest line in Finnish Lapland during 1983–2009

Franke A. K., Aatsinki P., Hallikainen V., Huhta E., Hyppönen M., Juntunen V., Mikkola K., Neuvonen S., Rautio P. (2015). Quantifying changes of the coniferous forest line in Finnish Lapland during 1983–2009. Silva Fennica vol. 49 no. 4 article id 1408. https://doi.org/10.14214/sf.1408

Highlights

  • Volume of the growing stock of spruce and pine has increased in forests and in timber lines during the past 26 years
  • Spruce stem numbers increased on average, while pine stem numbers remained stable and location-specific variation was observed
  • Presuming that the ongoing trend of increasing temperature will remain, the enhanced forest regeneration and growth may result in extension of forests in the future.

Abstract

The boreal timber- and tree-line forests grow in harsh environmental conditions in their outermost distribution limit. Here even small environmental changes may cause dramatic changes in the distribution of tree species. We examined changes of the forest lines of Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) in Finnish Lapland five times during 1983–2009. We monitored the number of stems and the volume of the growing stock in thirteen different locations in forest-line areas. The linear temporal trends and the variations of these response variables were used as indicators of a possible change during the study period. Spruce showed a significant increase both in the volume of the growing stock (up to 40% increase) and in the total stem number (up to 100% increase). A significant increase in the volume of the growing stock was observed in the pine data as well (up to 70% increase), whereas the stem number stagnated or even decreased. The results suggest that spruce needs favourable conditions to have an abundant regeneration, but after the establishment the seedlings seem to be more resistant against biotic and abiotic disturbances than pine seedlings. The increasing stand volume might result in a climate-related northward and upward extension of forests in the future. However, our results show that responses in the boreal forest line are species and location specific and a more favourable climate does not necessarily lead to an advance of the coniferous forest line.

Keywords
Pinus sylvestris; Picea abies; tree line; forest regeneration; environmental change; stand volume

Author Info
  • Franke, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Eteläranta 55, FI-96301 Rovaniemi, Finland E-mail anna.franke@fau.de (email)
  • Aatsinki, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Eteläranta 55, FI-96301 Rovaniemi, Finland E-mail pasi.aatsinki@luke.fi
  • Hallikainen, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Eteläranta 55, FI-96301 Rovaniemi, Finland E-mail ville.hallikainen@luke.fi
  • Huhta, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Eteläranta 55, FI-96301 Rovaniemi, Finland E-mail esa.huhta@luke.fi
  • Hyppönen, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, Eteläranta 55, FI-96301 Rovaniemi, Finland E-mail mikko.hypponen@luke.fi
  • Juntunen, The Sámi Education Institute, Menesjärventie 4, P.O. Box 50, FI-99871 Inari, Finland E-mail vesa.juntunen@sogsakk.fi
  • Mikkola, Natural Resources Institute Finland (Luke), Economics and society, Eteläranta 55, FI-96301 Rovaniemi, Finland E-mail kari.mikkola@luke.fi
  • Neuvonen, Natural Resources Institute Finland (Luke), Management and Production of Renewable Resources, P.O. Box 68, FI-80101, Joensuu, Finland E-mail seppo.neuvonen@luke.fi
  • Rautio, Natural Resources Institute Finland (Luke), Bio-based business and industry, Eteläranta 55, FI-96301 Rovaniemi, Finland E-mail pasi.rautio@luke.fi

Received 16 June 2015 Accepted 15 July 2015 Published 18 August 2015

Views 135650

Available at https://doi.org/10.14214/sf.1408 | Download PDF

Creative Commons License CC BY-SA 4.0

1 Introduction

The forest-line ecotone of the boreal zone, which separates treeless areas from closed boreal forests, is one of the Earth’s largest vegetation transition zones, extending more than 13 000 km around the Northern Hemisphere (Callaghan et al. 2002). Boreal vegetation has adapted to adverse environmental conditions, such as a short growing season, low temperatures and nutrient supply as well as sparse light during winter (Kallio et al. 1986; Heikkinen et al. 2002). In Finnish Lapland, for example, the growing season lasts less than four months during which trees need to pass through all vegetative (bud break, annual growth) and reproductive (flowering, cone production) stages (Seo et al. 2010). In northern boreal forests, the temperature during the growing season is the main factor that influences the growth and survival of coniferous species (Esteban and Jackson 2000; Heikkinen et al. 2002; Juntunen et al. 2002). Even small temperature changes might cause strong response e.g. in growth or bud burst (Grace et al. 2002; Linkosalo et al. 2009; Høgda et al. 2013; Salminen and Jalkanen 2015). Favourable conditions also allow abundant seed production leading to higher regeneration and seedling establishment (Hilli et al. 2008). Consequently, tree survival and growth in forest-line areas can be used as indicators for a change of the environmental conditions (Karlsen et al. 2005).

The analysis of the sub-fossil Scots pine (Pinus sylvestris L.) trunks coming from north of the current coniferous forest line in Finland suggests a warmer-than-present climate between 8 000 and 4 000 BP, and a forest line located at higher altitudes and latitudes compared to the present (Seppä et al. 2002; Kultti et al. 2006). However, the pine forests retreated during a subsequent colder period to the present lower altitudes and more southern latitudes. Hence a warming climate might result in an advance of the current forest line to approach the previous distribution limit (Aakala et al. 2014). This makes forest-line monitoring important because recently rising temperatures and prolonged growing-seasons as well as varying amounts of precipitation have been observed in Finland (Klein Tank et al. 2002; Tietäväinen et al. 2010; Mikkonen et al. 2014).

As the latest decade (2001–2010) was the warmest one in Finland since the beginning of temperature measurements (starting in the 1840’s, Finnish Meteorological Institute 2014; Mikkonen et al. 2014; see also Fig. 1), we expect to see an advance of the forest line assuming that the regeneration correlates positively with temperature. During the last 50 years, the climate has been favourable enough for the regeneration of forests in the forest-line areas (Holtmeier 2005; Hyppönen et al. 2013). Previous studies in our study area have indicated that seedling establishment has been at least satisfactory and the mortality of seedlings has remained rather low (Juntunen et al. 2002; Juntunen and Neuvonen 2006).

1

Fig. 1. Effective temperature sums (+4 °C threshold) in Kuusamo, Sodankylä and Kevo and annual precipitation sums (columns) in Sodankylä from 1977 to 2013. The climate datasets (thin lines, columns) are provided in a yearly resolution by European Climate Assessment & Dataset (Klein Tank et al. 2002) and smoothed by using a Fast Fourier Transformation (thick lines).

Several environmental factors determine the regeneration and death of trees at the forest line affecting the balance between increase and decrease of the volume of the growing stock in a stand. These factors are assumed to be related to prevailing climatic conditions at the forest line. Favourable climatic conditions support seedling production and tree growth. However, a changing climate may also create adverse conditions, which may increase death of trees via disturbances, for example, by increasing storm and snow damage (Gregow et al. 2011), large temperature variations (Heikkinen et al. 2002) and providing favourable conditions for the outbreak of pests and diseases (Jalkanen 2003; Holtmeier 2005).

In this paper we investigate changes at forest lines of Scots pine and Norway spruce (Picea abies (L.) H. Karst.) during a 26-year period. We monitored the number of stems and the volume of the growing stock in forest-line areas in Finnish Lapland during 1983–2009. The linear temporal trends and the variations of these response variables were used as indicators of a possible change. First responses of the coniferous forest lines to a changing environment have been already observed in the first part of the study during 1983–1999 (Juntunen et al. 2002). Here we predict an increase in the number of stems and the volume of the growing stock of pine and spruce in the forest-line ecotone in response to the increased summertime temperatures during the past decade.

2 Materials and methods

2.1 Study area, sampling design and measurements

In our study area in Finnish Lapland, coniferous forest lines are alpine or polar-alpine and they occur over an area spanning 400 km in the south-north direction (Juntunen et al. 2002). These forest lines vary in nature from the Southern to the Northern Lapland. In Southern Lapland forest lines are clearly alpine forest lines and occur on scattered fells in the midst of continuous boreal forest. The northern forest lines are found on higher altitudes as well but are mostly a result of harsh growing conditions on high latitudes, where the boreal forest meets the mountain birch forest zone (Betula pubescens Ehrh.) forming the outermost limit of forest vegetation (Hämet-Ahti 1963). The regional climate is mostly (sub)continental with cold winters and relatively warm summers (Tuhkanen 1980).

The forest-line monitoring project is being carried out by the Finnish Forest Research Institute (from beginning of 2015, Natural Resources Institute Finland) and the universities of Helsinki, Oulu and Turku (Kallio et al. 1986). To monitor the forest lines in Finnish Lapland the area was divided into four regions on the basis of predominant tree species and geographical areas (Juntunen et al. 2002). The pine-dominated areas were divided into a northern and a southern region (P-N and P-S), and the spruce-dominated areas into a western and an eastern region (S-W and S-E). Each region includes two to four locations, giving a total of 13 locations (Scots pine 8 and Norway spruce 5) in northern Finland (Fig. 2). The 13 locations were carefully chosen to cover the whole area of Lapland but at the same time avoiding locations where the topography or soil factors would affect the results. At the same time places where marks of past disturbances were present were excluded. The mean age of the studied stands was not possible to record as the age of seedlings, saplings and trees varied from 1-year old seedlings to several hundred years old trees. Hence we presume that the age of the studied stands in the beginning of the monitoring was the same as the age of the dominant trees. According to the sample cores taken from the old trees for another project in the studied locations the stand age varied from 200 to 400 years in forest and timber-line zones and from 150 to 200 years in tree-line zone (Fig.3).

2

Fig. 2. Monitoring locations of spruce and pine in Finnish Lapland as well as the forest lines of both species. The locations were divided on the basis of predominant species and geographical areas into a northern and southern region of pine and into a western and eastern region of spruce.

3

Fig. 3. Examples of the forest stands in the a) forest zone (Yllästunturi), b) timber-line zone (Kevo) and c) tree-line zone (Urupää) (Photos by Seppo Neuvonen and Anna Franke).

Each of the locations consists of a system of three rows of three circular sample plots along an altitudinal gradient from forest to tree line (Fig. 4). These three rows were located in at least 100 meters distance from each other and differed in vegetation pattern, tree height and stand density and can therefore be considered as independent stands (Fig. 5, Table 1). The number of analyzed forest stands is therefore 39. The distance between the centres of adjacent monitoring plots was 40 m. The row in the highest altitude was established within the tree-line zone, just below the tree line, where the distance between solitary trees was higher than 2 m but did not exceed 100 m. The second row was established in timber-line zone, which is defined here as the altitudinal limit at which the forest canopy closure ceases (Hustich 1948). The lowest row was then established in a forest stand representing the characteristics of the forest zone. It was placed so that its vertical distance from the timber-line row was at least 20 m, or its horizontal distance over 100 m, or both. The forest-line area in this study contains the entire transition belt in general, extending from closed coniferous forests up to fell heaths. The total number of the plots in the experiment is 117 (nine plots in each 13 locations). Most of the plots have an area of 300 m2 (radius 9.8 m); however, in the places where there were only a few trees, 500 m2 plots (radius 12.6 m) were used (Table 1). The average of three plots in each zone was used in the statistical analysis, because it gives a reliable estimate for forest stand level demographic processes in our study locations. Therefore, the original values (counts and measurements) per sample plot have been transformed to the values per hectare.

4

Fig. 4. Sampling design in each of the 13 locations. The sampling was done on three sample plots in forest and timber- and tree-line zones in 1983, 1994, 1999, 2004 and 2009.

5

Fig. 5. Example of a sampling location (Sarmitunturi) showing the position of the timber-line and tree-line zones (Photo by Raimo Sutinen). The forest zone is located further downhill and therefore not shown in the photo.

Table 1. Coordinates, altitude, temperature sum, and horizontal distance between the zones in each location. Coordinates and temperature sums are focused on the timber-line zones. The average temperature sums (+5 °C threshold) were provided in a climatic grid (1961–90 standard period) by using the model of Ojansuu and Henttonen (1983).
  Altitude (m a.s.l.)   Horizontal distance (m) between
Location Latitude Longitude Dominant conifer1 Forest zone Timber line Tree line Temperature
sum (d.d. 5 °C)
Forest and
timber line
Timber line
and tree line
Kevo Tsieskuljoki 69°41’ N 26°59’ E P 110 180 190 773 310 180
Kevo, nat. res 69°45’ N 27°03’ E P 185 210 225 741 230 100
Karigasniemi 69°25’ N 25°53’ E P 225 275 420 770 840 810
Syysjärvi 69°17’ N 27°12’ E P 215 220 225 781 1280 11460
Lemmenjoki 68°43’ N 26°06’ E P 285 375 415* 782 460 130
Urupää 68°28’ N 27°26’ E P 315 340 370* 745 140 210
Alajoenpää 68°28’ N 27°22’ E P 340 380 400* 748 250 270
Ylläs 67°34’ N 24°11’ E P 380 410 465* 900 240 210
Lommoltunturi 68°00’ N 24°09’ E S 410 445 465* 874 250 120
Pallaskero 68°02’ N 24°06’ E S 465 480 500* 892 220 110
Sarmitunturi 68°39’ N 28°23’ E S 340 370 410* 842 150 160
Pyhätunturi 67°01’ N 27°07’ E S 380 400 420 914 300 260
Riisitunturi 66°13’ N 28°33’ E S 420 440 460* 943 120 190
1 Dominant conifer species: P = pine, S = spruce.
* Indicates that a larger sample plot area (500 m2) has been used.

After the establishment of the plots in 1983, monitoring was repeated in 1994, 1999, 2004 and 2009. The monitoring on the plots includes the number of living trees ( ≥ 2 m height), saplings ( < 2 m and ≥ 1.3 m) and seedlings (height < 1.3 m) as well as measurements of the height and diameter at breast height of all trees within a plot to compute the volume of the growing stock with the KPL-software (Heinonen 1994). The volume of the growing stock includes only trees over 2 meters, (i.e. not seedlings and saplings). In this study an increasing growing stock denotes that the volume increment of a forest stand exceeds the loss of volume due to mortality and represents, therefore, a positive in-balance of growth.

The climate datasets are provided in a yearly resolution by European Climate Assessment & Dataset from 1977 to 2014 for Kevo, Kuusamo and Sodankylä (Klein Tank et al. 2002, http://www.ecad.eu). To characterize the climatic conditions during the growing season we used the effective temperature sum expressed in degree days and the annual precipitation sum. The degree day as a linear temperature sum is based on daily mean temperature minus the threshold value of +4 °C, used by the database for continental Europe. The results were not fitted to the threshold value for Finland (+5 °C) in this context because the threshold does not affect the detected trends and it is likely to cause only minor differences in the resulting temperature sums. Since there were no meteorological stations near the study plots, we used a climatic grid of temperature sums (+5 °C threshold) to receive the temperature sum for each location. The grid data was computed by using the model of Ojansuu and Henttonen (1983) for averaging the temperature sums within the period from 1961–90.

2.2 Statistical analysis

Linear mixed models were used in the modelling of the data. Separate models were calculated for two response variables: 1) The volume of the growing stock (m3 ha–1) and 2) total number of trees, saplings and seedlings (ha–1), in the following used as “stem number”. These two models were calculated separately for Scots pine- and Norway spruce -dominated locations. The response variables were calculated by summing the values (number of stem and the volume of the growing stock) of spruces and pines in each sample plot. Logarithmic (ln) transformation was used for the stem number and square-root transformation for the volume of the growing stock. These transformations yielded the most unbiased residuals (no trends, consistent variances) for the models. The model for the volume of the growing stock can be expressed as following:

e1

, where

sqrt(ŷijt) = Estimated square root of the volume of the growing stock (separate models for the locations dominated by Scots pine and Norway spruce)

x1(i) = Fixed predictor of region (levels: northern, southern (Scots pine), western, eastern (Norway spruce))

x2(ij) = Fixed predictor of zone (levels: forest, timber line, tree line)

x3(ijt) = Fixed predictor of time (0 – 26 years, 0denotes year 1983 and 26 year 2009 respectively)

β0,..., β5 = Coefficients of the fixed effects and interactions of the fixed effects

μ1(i) = Random effect of location (Scots pine: 8 locations; Norway spruce: 5 locations)

μ2(ij) = Random effect of zone nested within location

ɛijt = Random error (t, denoting repeated measures), nested within zone (j). Autoregressive (AR-1) error, heterogeneous variances for each repeated measures time points were estimated.

Compound symmetry was used as the random error structure in the log-transformed models for the stem number, instead of the autoregressive structure based on likelihood-ratio tests and residuals (minimizing bias). The same model structure based on the experimental design was used in all of the models and all the coefficients and their significances were reported, including the two-way interaction terms (formula 1). The three way interaction of region, zone and time could not be tested due to convergence problems.

In addition we tested if the coefficients of time by region and by zone differ from 0(results are presented in Table 4, null hypothesis: β = 0). These tests indicate if the stem number as well as the volume of the growing stock has increased, decreased or remained stable during the 26-year period. The tests and the coefficients in the tables 2–4 were generated by the models using the transformed response. However, the fitted values presented in the text and figures were transformed back to the original scale (exponential and power transformations). The values of the exponential transformations were corrected using Snowdon’s (1991) ratio estimator and those of power transformation by adding variances of the random parts to the transformed values.

Table 2. The estimates and Likelihood-ratio tests of the models for Norway spruce, t-values for the coefficients and χ2 – values for the Likelihood ratio tests are presented in t/Chisq. Tests show the significance of the variables in the model and the significance of the coefficients related to the reference categories (given in parentheses). A non-significant interaction term means that the coefficients do not differ from the coefficient of reference category.
Variable / term Coefficient Std. error Df t/Chisq p
Norway spruce, number of trees and seedlings ha–1
Intercept 7.000 0.376 56/1 18.62/346.54 0.000
Region (ref. Western)     1 4.28 0.039
-Eastern -0.854 0.412 3 -2.07 0.130
Zone (ref. Forest)     2 3.70 0.157
-Timber line 0.333 0.342 8 0.97 0.359
-Tree line -0.325 0.342 8 -0.95 0.370
Time 0.018 0.010 56/1 1.77/3.13 0.077
Region*Time     1 1.81 0.179
-Eastern*Time -0.013 0.010 56 -1.35 0.184
Zone*Time     2 3.49 0.175
-Timber line*Time 0.006 0.012 56 0.48 0.630
-Tree line*Time 0.021 0.012 56 1.80 0.077
Random effects Estimate Cl 95%  
Location 0.107 0.007 – 1.682
Zone nested Location 0.187 0.061 – 0.579
Error (compound symmetry) 0.141 0.098 – 0.205
Norway spruce, volume of tree stock, m3ha–1
Intercept 7.970 1.073 56/1 7.43/55.19 0.000
Region (ref. Western)     1 0.65 0.420
-Eastern -1.031 1.278 3 -0.81 0.479
Zone (ref. Forest)     2 67.50 0.000
-Timber line -2.056 0.717 8 -2.87 0.021
-Tree line -5.812 0.717 8 -8.10 0.000
Time 0.043 0.010 56/1 4.27/18.21 0.000
Region*Time     1 2.85 0.091
-Eastern*Time -0.017 0.010 56 -1.69 0.097
Zone*Time     2 8.10 0.017
-Timber line*Time 0.012 0.012 56 1.04 0.301
-Tree line*Time -0.021 0.012 56 -1.77 0.082
Random effects Estimate Cl 95%  
Location 1.530 0.197 – 11.853
Zone nested within Location 1.186 0.443 – 3.177
Error (ARH-1, phi = 0.55) 0.398 0.165 – 0.957
Table 3. The estimates and Likelihood-ratio tests of the models for Scots pine, t-values for the coefficients and χ2 – values for the Likelihood ratio tests are presented in t/Chisq. Tests show the significance of the variables in the model and the significance of the coefficients related to the reference categories (given in parentheses). A non-significant interaction term means that the coefficients do not differ from the coefficient of reference category.
Variable / term Coefficient Std. error Df t/Chisq p
Scots pine, number of trees and seedlings ha–1
Intercept 6.577 0.695 90/1 9.43/88.90 0.000
Region (ref. Northern)     1 0.84 0.359
-Southern 0.729 0.795 6 0.92 0.395
Zone (ref. Forest)     2 10.12 0.006
-Timber line -1.040 0.710 14 -1.47 0.165
-Tree line -2.256 0.710 14 -3.18 0.007
Time 0.012 0.009 90/1 1.36/1.85 0.174
Region*Time     1 12.95 0.000
-Southern*Time -0.032 0.009 90 -3.60 0.001
Zone*Time     2 0.91 0.635
-Timber line*Time -0.010 0.011 90 -0.89 0.377
-Tree line*Time -0.008 0.011 90 -0.74 0.464
Random effects Estimate Cl 95%      
Location 0.591 0.050 – 7.018      
Zone nested Location 1.876 0.882 – 3.990      
Error (compound symmetry) 0.185 0.138 – 0.248      
Scots pine, volume of tree stock, m3ha–1
Intercept 7.124 1.166 90/1 6.11/37.34 0.000
Region (ref. Northern)     1 0.00 0.997
-Southern -0.005 1.296 6 -0.00 0.997
Zone (ref. Forest)     2 24.57 0.000
-Timber line -3.665 1.247 14 -2.94 0.011
-Tree line -6.145 1.247 14 -4.93 0.000
Time 0.054 0.015 90/1 3.64/13.27 0.000
Region*Time     1 0.50 0.478
-Southern*Time -0.011 0.015 90 -0.71 0.479
Zone*Time     2 5.47 0.065
-Timber line*Time 0.026 0.018 90 1.43 0.155
-Tree line*Time -0.016 0.018 90 -0.89 0.377
Random effects Estimate Cl 95%      
Location 1.287 0.084 – 19.753      
Zone nested within Location 4.968 2.348 – 10.513      
Error (ARH-1, phi = 0.91) 1.325 0.533 – 3.294      
Table 4. Significances (p-values) of asymptotical tests for the coefficients of the interaction terms (Time*Region or Time*Zone) in the models. Hypothesis is that the coefficients = 0. The arrows denote either a significant increasing or decreasing change in time, or non-significant change (flat arrow).
Coefficient Scots pine,
number of
trees ha–1
Scots pine,
volume of
tree stock, m3ha–1
Norway spruce, number of
trees ha–1
Norway spruce, volume of
tree stock, m3ha–1
Region: northern (pine), western (spruce) 0.327 → 0.000 ↗ 0.000 ↗ 0.000 ↗
Region: southern (pine), eastern (spruce) 0.000 ↘ 0.000 ↗ 0.026 ↗ 0.000 ↗
Zone: forest 0.590 → 0.000 ↗ 0.127 → 0.000 ↗
Zone: timber line 0.078 → 0.000 ↗ 0.041 ↗ 0.000 ↗
Zone: tree line 0.120 → 0.011 ↗ 0.000 ↗ 0.086 →

In addition to the linear trends, the second-order polynomial of time and its interactions with region and zone were tested as the additional terms in the models for the volume of growing stock, but they were not significant at 5% risk level. Thus, only the linear trends are presented here. Significant polynomial terms would indicate an accelerative increase or decrease in the volume of growing stock.

R statistical environment (R Core Team 2013) was used in the modelling. Used packages were nlme (Pinheiro et al. 2013), Car (Fox and Weisberg 2011) and lsmeans (Lenth 2014).

3 Results

We detected a significant increase in the stem number of spruce in timber- and tree-line zones, whereas the forest zone remained stable (Fig. 6a, Tables 2 and 4). Even though the stem number of spruce increased in both western and eastern regions the increase was much higher in the west (on average 1 389 stems ha–1 in 1983 and 2 826 ha–1 in 2009, i.e. over 100% increase) compared to the east (591 stems ha–1 in 1983 and 850 ha–1 in 2009, i.e. 44% increase). The volume of the spruce growing stock (m3 ha–1) showed also increasing trends over the whole observation period in all zones, although the increase in the tree-line zone was statistically only marginally significant (Fig. 6b, Tables 2 and 4). When comparing the western and the eastern region, the western part indicated a higher gain of volume of 40% (from 31.5 m3 ha–1 in 1983 to 44.0 m3 ha–1 in 2009) compared to the 27% in the eastern part (from 21.6 m3 ha–1 to 27.4 m3 ha–1).

6

Fig. 6. The stem number ha–1 (a) and volume of growing stock m3 ha–1 (b) of spruce during the study in each location (raw data) as well as the predicted values of the models for each zone (thick line).

On the contrary to spruce, the stem number of pine showed no clear trends in any of the zones when all the locations are considered (Fig. 7a, Tables 3 and 4). When trends for the northern and southern pine regions were studied separately, a statistically significant decline in the pine number of 49% from 816 stems ha–1 in 1983 to 414 stems ha–1 in 2009 was found in the southern regions. The observed low increase of 17% from 394 stems ha–1 to 462 stems ha–1 in the northern region is not significant.

7

Fig. 7. The stem number ha–1 (a) and volume of growing stock m3 ha–1 (b) of pine during the study in each location (raw data) as well as the predicted values of the models for each zone (thick line).

Even though the number of the pines showed no clear overall change, the volume of the pine growing stock (m3 ha–1) increased significantly in all zones in the northern and the southern regions (Fig. 7b, Tables 3 and 4). Northern and southern distribution areas revealed an increased volume of 70% (from 18.6 m3 ha–1 to 33.4 m3 ha–1) in the north and 56% (from 19.5 m3 ha–1 to 30.4 m3 ha–1) in the south during the study period. A noteworthy fact is that even though there was a lot of variation between the locations the trend was, especially in the forest zone and in the timber line, positive in all locations.

4 Discussion

Our results indicated an increase in the volume of the growing stock of both spruce and pine in every zone and region, except in the case of spruce in the tree-line zone. An increasing growing stock here means that changing environmental conditions support higher reproduction, increment and survival of trees compared to the rate of dieback, leading to an advancing forest line. In other words, the studied stands were not in their climax balance, in which reproduction and growth are levelled out by death of trees, but a positive imbalance exists. The fact that the volume of the growing stocks was, on average, increasing gives a reason to assume that environmental conditions affecting growing stocks have, in general, improved since the first inventory in 1983. Temperature sums in Kuusamo, Sodankylä and Kevo as well as the amount of precipitation have risen during the study period in comparison to their long term annual mean values (1977–2013), especially during the period of 1994 to 2013 (Fig. 1). On the other hand, there was no clear indication for acceleration of the growing stock during the past decade that was the warmest decade in Finland ever recorded. In fact, in some of our study locations the growing stock has diminished during the last decade. This suggests that in addition to summer time temperature other factors have also had a strong impact on the growing stock. Kauppi et al. (2014) studied the effect of climate warming on boreal forests since 1960 and found out that in Finnish Lapland, where the annual growing degree days (GDD) have increased over 20% since 1960, the proportion of forest growth attributable to warming was around 43% whereas the rest was unrelated to warming. Kauppi et al. (2014) explained the part unrelated to warming by the factors such as forest management, increased nitrogen deposition and CO2 concentration when the whole Finland is considered. In our study locations, however, forests are not managed and the nitrogen deposition is very low (Mustajärvi et al. 2008). All this suggests that the trends seen in the growing stocks in our study locations are a response to interactions of warmer and longer growing season as well as increased CO2 with other abiotic and biotic factors.

On the contrary to the growing stock, the number of stems, including trees, saplings and seedlings, revealed a species and location specific response to changing environmental conditions. The significant increase in the number of spruce stems in the tree- and timber-line zones suggests that the end of the 20th century obviously provided favourable conditions for good seed years followed by good seedling establishment. The modest gain of the stem number in the forest zone is most likely a result of a between-tree competition for nutrients and light as well as of thick moss and humus layers which hinder regeneration (Juntunen and Neuvonen 2006).

Once spruce seedlings and saplings have been established successfully they seem to be more tolerant to disturbances. With regard to a significant increase of stem numbers, growth conditions near tree and timber lines seem to be favourable enough to enhance seeding, seedling establishment and survival of trees of all age classes. Supposing that prolonged growing seasons as well as higher temperatures in summer and winter times are at least partly responsible for the observed development, a northward and upward transition of spruce forest line can be expected where the geological factors, such as nutrient supply, allow this (Hyppönen et al. 2003; Sutinen et al. 2012).

In contrast to spruce, there was not a clear trend in the number of pine stems. When considering geographical regions separately, the stem number of pine in the southern part of the study area (locations Urupää, Alajoenpää and Yllästunturi) decreased especially during the first monitoring interval (1983–1994), but it is obvious that generally no large changes have taken place during the last 15 years (Fig. 7a). The strong reduction in the stem numbers in southern locations was mainly due to the high mortality of pine seedlings during 1983–2004 (Juntunen et al. 2002; Juntunen and Neuvonen 2006). Pine diebacks in the southern locations are a consequence of multiple biotic factors. Pines in these locations are often hit by the fungal diseases Scleroderris canker (Gremmeniella abietina (Lagerb.) Morelet) and the snow blight (Phacidium infestans P. Karst), as well as insects, such as the European pine sawfly (Neodiprion sertifer Geoffr.) (Niemelä et al. 1987; Juntunen and Neuvonen 2006; Holtmeier and Broll 2011). The European pine sawfly is predicted to have more outbreaks also in Finnish Lapland due to a reduced mortality of the eggs in milder winter temperatures (Virtanen et al. 1996; Neuvonen et al. 1999; Veteli et al. 2005).

Another biotic factor causing damage to pine seedlings is trampling by reindeer (Rangifer tarandus tarandus L.), when it is grazing. The reindeer population of Finland has more than doubled from about 100 000 reindeer in the beginning of the 1900s up to 265 000 in early 1990 (Väre et al. 1996) after which it has decreased to 197 000 in 2010 (Mattila 2014 a, b). Reindeer graze the reindeer lichens (Cladonia spp.) in pine dominated forests in winter that causes additional disturbance particularly to pine seedlings (Heikkinen et al. 2002; Holtmeier 2005; Vajda and Venäläinen 2005; Holtmeier and Broll 2011). Spruce grows in forests where lichens have only a minor role in understory and is therefore only marginally influenced by reindeer grazing.

Besides above biotic factors, seedlings are threatened by mild winters with an early start of the growing season and large temperature variations during late autumn and early spring, which influence their frost-hardiness (Cannell and Smith 1986). The risk of frost-damage induced mortality of seedlings is predicted to increase due to a warming climate and milder winter temperatures (Hänninen 1991; Leinonen 1995; Repo et al. 1996). Once trees have passed the seedling and sapling stage they have to survive from the stress of snow loading. Extreme crown-snow loading is the major reason for tree breakage at timber line in northern Finland (Marchand 1987), particularly at high altitudes and in old age-classes of the trees (Jalkanen and Konôpka 1998; Lehtonen et al. 2014). Spruce is, due to its slim crown shape, better protected against massive snow loading, whereas the shape of pine crown facilitates snow damage.

To sum up, our results show that the forests in the timber-line ecotone in Finnish Lapland are increasing in the volume of growing stock and tree number most likely due to favourable climatic conditions during the past decades. Presuming that the ongoing trend of increasing temperature will remain, the enhanced forest regeneration and growing stock in the timber- and tree line may result in a northward and upward extension of forests in the future. However, this process seems to be species specific, and in places where the pine is the main species, biotic factors or snow damage might overrule the effects of otherwise favourable environmental conditions. To evaluate the effect of abiotic and biotic factors more precisely, more detailed studies on cause-effect relationships are needed. However, results of the present monitoring study provide a valuable tool for decision-makers in forest policy, as well as a basis for further studies on factors influencing forest-line dynamics. Hence, the continuation of similar long-term studies is important to enable a reliable estimation of environmental changes in the forest-line ecotone.

Acknowledgements

This study would not have been possible without the great efforts that field assistants working in field stations of Finnish Forest Research Institute (Metla) as well as universities of Oulu, Turku and Helsinki have provided during the 26 years of monitoring. Risto Jalkanen and a peer in Peerage of Science gave valuable comments that helped to improve the manuscript. Jouni Hyvärinen designed the Figure 4. Raimo Sutinen kindly provided the photo for Figure 5.

References

Aakala T., Hari P., Dengel S., Newberry S.L., Mizunuma T., Grace J. (2014). A prominent stepwise advance of the tree line in north-east Finland. Journal of Ecology 2014: 1–10. http://dx.doi.org/ 10.1111/1365-2745.12308.

Callaghan T.V., Crawford R.M., Eronen M., Hofgaard A., Payette S., Rees W.G., Skre O., Sveinbjörnsson B., Vlassova T.K., Werkman B.R. (2002). The dynamics of the tundra-taiga boundary: an overview and suggested coordinated and integrated approach to research. AMBIO, Special Report 12: 3–5.

Cannell M.G.R., Smith R.I. (1986). Climatic warming, spring budburst and frost damage on trees. Journal of Applied Ecology 23: 177–191.

Esteban G.J., Jackson R.B. (2000). Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography 9: 253–268. http://dx.doi.org/ 10.1046/j.1365-2699.2000.00162.x.

Finnish Meteorological Institute (2014). http://en.ilmatieteenlaitos.fi/. [Cited 14 Nov 2014].

Fox J., Weisberg S. (2011). An {R} companion to applied regression, second edition. Sage Publications, Thousand Oaks, CA. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. [Cited 15 Oct 2011].

Grace J., Berninger F., Nagy L. (2002). Impacts of climate change on the tree line. Annals of Botany 90: 537–544. http://dx.doi.org/10.1093/aob/mcf222.

Gregow H., Peltola H., Laapas M., Saku S., Venäläinen A. (2011). Combined occurrence of wind, snow loading and soil frost with implications for risks to forestry in Finland under the current and changing climatic conditions. Silva Fennica 45(1): 35–54. http://dx.doi.org/10.14214/sf.30.

Hämet-Ahti L. (1963). Zonation of the mountain birch forest in northernmost Fennoscandia. Annales Botanici Fennici 34(4). 127 p.

Hänninen H. (1991). Does climatic warming increase the risk of frost damage in northern trees? Plant, Cell & Environment 5: 449–454.

Heikkinen O., Tuovinen M., Autio J. (2002). What determines the timberline? Fennia 180: 67–74.

Heinonen J. (1994). Koealojen puu- ja puustotunnusten laskentaohjelma KPL. Käyttöohje. Metsäntutkimuslaitoksen tiedonantoja - The Finnish Forest Research Institute, Research Papers 504. 80 p. ISBN 951-40-1369-7.

Hilli A., Hokkanen T., Hyvönen J., Sutinen M.-L. (2008). Long-term variation in Scots pine seed crop size and quality in northern Finland. Scandinavian Journal of Forest Research 23(5): 395–403. http://dx.doi.org/ 10.1080/02827580802334217.

Høgda K.A., Tømmervik H., Karlsen S.R. (2013). Trends in the start of the growing season in Fennoscandia 1982–2011. Remote Sensing 5: 4304–4318. http://dx.doi.org/10.3390/rs5094304.

Holtmeier F.-K. (2005). Change in the timberline ecotone in northern Finnish Lapland during the last thirty years. Reports from the Kevo Subarctic Research Station 23: 97–113.

Holtmeier F.-K., Broll G. (2011). Response of Scots Pine (Pinus sylvestris) to warming climate at its altitudinal limit in Northernmost Subarctic Finland. Arctic 64(3): 269–280. http://dx.doi.org/10.14430/arctic4118.

Hustich I. (1948). The Scots pine in northernmost Finland and its dependence on the climate in the last decades. Acta Botanica Fennica 42: 1–75.

Hyppönen M., Varmola M., Juntunen V., Lohl T., Mikkola K., Mäkitalo K., Timonen M. (2003). Metsien uudistuminen suojametsäalueella. Metsätieteen aikakauskirja 2003(1): 33–47.

Hyppönen M., Varmola M., Mikkola K., Jalkanen R. (2013). Metsien uudistaminen Lapin suojametsäalueella ja Pohjois-Suomen korkeilla mailla. In: Hyppönen M., Salminen S. (eds.). Metsänuudistaminen pohjoisen erityisolosuhteissa. Metlan työraportteja / Working Papers of the Finnish Forest Research Institute 255: 59–65. ISBN 978-951-40-2409-2.

Jalkanen R. (2003). Havupuutaimikoiden tuhojen esiintyminen ja merkittävyys Suomessa. Metsätieteen aikakauskirja 1/2003: 59–68.

Jalkanen R., Konôpka B. (1998). Snow-packing as a potential harmful factor on Picea abies, Pinus sylvestris and Betula pubescens at high altitude in northern Finland. European Journal of Forest Pathology 28: 373–382.

Jalkanen R., Aalto T., Pensa M., Salminen H. (2007). Development of Scots pine in the changing environment of the northern boreal zone in Finland. In: Taulavuori E., Taulavuori K. (eds.). Physiology of northern plants under changing environment. Research Signpost. p. 271–289.

Juntunen V., Neuvonen S. (2006). Natural Regeneration of Scots Pine and Norway Spruce close to the timberline in northern Finland. Silva Fennica 40(3): 443–458. http://dx.doi.org/10.14214/sf.329.

Juntunen V., Neuvonen S., Norokorpi Y., Tasanen T. (2002). Potential for timberline advance in northern Finland, as revealed by monitoring during 1983–99. Arctic 55(4): 348–361. http://dx.doi.org/10.14430/arctic719.

Kallio P., Hurme H., Eurola S., Norokorpi Y., Sepponen P. (1986). Research activities on the forest line in northern Finland. Arctic 39(1): 52–58.

Karlsen S.R., Elvebakk A., Johansen B. (2005). A vegetation-based method to map climatic variation in the arctic-boreal transition area of Finnmark, north-easternmost Norway. Journal of Biogeography 2005: 1161–1186. http://dx.doi.org/ 10.1111/j.1365-2699.2004.01199.x.

Kauppi P.E., Posch M., Pirinen P. (2014). Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 9(11): 1–6. http://dx.doi.org/ 10.1371/journal.pone.0111340.

Klein Tank A.M.G., Wijngaard J.B., Können G.P., Böhm R., Demarée G., Gocheva A., Mileta M., Pashiardis S., Hejkrlik L., Kern-Hansen C., Heino R., Bessemoulin P., Müller-Westermeier G., Tzanakou M., Szalai S., Pálsdóttir T., Fitzgerald D., Rubin S., Capaldo M., Maugeri M., Leitass A., Bukantis A., Aberfeld R., Van Engelen A.F.V., Forland E., Mietus M., Coelho F., Mares C., Razuvaev V., Nieplova E., Cegnar T., López J.A., Dahlström B., Moberg A., Kirchhofer W., Ceylan A., Pachaliuk O., Alexander L.V., Petrovic P. (2002). Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology 22: 1441–1453. http://www.ecad.eu. [Cited 09 June 2015].

Kultti S., Mikkola K., Virtanen T., Timonen M., Eronen M. (2006). Past changes in the Scots pine forest line and climate in Finnish Lapland: a study based on mega fossils, lake sediments, and GIS-based vegetation and climate data. Holocene 16(3): 381–391. http://dx.doi.org/ 10.1191/0959683606hl934rp.

Lehtonen I., Hoppula P., Pirinen P., Gregow H. (2014). Modelling crown snow loads in Finland: a comparison of two methods. Silva Fennica 48(3): 1–30. http://dx.doi.org/10.14214/sf.1120.

Leinonen I. (1995). A simulation model for the annual frost hardiness and freeze damage of Scots pine. Annals of Botany 78: 687–693.

Lenth R.V. (2014). lsmeans: Least-Squares Means. R package version 2.05. http://CRAN.R-project.org/package=lsmeans. [Cited 18 Oct 2014].

Linkosalo T., Häkkinen R., Terhivuo J., Tuomenvirta H., Hari P. (2009). The time series of flowering and leaf bud burst of boreal trees (1846-2005) support the direct temperature observations of climatic warming. Agricultural and forest meteorology 149: 453–461. http://dx.doi.org/10.1016/j.agrformet.2008.09.006.

Marchand P. (1987). Life in cold: an introduction to winter ecology. University Press of New England. 320 p.

Mattila E. (2014a). Ylä-Lapin talvilaidunarvioinnin tuloksia – Uusimmat arviot vuodelta 2012 ja vastaavia tuloksia vuodelta 2004. Metlan työraportteja / Working Papers of the Finnish Forest Research Institute 282. 55 p.

Mattila E. (2014b). Porojen talvilaitumien määrä ja laatu poronhoitoalueen etelä- ja keskiosissa – Uudet arviot vuosilta 2009–2013 ja keskeisten laiduntunnusten kehitys osin 1970-luvulta lähtien. Metlan työraportteja / Working Papers of the Finnish Forest Research Institute 304.

Mikkonen S., Laine M., Mäkelä H.M., Gregow H., Tuomenvirta H., Lahtinen M., Laaksonen A. (2014). Trends in the average temperature in Finland, 1847-2013. In: Christakos G. (ed.). Stochastic environmental research and risk assessment. Springer-Verlag, Berlin-Heidelberg. p. 1–9. http://dx.doi.org/ 10.1007/s00477-014-0992-2.

Mustajärvi K., Merilä P., Derome J., Lindroos A.-J., Helmisaari H.-S., Nöjd P., Ukonmaanaho L. (2008). Fluxes of dissolved organic and inorganic nitrogen in relation to stand characteristics and latitude in Scots pine and Norway spruce stands in Finland. Boreal Environment Research 13(suppl. B): 3–21.

Neuvonen S., Niemelä P., Virtanen T. (1999). Climatic change and insect outbreaks in boreal forests: the role of winter temperatures. Ecological Bulletins 47: 63–67.

Niemelä P., Rousi M., Saarenmaa H. (1987). Topographical delimitation of Neodiprion sertifer (Hym., Diprionidae) outbreaks on Scots pine in relation to needle quality. Journal of Applied Entomology 103: 84–91.

Ojansuu R., Henttonen H. (1983). Estimation of local values of monthly mean temperature, effective temperature sum and precipitation sum from the measurements made by the Finnish Meteorological Office. Silva Fennica 17: 143–160.

Pinheiro J., Bates D., DebRoy S., Sarkar D., the R Core team (2013). nlme: Linear and nonlinear mixed effects models. R package version 3: 1–113.

R Core Team (2013). R: a language and environment for statistical computing. R. Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. [Cited 18 Oct 2014].

Repo T., Hänninen H., Kellomäki S. (1996). The effects of long-term elevation of air temperature and CO2 on the frost hardiness of Scots pine. Plant, Cell & Environment 19: 209–216.

Salminen H., Jalkanen R. (2015). Modelling of bud break of Scots pine in northern Finland in 1908–2014. Frontiers in Plant Science 6: 104. http://dx.doi.org/10.3389%2Ffpls.2015.00104.

Seo J.-W., Salminen H., Jalkanen R., Eckstein D. (2010). Chronological coherence between intra-annual height and radial growth of Scots Pine (Pinus sylvestris L.) in the northern boreal zone of Finland. Baltic Forestry 16(1): 57–65.

Seppä H., Nyman M., Korhola A., Weckström J. (2002). Changes of treelines and alpine vegetation in relation to post-glacial climate dynamics in northern Fennoscandia based on pollen and chironomid records. Journal of Quaternary Science 17(4): 287–301. http://dx.doi.org/ 10.1002/jqs.678.

Snowdon P. (1991). A ratio estimator for bias correction in logarithmic regression. Canadian Journal of Forest Research 21: 720–724.

Sutinen R., Närhi P., Middleton M., Hänninen P., Timonen M., Sutinen M.-L. (2012). Advance of Norway spruce (Picea abies) onto mafic Lommoltunturi fell in Finnish Lapland during the last 200 years. Boreas 41: 367–378. http://dx.doi.org/ 10.1111/j.1502-3885.2011.00238.x.

Tietäväinen H., Tuomenvirta H., Venäläinen A. (2010). Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology 30: 2247–2256. http://dx.doi.org/ 10.1002/joc.2046.

Tuhkanen S. (1980). Climatic parameters and indices in plant geography. Acta Phytogeographica Suecica 67: 1–110.

Vajda A., Venäläinen A. (2005). Feedback processes between climate, surface and vegetation at the northern climatological tree line (Finnish Lapland). Boreal Environment Research 10: 299–314.

Väre H., Ohtonen R., Mikkola K. (1996). The effect and extent of heavy grazing by reindeer in oligotrophic pine heaths in northeastern Fennoscandia. Ecography 19: 245–253.

Veteli T.O., Lahtinen A., Repo T., Niemelä P., Varama M. (2005). Geographic variation in winter freezing susceptibility in the eggs of the European pine sawfly (Neodiprion sertifer). Agricultural and Forest Entomology 7: 115–120. http://dx.doi.org/ 10.1111/j.1461-9555.2005.00259.x.

Virtanen T., Neuvonen S., Nikula A., Varama M., Niemelä P. (1996). Climate change and the risks of Neodiprion sertifer outbreaks on Scots pine. Silva Fennica 30(2–3): 169–177.

Total of 55 references


Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Ruha T., Varmola M. (1997) Precommercial thinning in naturally regenerated .. Silva Fennica vol. 31 no. 4 article id 5635
Finér L., Nieminen M. (1997) Dry mass and the amounts of nutrients in underst.. Silva Fennica vol. 31 no. 4 article id 5634
Mäkelä A., Ikonen V.-P. et al. (1997) An application of process-based modelling to the.. Silva Fennica vol. 31 no. 3 article id 5632
Sievänen R., Nikinmaa E. et al. (1997) Evaluation of importance of sapwood senescence o.. Silva Fennica vol. 31 no. 3 article id 5629
Hökkä H., Alenius V. et al. (1997) Individual-tree basal area growth models for Sco.. Silva Fennica vol. 31 no. 2 article id 5616
Lilja A., Kurkela T. et al. (1997) Nursery practices and management of fungal disea.. Silva Fennica vol. 31 no. 1 article id 5611
Maltamo M., (1997) Comparing basal area diameter distributions esti.. Silva Fennica vol. 31 no. 1 article id 5609
Mäkinen H., (1997) Possibilities of competition indices to describe.. Silva Fennica vol. 31 no. 1 article id 5608
Haapanen M., Annala M.-L. et al. (1997) Progeny trial estimates of genetic parameters fo.. Silva Fennica vol. 31 no. 1 article id 5605
Sarjala T., Kaunisto S. (1996) Effect of different potassium sources on the sea.. Silva Fennica vol. 30 no. 4 article id 5565
Gorshkov V. V., Bakkal I. J. (1996) Species richness and structure variations of Sco.. Silva Fennica vol. 30 no. 2–3 article id 5599
Beuker E., Kellomäki S. et al. (1996) Changes in wood production of Picea abies and Pi.. Silva Fennica vol. 30 no. 2–3 article id 5591
Hänninen H., Kellomäki S. et al. (1996) Overwintering and productivity of Scots pine in .. Silva Fennica vol. 30 no. 2–3 article id 5590
Gorshkov V. V., Bakkal I. J. et al. (1996) Postfire recovery of forest litter in Scots pine.. Silva Fennica vol. 30 no. 2–3 article id 5588
Lyytikäinen P., Holopainen J. K. et al. (1996) Performance of pine sawflies under elevated trop.. Silva Fennica vol. 30 no. 2–3 article id 5585
Virtanen T., Neuvonen S. et al. (1996) Climate change and the risks of Neodiprion serti.. Silva Fennica vol. 30 no. 2–3 article id 5584
Leinonen I., Hänninen H. et al. (1996) Testing of frost hardiness models for Pinus sylv.. Silva Fennica vol. 30 no. 2–3 article id 5583
Palomäki V., Holopainen T. et al. (1996) First-year results on the effects of elevated at.. Silva Fennica vol. 30 no. 2–3 article id 5580
Aurela M., Laurila T. et al. (1996) Measurements of O3, CO2 and H2O fluxes over a Sc.. Silva Fennica vol. 30 no. 2–3 article id 5578
Vettenranta J., (1996) Effect of species composition on economic return.. Silva Fennica vol. 30 no. 1 article id 5574
Vanha-Majamaa I., Suominen R. et al. (1996) Seedling establishment after prescribed burning .. Silva Fennica vol. 30 no. 1 article id 5573
Lindgren K., Lindgren D. (1996) Germinability of Norway spruce and Scots pine po.. Silva Fennica vol. 30 no. 1 article id 5571
Penner M., Hökkä H. et al. (1995) A method for using random parameters in analyzin.. Silva Fennica vol. 29 no. 4 article id 5563
Liski J., (1995) Variation in soil organic carbon and thickness o.. Silva Fennica vol. 29 no. 4 article id 5561
Hynynen J., (1995) Predicting the growth response to thinning for S.. Silva Fennica vol. 29 no. 3 article id 5559
Silfverberg K., (1995) Forest regeneration on nutrient-poor peatlands: .. Silva Fennica vol. 29 no. 3 article id 5557
Hokkanen T. J., Järvinen E. et al. (1995) Properties of top soil and the relationship betw.. Silva Fennica vol. 29 no. 3 article id 5556
Saarenmaa L., Leppälä T. (1995) Fill-in seedlings in constituting the stocking o.. Silva Fennica vol. 29 no. 2 article id 5552
Siipilehto J., Lyly O. (1995) Weed control trials with fibre mulch, glyphosate.. Silva Fennica vol. 29 no. 1 article id 5545
Haapanen M., (1995) Within-plot subsampling of trees for assessment .. Silva Fennica vol. 29 no. 1 article id 5543
Persson A., (1994) How genotype and silviculture interact in formin.. Silva Fennica vol. 28 no. 4 article id 5540
Saarsalmi A., Lipas E. et al. (1994) Effect of fertilization on flowering and seed cr.. Silva Fennica vol. 28 no. 3 article id 5530
Lippu J., (1994) Patterns of dry matter partitioning and 14C-phot.. Silva Fennica vol. 28 no. 3 article id 5529
Jalkanen R., Kaitera J. (1994) Gremmeniella abietina produces pycnidia in canke.. Silva Fennica vol. 28 no. 2 article id 5402
Kaitera J., Jalkanen R. (1984) Old and fresh Gremmeniella abietina damage on Sc.. Silva Fennica vol. 28 no. 2 article id 5397
Miina J., (1994) Spatial growth model for Scots pine on drained p.. Silva Fennica vol. 28 no. 1 article id 5525
Kolström T., Kellomäki S. (1993) Tree survival in wildfires. Silva Fennica vol. 27 no. 4 article id 5521
Korhonen K. T., (1993) Mixed estimation in calibration of volume functi.. Silva Fennica vol. 27 no. 4 article id 5520
Hänninen H., Kellomäki S. et al. (1993) Effect of increased winter temperature on the on.. Silva Fennica vol. 27 no. 4 article id 5518
Pöykkö T., Velling P. (1993) Inheritance of the narrow-crowned Scots pine E 1.. Silva Fennica vol. 27 no. 3 article id 5513
Messier C., Puttonen P. (1993) Coniferous and non-coniferous fine-root and rhiz.. Silva Fennica vol. 27 no. 3 article id 5512
Koistinen E., Valkonen S. (1993) Models for height development of Norway spruce a.. Silva Fennica vol. 27 no. 3 article id 5510
Heikkilä R., Härkönen S. (1993) Moose (Alces alces L.) browsing in young Scots p.. Silva Fennica vol. 27 no. 2 article id 5506
Peltola H., Aho J. et al. (1993) Swaying of trees as caused by wind: analysis of .. Silva Fennica vol. 27 no. 2 article id 5505
Peltola H., Kellomäki S. (1993) A mechanistic model for calculating windthrow an.. Silva Fennica vol. 27 no. 2 article id 5504
Salminen H., Varmola M. (1993) Influence of initial spacing and planting design.. Silva Fennica vol. 27 no. 1 article id 5495
Nieppola J., (1993) Site classification in Pinus sylvestris L. fores.. Silva Fennica vol. 27 no. 1 article id 5494
Pukkala T., Karsikko J. et al. (1992) A spatial model for the diameter of thickest bra.. Silva Fennica vol. 26 no. 4 article id 5490
Haapanen M., (1992) Effect of plot size and shape on the efficiency .. Silva Fennica vol. 26 no. 4 article id 5488
Kytö M., (1992) Lygus bugs as agents of growth disorders in perm.. Silva Fennica vol. 26 no. 4 article id 5487
Löyttyniemi K., Heikkilä R. et al. (1992) Pine tar in preventing moose browsing. Silva Fennica vol. 26 no. 3 article id 5486
Verkasalo E., (1992) Relationships of the modulus of elasticity and t.. Silva Fennica vol. 26 no. 3 article id 5483
Helmisaari H.-S., (1992) Spatial and age-related variation in nutrient co.. Silva Fennica vol. 26 no. 3 article id 5482
Nygren P., Hari P. (1992) Effect of foliar application with acid mist on t.. Silva Fennica vol. 26 no. 3 article id 5481
Kellomäki S., Kolström M. (1992) Computations on the management of seedling stand.. Silva Fennica vol. 26 no. 2 article id 5478
Selander J., Immonen A. (1992) Effect of fertilization and watering of Scots pi.. Silva Fennica vol. 26 no. 2 article id 5476
Hytönen J., (1992) Allelopathic potential of peatland plant species.. Silva Fennica vol. 26 no. 2 article id 5475
Heikkilä R., Löyttyniemi K. (1992) Growth response of young Scots pines to artifici.. Silva Fennica vol. 26 no. 1 article id 5469
Danell Ö., (1991) Survey of past, current and future Swedish fores.. Silva Fennica vol. 25 no. 4 article id 5463
Ilvesniemi H., (1991) Spatial and temporal variation of soil chemical .. Silva Fennica vol. 25 no. 2 article id 5446
Silvennoinen R., Hämäläinen R. et al. (1991) Spectroradiometric characteristics of Scots pine.. Silva Fennica vol. 25 no. 2 article id 5443
Heiskanen J., Raitio H. (1991) Soil water potential during the production of ba.. Silva Fennica vol. 25 no. 1 article id 5438
Repo T., (1991) Rehardening potential of Scots pine seedlings du.. Silva Fennica vol. 25 no. 1 article id 5437
Finér L., (1991) Root biomass on an ombrotrophic pine bog and the.. Silva Fennica vol. 25 no. 1 article id 5436
Heikkilä R., (1990) Effect of plantation characteristics on moose br.. Silva Fennica vol. 24 no. 4 article id 5434
Valkonen M.-L., Hänninen H. et al. (1990) Frost hardiness of Scots pine seedlings during d.. Silva Fennica vol. 24 no. 4 article id 5433
Rikala R., Jozefek H. J. (1990) Effect of dolomite lime and wood ash on peat sub.. Silva Fennica vol. 24 no. 4 article id 5432
Miyazava T., Laine J. (1990) Effect of macroclimate on the development of Sco.. Silva Fennica vol. 24 no. 2 article id 5420
Smolander H., Kellomäki S. et al. (1990) The effect of nitrogen concentration on needle p.. Silva Fennica vol. 24 no. 1 article id 5414
Paavilainen E., (1990) Effect of refertilization of pine and birch stan.. Silva Fennica vol. 24 no. 1 article id 5411
Nygren M., (1990) Variation in the seed mass of Scots pine and Nor.. Silva Fennica vol. 24 no. 1 article id 5410
Huuri O., (1990) The cut-block method for seedling production: bi.. Silva Fennica vol. 24 no. 1 article id 5406
Kortesharju M., Kortesharju J. (1989) Studies on epiphytic lichens and pine bark in th.. Silva Fennica vol. 23 no. 4 article id 5395
Pietilä J., (1989) Shape of Scots pine knots close to the stem pith. Silva Fennica vol. 23 no. 4 article id 5391
Heliövaara K., Löyttyniemi K. (1989) Effect of forest fertilization on pine needle-fe.. Silva Fennica vol. 23 no. 4 article id 5390
Tomminen J., Nuorteva M. et al. (1989) Occurrence of the nematode Bursaphelenchus mucro.. Silva Fennica vol. 23 no. 4 article id 5389
Varmola M., (1989) A model for ring width of planted Scots pine Silva Fennica vol. 23 no. 4 article id 5388
Kuuluvainen T., (1989) Branching dynamics in young Scots pine. Silva Fennica vol. 23 no. 3 article id 5385
Petäistö R.-L., (1989) The influence of autumn transplanting date on th.. Silva Fennica vol. 23 no. 3 article id 5384
Kellomäki S., Kolström T. et al. (1989) Simulations on the occurrence of dead trees in n.. Silva Fennica vol. 23 no. 3 article id 5382
Kuuluvainen T., Pukkala T. (1989) Effect of Scots pine seed trees on the density o.. Silva Fennica vol. 23 no. 2 article id 5379
Pietilä J., (1989) Factors affecting the healing-over of pruned Sco.. Silva Fennica vol. 23 no. 2 article id 5378
Pukkala T., (1989) Predicting diameter growth in even-aged Scots pi.. Silva Fennica vol. 23 no. 2 article id 5376
Pukkala T., (1989) Prediction of tree diameter and height in a Scot.. Silva Fennica vol. 23 no. 2 article id 5375
Laurila R., (1989) Fibre properties in Pinus sylvestris pulpwood Silva Fennica vol. 23 no. 1 article id 5371
Heliövaara K., Väisänen R. (1989) Invertebrates of young Scots pine stands near th.. Silva Fennica vol. 23 no. 1 article id 5368
Heliövaara K., Väisänen R. (1989) Quantitative variation in the elemental composit.. Silva Fennica vol. 23 no. 1 article id 5367
Bergsten U., (1988) Invigoration and IDS-sedimentation of Pinus sylv.. Silva Fennica vol. 22 no. 4 article id 5364
Heliövaara K., Väisänen R. (1988) Interactions among herbivores in three polluted .. Silva Fennica vol. 22 no. 4 article id 5361
Hänninen H., Pelkonen P. (1988) Effects of temperature on dormancy release in No.. Silva Fennica vol. 22 no. 3 article id 5357
Lähdesmäki P., Pietiläinen P. (1988) Seasonal variation in the nitrogen metabolism of.. Silva Fennica vol. 22 no. 3 article id 5356
Nilsson J.-E., (1988) Variation in the rate of winter hardening of one.. Silva Fennica vol. 22 no. 3 article id 5354
Christersson L., Fircks H. A. v. (1988) Injuries to conifer seedlings caused by simulate.. Silva Fennica vol. 22 no. 3 article id 5352
Kuuluvainen T., Kanninen M. et al. (1988) Tree architecture in young Scots pine: propertie.. Silva Fennica vol. 22 no. 2 article id 5347
Pukkala T., (1988) Effect of spatial distribution of trees on the v.. Silva Fennica vol. 22 no. 1 article id 5338
Lindholm T., Vasander H. (1987) Vegetation and stand development of mesic forest.. Silva Fennica vol. 21 no. 3 article id 5318
Kellomäki S., Seppälä M. (1987) Simulations on the effects of timber harvesting .. Silva Fennica vol. 21 no. 2 article id 5315
Pukkala T., (1987) Effect of seed production on the annual growth o.. Silva Fennica vol. 21 no. 2 article id 5312
Pukkala T., (1987) Model for predicting the seed crop of Picea abie.. Silva Fennica vol. 21 no. 2 article id 5311
Kärenlampi P., (1987) The decay resistance and moisture dynamics of wood Silva Fennica vol. 21 no. 2 article id 5310
Pukkala T., Kolström T. (1987) Competition indices and the prediction of radial.. Silva Fennica vol. 21 no. 1 article id 5306
Pukkala T., (1987) Simulation model for natural regeneration of Pin.. Silva Fennica vol. 21 no. 1 article id 5305
Raitio H., (1987) The significance of the number of needle year cl.. Silva Fennica vol. 21 no. 1 article id 5303
Kellomäki S., Hänninen H. et al. (1987) A tentative model for describing the effects of .. Silva Fennica vol. 21 no. 1 article id 5302
Heliövaara K., Väisänen R. (1986) Parasitization in Petrova resinella (Lepidoptera.. Silva Fennica vol. 20 no. 3 article id 5276
Velling P., Nepveu G. (1986) Variation of wood quality and yield in a Finnish.. Silva Fennica vol. 20 no. 3 article id 5275
Hari P., Heikinheimo P. et al. (1986) Trees as a water transport system. Silva Fennica vol. 20 no. 3 article id 5274
Kilkki P., Päivinen R. (1986) Weibull function in the estimation of the basal .. Silva Fennica vol. 20 no. 2 article id 5270
Kärkkäinen M., (1986) Value relations of Scots pine and Norway spruce .. Silva Fennica vol. 20 no. 2 article id 5267
Kärkkäinen M., (1986) Model of knottiness of wood material in pine, sp.. Silva Fennica vol. 20 no. 2 article id 5266
Ross J., Kellomäki S. et al. (1986) Architecture of Scots pine crown. Silva Fennica vol. 20 no. 2 article id 5265
Heliövaara K., (1986) Occurrence of Petrova resinella (Lepidoptera, To.. Silva Fennica vol. 20 no. 2 article id 5264
Nygren M., (1986) Autumn harvested Scots pine seeds: the effect of.. Silva Fennica vol. 20 no. 1 article id 5262
Löyttyniemi K., Uusvaara O. (1986) Further tests for termite resistance of Finnish .. Silva Fennica vol. 20 no. 1 article id 5259
Kärkkäinen M., Pietilä J. et al. (1985) Impact bending strength of Finnish tree species .. Silva Fennica vol. 19 no. 4 article id 5255
Löyttyniemi K., (1985) On repeated browsing of Scots pine saplings by m.. Silva Fennica vol. 19 no. 4 article id 5252
Halinen M., (1985) The effect of the growth rate of young Scots pin.. Silva Fennica vol. 19 no. 4 article id 5251
Kärkkäinen M., Halinen M. (1985) Reappraisal of minimum requirements of Scots pin.. Silva Fennica vol. 19 no. 3 article id 5246
Pohtila E., Pohjola T. (1985) Soil preparation in reforestation of Scots pine .. Silva Fennica vol. 19 no. 3 article id 5243
Kuusipalo J., (1985) On the use of tree stand parameters in estimatin.. Silva Fennica vol. 19 no. 2 article id 5239
Heikurainen L., Laine J. (1985) Duration of the height growth response of young .. Silva Fennica vol. 19 no. 2 article id 5237
Uotila A., (1985) The spreading of Ascocalyx abietina to healthy S.. Silva Fennica vol. 19 no. 1 article id 5226
Suoheimo J., (1984) The occurrence of Otiorrhynchus nodosus and its .. Silva Fennica vol. 18 no. 3 article id 5218
Långström B., (1984) Windthrown Scots pines as brood material for Tom.. Silva Fennica vol. 18 no. 2 article id 5213
Kellomäki S., (1984) Observations on the influence of stand density o.. Silva Fennica vol. 18 no. 2 article id 5207
Velling P., Tigerstedt P. M. A. (1984) Harvest index in a progeny test of Scots pine wi.. Silva Fennica vol. 18 no. 1 article id 5204
Heikurainen L., Laine J. et al. (1983) Fertilization and ditch spacing experiments conc.. Silva Fennica vol. 17 no. 4 article id 5198
Heliövaara K., Annila E. et al. (1983) Effect of nitrogen fertilization and insecticide.. Silva Fennica vol. 17 no. 4 article id 5197
Rousi M., (1983) Susceptibility of pine to mammalian herbivores i.. Silva Fennica vol. 17 no. 4 article id 5195
Jokinen J., Häkkinen A. et al. (1983) Effects of air pollution on Scots pine needles. I. Silva Fennica vol. 17 no. 3 article id 5193
Viherä A., Kellomäki S. (1983) Observations on structure and growth of crowns o.. Silva Fennica vol. 17 no. 3 article id 5189
Pohtila E., Pohjola T. (1983) Results from the reforestation experiment on plo.. Silva Fennica vol. 17 no. 3 article id 5188
Luo F., (1983) Determination of stem value. Silva Fennica vol. 17 no. 3 article id 5187
Kellomäki S., (1983) Strength of Scots pine branches Silva Fennica vol. 17 no. 2 article id 5185
Löyttyniemi K., (1983) Preliminary testing of the resistance of Finnish.. Silva Fennica vol. 17 no. 1 article id 5177
Kellomäki S., Oker-Blom P. (1983) Canopy structure and light climate in a young Sc.. Silva Fennica vol. 17 no. 1 article id 5171
Kellomäki S., Puttonen P. et al. (1982) Effect of nitrogen fertilization on photosynthes.. Silva Fennica vol. 16 no. 4 article id 5169
Heliövaara K., (1982) The pine bark bug, Aradus cinnamomeus (Heteropte.. Silva Fennica vol. 16 no. 4 article id 5168
Mälkönen E., Aro-Heinilä V. et al. (1982) Effect of fertilization and irrigation on the gr.. Silva Fennica vol. 16 no. 1 article id 5157
Raunemaa T., Erkinjuntti R. et al. (1981) Multielement analysis of treated pine seedlings. Silva Fennica vol. 15 no. 4 article id 5153
Hautojärvi A., Ahonen S. et al. (1981) Surface concentration of sulphur on Scots pine n.. Silva Fennica vol. 15 no. 4 article id 5148
Cape J. N., Fowler D. (1981) Changes in epicuticular wax of Pinus sylvestris .. Silva Fennica vol. 15 no. 4 article id 5146
Molski B., Bytnerowicz A. et al. (1981) Content of sulphur and fluorine compounds in Sco.. Silva Fennica vol. 15 no. 4 article id 5139
Kvist K., Jakobsson C. (1981) Vegetation injury occurring after winter at a fe.. Silva Fennica vol. 15 no. 4 article id 5138
Soikkeli S., (1981) The types of ultrastructural injuries in conifer.. Silva Fennica vol. 15 no. 4 article id 5136
Skärby L., Bengtson C. et al. (1981) Uptake of NOx in Scots pine. Silva Fennica vol. 15 no. 4 article id 5135
Jalkanen R., Huttunen S. et al. (1981) The wax structure of the developing needles of P.. Silva Fennica vol. 15 no. 4 article id 5131
Luukkanen O., (1981) Effects of gibberellins GA4 and GA7 on flowering.. Silva Fennica vol. 15 no. 4 article id 5129
Ollinmaa P. J., (1981) Physical properties of wood growing on drained s.. Silva Fennica vol. 15 no. 3 article id 5128
Katainen H.-S., Kellomäki S. (1981) Effect of foliar application of dilute sulphuric.. Silva Fennica vol. 15 no. 3 article id 5123
Smolander H., Kostamo J. et al. (1981) Effect of soil compaction on transpiration and h.. Silva Fennica vol. 15 no. 3 article id 5122
Kellomäki S., Oker-Blom P. (1981) Specific needle area of Scots pine and its depen.. Silva Fennica vol. 15 no. 2 article id 5116
Kellomäki S., (1981) Effect of the within-stand light conditions on t.. Silva Fennica vol. 15 no. 2 article id 5111
Lehtiö H., (1981) Effect of air pollution on the volatile oil in n.. Silva Fennica vol. 15 no. 2 article id 5110
Kellomäki S., Kanninen M. (1980) Eco-physiological studies on young Scots pine st.. Silva Fennica vol. 14 no. 4 article id 5092
Meriluoto J., (1980) Applicability of MCPA- and 2,4,5-T-herbicides in.. Silva Fennica vol. 14 no. 4 article id 5086
Jokinen R., (1980) Estimation of growth response achieved through f.. Silva Fennica vol. 14 no. 3 article id 5081
Mäkelä A., Hari P. et al. (1980) Eco-physiological studies on young Scots pine st.. Silva Fennica vol. 14 no. 3 article id 5080
Kellomäki S., Hari P. et al. (1980) Eco-physiological studies on young Scots pine st.. Silva Fennica vol. 14 no. 3 article id 5079
Kellomäki S., Hari P. (1980) Eco-physiological studies on young Scots pine st.. Silva Fennica vol. 14 no. 3 article id 5078
Koski V., (1980) Minimum requirements for seed orchards of Scots .. Silva Fennica vol. 14 no. 2 article id 5076
Ryynänen M., (1980) X-ray radiography of ageing Scots pine seeds. Silva Fennica vol. 14 no. 1 article id 5071
Luukkanen O., Johansson S. (1980) Flower induction by exogenous plant hormones in .. Silva Fennica vol. 14 no. 1 article id 5070
Mikola J., (1980) The effect of seed size and duration of growth o.. Silva Fennica vol. 14 no. 1 article id 5069
Koski V., (1980) On the variation of flowering and seed crop in m.. Silva Fennica vol. 14 no. 1 article id 5067
Efimov J. P., (1980) Some results on the regularities of seed crops i.. Silva Fennica vol. 14 no. 1 article id 5066
Velling P., (1980) Variation in the density of wood of different Sc.. Silva Fennica vol. 14 no. 1 article id 5063
Nylund L., Haapanen A. et al. (1980) Radial growth of Scots pine and soil conditions .. Silva Fennica vol. 14 no. 1 article id 5056
Ilonen P., Hari P. et al. (1979) On distribution of growth in crown system of you.. Silva Fennica vol. 13 no. 4 article id 5049
Kellomäki S., (1979) The effect of solar radiation and air temperatur.. Silva Fennica vol. 13 no. 4 article id 5048
Kilkki P., Varmola M. (1979) A nonlinear simultaneous equation model to deter.. Silva Fennica vol. 13 no. 4 article id 5047
Haapanen T., Hari P. et al. (1979) Effect of fertilization and thinning on radial g.. Silva Fennica vol. 13 no. 2 article id 5033
Enivaara A., (1979) Regeneration and improvement of the Scots pine f.. Silva Fennica vol. 13 no. 2 article id 5026
Selander J., Kalo P. (1979) Evaluation of resistance of Scots pine seedlings.. Silva Fennica vol. 13 no. 2 article id 5022
Hari P., Kanninen M. et al. (1979) An automatic system for measurements of gas exch.. Silva Fennica vol. 13 no. 1 article id 5019
Laakso P., Saikku O. (1979) Observations on the quality of veneer from prune.. Silva Fennica vol. 13 no. 1 article id 5018
Kellomäki S., (1979) On geoclimatic variation in basic density of Sco.. Silva Fennica vol. 13 no. 1 article id 5015
Kilkki P., Saramäki M. et al. (1978) A simultaneous equation model to determine taper.. Silva Fennica vol. 12 no. 2 article id 4995
Löyttyniemi K., Hiltunen R. (1978) Monoterpenes in Scots pine in relation to browsi.. Silva Fennica vol. 12 no. 2 article id 4992
Lehtonen I., (1978) Nutrient cycle in a Scots pine stand: IV The amo.. Silva Fennica vol. 12 no. 1 article id 4988
Huttunen S., (1978) The effects of air pollution on provenances of S.. Silva Fennica vol. 12 no. 1 article id 4983
Lehtonen I., (1977) Nutrient cycle in a Scots pine stand. III Variat.. Silva Fennica vol. 11 no. 3 article id 4975
Lehtiniemi T., (1977) Factors affecting gamma-irradiation sensitivity .. Silva Fennica vol. 11 no. 1 article id 4963
Keltikangas M., Seppälä K. (1977) The economics of growing downy birch stands on d.. Silva Fennica vol. 11 no. 1 article id 4962
Sarasto J., Seppälä K. (1977) The effect of dwarf-shrub vegetation supression .. Silva Fennica vol. 11 no. 1 article id 4960
Kärkkäinen M., (1977) Comparison of wood properties of Parana pine and.. Silva Fennica vol. 11 no. 1 article id 4958
Yli-Vakkuri P., Pelkonen P. (1976) Rooting of Scots pine needle fascicles with diff.. Silva Fennica vol. 10 no. 4 article id 4956
Westman C. J., (1976) Fertilization of Scots pine seedlings with diffe.. Silva Fennica vol. 10 no. 4 article id 4954
Lehtonen I., Kellomäki S. et al. (1976) Nutrient cycle in a Scots pine stand. II. Amount.. Silva Fennica vol. 10 no. 4 article id 4952
Lehtonen I., Kellomäki S. et al. (1976) Nutrient cycle in a Scots pine stand I. Seasonal.. Silva Fennica vol. 10 no. 3 article id 4946
Pelkonen P., Smolander H. (1976) Increase in gas exchange rate in Scots pine by t.. Silva Fennica vol. 10 no. 2 article id 4940
Kärkkäinen M., (1976) Height and width of rays in Scots pine stems Silva Fennica vol. 10 no. 2 article id 4938
Lehtiniemi T., (1976) Effect of ionizing radiation on the germination .. Silva Fennica vol. 10 no. 1 article id 4930
Kärkkäinen M., (1975) Ovalness of Scots pine logs in Northern Finland Silva Fennica vol. 9 no. 4 article id 4925
Kapustinskaité T., (1975) Ash content of peatland soils and stand growth i.. Silva Fennica vol. 9 no. 3 article id 4924
Mikola P., (1975) Afforestation of bogs after industrial exploitat.. Silva Fennica vol. 9 no. 2 article id 4920
Päivänen J., (1974) The effect of ditch spacing and furrowing on dep.. Silva Fennica vol. 8 no. 4 article id 4908
Kupila-Ahvenniemi S., Hankonen S. et al. (1974) Experiments on the determination of certain elem.. Silva Fennica vol. 8 no. 3 article id 4904
Luukkanen O., (1974) Effect of kinetin on the formation of callus and.. Silva Fennica vol. 8 no. 2 article id 4903
Kärkkäinen M., (1974) Note on the volume based on the mean of butt and.. Silva Fennica vol. 8 no. 2 article id 4899
Chudnyi A. V., (1974) Investigation methods in forest tree population .. Silva Fennica vol. 8 no. 1 article id 4897
Lehtiniemi T., (1973) Use of peat briquettes in seeding of Scots pine Silva Fennica vol. 7 no. 4 article id 4889
Luukkanen O., (1973) Observations on CO2 exchange in open pollinated .. Silva Fennica vol. 7 no. 4 article id 4888
Päivänen J., (1973) The effect of thinning on the snow cover and soi.. Silva Fennica vol. 7 no. 2 article id 4881
Kärkkäinen M., (1973) Amount and size of rays in Scots pine stems Silva Fennica vol. 7 no. 2 article id 4879
Laatikainen P., (1973) Milled peat and milled bark as substrate for Sco.. Silva Fennica vol. 7 no. 1 article id 4877
Oskarsson O., Tigerstedt P. M. A. (1972) The possibilities in forest tree breeding II. Se.. Silva Fennica vol. 6 no. 3 article id 4869
Tormilainen M., (1972) Studies of flowering and cone crop in a seed orc.. Silva Fennica vol. 6 no. 2 article id 4868
Erjala P., Saramäki J. (1972) Determination of the need for fertilizer applica.. Silva Fennica vol. 6 no. 1 article id 4860
Pohtila E., (1972) Effect of fine-grounded copper rock phosphate pl.. Silva Fennica vol. 6 no. 1 article id 4859
Rautiainen P., (1971) The effect of environmental and genetical factor.. Silva Fennica vol. 5 no. 4 article id 4856
Kozubov G. M., (1971) Electron microscopic studies in the development .. Silva Fennica vol. 5 no. 4 article id 4854
Luukkanen O., Räsänen P. K. et al. (1971) The use of needle colour in predicting growth an.. Silva Fennica vol. 5 no. 4 article id 4853
Räsänen P. K., Hänninen T. (1971) The effect of some over-winter storage methods o.. Silva Fennica vol. 5 no. 3 article id 4849
Räsänen P. K., Hiltunen M. (1971) The effect of differences in Scots pine nursery .. Silva Fennica vol. 5 no. 3 article id 4847
Leikola M., (1971) Throughfall in a managed Scots pine stand in Sou.. Silva Fennica vol. 5 no. 2 article id 4842
Mannerkoski H., (1971) Effect of fertilization on the initial developme.. Silva Fennica vol. 5 no. 2 article id 4841
Seppälä K., (1971) The quantity of fertilizer and application metho.. Silva Fennica vol. 5 no. 2 article id 4838
Långström B., (1971) Weight loss, water content and mortality of cold.. Silva Fennica vol. 5 no. 1 article id 4834
Yli-Vakkuri P., Räsänen P. K. (1971) The influence of covering and tramping the seeds.. Silva Fennica vol. 5 no. 1 article id 4832
Mikkola L., (1970) On the crossability of Picea species Silva Fennica vol. 4 no. 4 article id 4831
Palmberg C., (1970) Estimation of heritability in open-pollinated pl.. Silva Fennica vol. 4 no. 3 article id 4823
Heikurainen L., Ouni J. (1970) Height growth of seedling stands growing on peat.. Silva Fennica vol. 4 no. 2 article id 4817
Tigerstedt P. M. A., Malmivaara E. (1970) The possibilities in forest tree breeding. I Sel.. Silva Fennica vol. 4 no. 2 article id 4816
Långström B., (1970) The effect of packing methods on the field survi.. Silva Fennica vol. 4 no. 1 article id 4813
Räsänen P. K., Koukkula A. et al. (1970) The effect of packing, storing and heeling-in on.. Silva Fennica vol. 4 no. 1 article id 4812
Lähde E., Oksanen A. (1969) Morphological, gravimetric, and photometric char.. Silva Fennica vol. 3 no. 4 article id 4808
Löyttyniemi K., (1969) The effect of treatment of Scots pine and Norway.. Silva Fennica vol. 3 no. 3 article id 4803
Leikola M., (1969) Termination of diameter growth of Scots pine in .. Silva Fennica vol. 3 no. 1 article id 4786
Löyttyniemi K., (1968) Feeding of terminal shoots of Scots pine seedlin.. Silva Fennica vol. 2 no. 4 article id 4778
Gordon J. G., Gatherum G. E. (1968) Photosynthesis and growth of selected Scots pine.. Silva Fennica vol. 2 no. 3 article id 4771
Päivänen J., (1968) The effect of the date of planting on the surviv.. Silva Fennica vol. 2 no. 2 article id 4764
Eklund B., (1967) Annual variation of increment in Scots pine and .. Silva Fennica vol. 1 no. 4 article id 4756
Leikola M., (1967) Observations on wind conditions in a managed Sco.. Silva Fennica vol. 1 no. 3 article id 4754
Schalin I., (1967) Microfungi in the humus layer of pine, spruce an.. Silva Fennica vol. 1 no. 2 article id 4745
Päivänen J., (1966) Distribution of rainfall in different types of f.. Silva Fennica vol. no. 119 article id 4732
Heikurainen L., Päivänen J. et al. (1966) Scots pine seeding and planting on drained peat .. Silva Fennica vol. no. 119 article id 4731
Pulliainen E., Salonen K. (1965) Damage caused by squirrel (Sciurus vulgaris) to .. Silva Fennica vol. no. 117 article id 4727
Tamm C. O., (1965) Some experiences from forest fertilization trial.. Silva Fennica vol. no. 117 article id 4725
Jamalainen E. A., (1961) Damage by low-temperature parasitic fungi on con.. Silva Fennica vol. 0 no. 108 article id 4703
Nenonen M., Jukola J. (1960) Pine weevil (Hylobius abietis L.) injuries and t.. Silva Fennica vol. 0 no. 104 article id 4693
Sirén G., (1958) Biological and technical properties of the local.. Silva Fennica vol. no. 96 article id 4676
Jamalainen E. A., (1956) The control of needle cast of Scots pine with ch.. Silva Fennica vol. no. 88 article id 4649
Yli-Vakkuri P., (1955) Elk damage in seedling stands of Scots pine in O.. Silva Fennica vol. no. 88 article id 4648
Kolehmainen V. A., (1955) Effect of prescribed burning in the forest regen.. Silva Fennica vol. no. 85 article id 4644
Sirén G., (1952) Observations on stands of Scots pine sown in sta.. Silva Fennica vol. no. 78 article id 4628
Heiskanen V., (1951) Accuracy of quality grading of Scots pine saw logs Silva Fennica vol. no. 69 article id 4613
Heiskanen V., (1951) Value grading of Scots pine saw logs Silva Fennica vol. no. 69 article id 4612
Nyyssönen A., (1950) Comparative study on structure and development o.. Silva Fennica vol. no. 68 article id 4600
Kalliola R., (1942) Vegetation and flora in the Pyhätunturi National.. Silva Fennica vol. no. 59 article id 4579
Borg L. E. T., (1936) Areas broadcast sown on snow in Tuomarniemi dist.. Silva Fennica vol. no. 38 article id 4479
Ilvessalo L., (1926) Ensuring preservation of forests on the coast of.. Silva Fennica vol. no. 2 article id 4435
Lähde E., (1966) Studies on the respiration rate in the different.. Acta Forestalia Fennica vol. 81 no. 8 article id 7173
Ilvessalo Y., (1967) The development of natural normal forest stands .. Acta Forestalia Fennica vol. 81 no. 5 article id 7170
Hårdh J. E., (1966) Trials with carbon dioxide, light and growth sub.. Acta Forestalia Fennica vol. 81 no. 1 article id 7166
Heiskanen V., (1965) Relation between the development of the early ag.. Acta Forestalia Fennica vol. 80 no. 2 article id 7164
Laiho O., (1965) Further studies on the ectendotrophic mycorrhiza Acta Forestalia Fennica vol. 79 no. 3 article id 7161
Mikola P., (1965) Studies on the ectendotrophic mycorrhiza of Scot.. Acta Forestalia Fennica vol. 79 no. 2 article id 7160
Huuri O., (1965) The effects of storage in cones on the viability.. Acta Forestalia Fennica vol. 78 no. 5 article id 7158
Heikurainen L., Seppälä K. (1965) Regionality in stand increment and its dependenc.. Acta Forestalia Fennica vol. 78 no. 4 article id 7157
Kallio T., (1965) Studies on the biology of distribution and possi.. Acta Forestalia Fennica vol. 78 no. 3 article id 7156
Mikola P., Laiho O. et al. (1964) The effect of slash burning on the commencement .. Acta Forestalia Fennica vol. 77 no. 3 article id 7151
Laiho O., Mikola P. (1964) Studies on the effect of some eradicants on myco.. Acta Forestalia Fennica vol. 77 no. 2 article id 7150
Seppänen M., (1964) Distribution of rainfall in the Scots pine stand.. Acta Forestalia Fennica vol. 76 no. 8 article id 7148
Yli-Vakkuri P., (1961) Experimental studies on the emergence and develo.. Acta Forestalia Fennica vol. 75 no. 1 article id 7135
Yli-Vakkuri P., (1961) Studies on the development of young sown pine st.. Acta Forestalia Fennica vol. 74 no. 3 article id 7130
Yli-Vakkuri P., (1961) Emergence and initial development of tree seedli.. Acta Forestalia Fennica vol. 74 no. 1 article id 7128
Ollinmaa P. J., (1960) Physical properties of wood growing on drained p.. Acta Forestalia Fennica vol. 72 no. 2 article id 7119
Ollinmaa P. J., (1959) Study on reaction wood Acta Forestalia Fennica vol. 72 no. 1 article id 7118
Kallio K., (1960) The mensurational density of a stand in estimati.. Acta Forestalia Fennica vol. 71 no. 7 article id 7116
Yli-Vakkuri P., (1960) Snow cover and ground frost in Finnish forests Acta Forestalia Fennica vol. 71 no. 5 article id 7114
Kallio K., (1960) Structure and development of Scots pine stands e.. Acta Forestalia Fennica vol. 71 no. 3 article id 7112
Kuusela K., (1959) Largest permanent allowable cut and a method for.. Acta Forestalia Fennica vol. 71 no. 1 article id 7110
Yli-Vakkuri P., (1959) On machines for abrading seed wings and their in.. Acta Forestalia Fennica vol. 68 no. 4 article id 7486
Yli-Vakkuri P., (1958) Studies on prescribed burning of drained peatlands Acta Forestalia Fennica vol. 67 no. 4 article id 7478
Heikurainen L., (1958) Root systems of mixed forest in drained peatlands Acta Forestalia Fennica vol. 67 no. 2 article id 7476
Mikola P., (1958) Liberation of nitrogen from alder leaf litter Acta Forestalia Fennica vol. 67 no. 1 article id 7475
Lehto J., (1956) Studies on the natural regeneration of Scots pin.. Acta Forestalia Fennica vol. 66 no. 2 article id 7472
Heikurainen L., (1955) Structure of Scots pine root systems in a pine s.. Acta Forestalia Fennica vol. 65 no. 3 article id 7466
Kalela E. K., (1954) Root systems of Scots pine seed trees and stands Acta Forestalia Fennica vol. 61 no. 28 article id 7440
Heikurainen L., (1954) Regeneration of Scots pine stands of pine swamps.. Acta Forestalia Fennica vol. 61 no. 27 article id 7439
Rummukainen U., (1954) Estimation of Scots pine and Norway spruce cone .. Acta Forestalia Fennica vol. 61 no. 20 article id 7432
Nyyssönen A., (1954) Structure and development of Scots pine stands t.. Acta Forestalia Fennica vol. 60 no. 4 article id 7411
Yli-Vakkuri P., (1953) Studies on physical root connections between the.. Acta Forestalia Fennica vol. 60 no. 3 article id 7410
Vaartaja O., (1951) On the recovery of released Scots pine undergrow.. Acta Forestalia Fennica vol. 59 no. 3 article id 7407
Murto J. O., (1951) Finnish Scots pine resin as raw material for lub.. Acta Forestalia Fennica vol. 59 no. 2 article id 7406
Kalela E. K., (1949) On the horizontal roots in Scots pine and Norway.. Acta Forestalia Fennica vol. 57 no. 2 article id 7398
Kalela E. K., (1946) Collection of resin in Scots pine forests in the.. Acta Forestalia Fennica vol. 52 no. 3 article id 7381
Kangas E., (1942) Effect of seed extracting temperature on extract.. Acta Forestalia Fennica vol. 50 no. 14 article id 7367
Lappi-Seppälä M., (1942) Growth of Siberian larch in mixed stands in stat.. Acta Forestalia Fennica vol. 50 no. 8 article id 7361
Aaltonen V. T., (1942) Growth studies on tree seedlings Acta Forestalia Fennica vol. 50 no. 6 article id 7359
Tikka P. S., (1940) The effect of injuries in trees on forest manage.. Acta Forestalia Fennica vol. 50 no. 1 article id 7354
Kangas E., (1940) Studies on artificial regeneration in Pohjankang.. Acta Forestalia Fennica vol. 49 no. 4 article id 7351
Sarvas R., (1937) Natural regeneration of burned areas. Forest bio.. Acta Forestalia Fennica vol. 46 no. 1 article id 7336
Aaltonen V. T., (1936) Norway spruce as competitor in the sites typical.. Acta Forestalia Fennica vol. 42 no. 8 article id 7325
Laitakari E., (1934) The relations between main and short shoots of S.. Acta Forestalia Fennica vol. 40 no. 36 article id 7313
Backman A. L., (1934) Early history of forests in Åland, Finland Acta Forestalia Fennica vol. 40 no. 20 article id 7297
Cajander E. K., (1934) Observations in a storm damage area Acta Forestalia Fennica vol. 40 no. 10 article id 7287
Jalava M., (1934) Influence of the position of a tree in the stand.. Acta Forestalia Fennica vol. 40 no. 9 article id 7286
Hintikka T. J., (1933) Observations on witches' brooms in Scots pine Acta Forestalia Fennica vol. 39 no. 2 article id 7273
Lassila I., (1929) The influence of forest site type on the weight .. Acta Forestalia Fennica vol. 36 no. 1 article id 7259
Hertz M., (1929) Observations on annual and daily cycles in the h.. Acta Forestalia Fennica vol. 34 no. 18 article id 7231
Hiley W. E. A., (1929) A financial analysis of a money yield table Acta Forestalia Fennica vol. 34 no. 6 article id 7219
Laitakari E., (1927) Morphological study of Scots pine root system Acta Forestalia Fennica vol. 33 no. 1 article id 7210
Boman A., (1927) Studies on annual variations of diameter growth .. Acta Forestalia Fennica vol. 32 no. 4 article id 7209
Heikkilä T., (1925) Growth studies in the northernmost Finland Acta Forestalia Fennica vol. 29 no. 4 article id 7194
Multamäki S. E., (1923) Studies on the growth of drained peatlands in Fi.. Acta Forestalia Fennica vol. 27 no. 1 article id 7094
Laitakari E., (1920) Studies on the effect of weather conditions on d.. Acta Forestalia Fennica vol. 17 no. 1 article id 7049
Lakari O. J., (1920) Studies on the stem and crown form of Scots pine Acta Forestalia Fennica vol. 16 no. 6 article id 7048
Ilvessalo Y., (1920) Growth and yield tables for the Scots pine, Norw.. Acta Forestalia Fennica vol. 15 no. 4 article id 7042
Lassila I., (1920) Studies on the regeneration and development of S.. Acta Forestalia Fennica vol. 14 no. 3 article id 7036
Renvall A., (1919) Protection forests VI. Acta Forestalia Fennica vol. 11 no. 6 article id 7026
Renvall A., (1919) Protection forests V. Acta Forestalia Fennica vol. 11 no. 5 article id 7025
Renvall A., (1919) Protection forests IV. Acta Forestalia Fennica vol. 11 no. 4 article id 7024
Renvall A., (1919) Protection forests III. Acta Forestalia Fennica vol. 11 no. 2-3 article id 7023
Renvall A., (1919) Protection forests II Acta Forestalia Fennica vol. 11 no. 2-3 article id 7022
Renvall A., (1919) Protection forests I Acta Forestalia Fennica vol. 11 no. 1 article id 7021
Renvall A., (1913) The periodic variation of the regeneration of pi.. Acta Forestalia Fennica vol. 1 no. 2 article id 7527
Uusitalo J., (1997) Pre-harvest measurement of pine stands for sawin.. Acta Forestalia Fennica vol. 0 no. 259 article id 7519
Hari P., Ross J. et al. (1996) Production process of Scots pine Acta Forestalia Fennica vol. 0 no. 254 article id 7525
Ojansuu R., (1993) Prediction of Scots pine increment using a multi.. Acta Forestalia Fennica vol. 0 no. 239 article id 7685
Luomajoki A., (1993) Climatic adaptation of Scots pine (Pinus sylvest.. Acta Forestalia Fennica vol. 0 no. 237 article id 7683
Nikinmaa E., (1992) Analyses of the growth of Scots pine: matching s.. Acta Forestalia Fennica vol. 0 no. 235 article id 7681
Heikkilä R., Mikkonen T. (1992) Effects of density of young Scots pine (Pinus sy.. Acta Forestalia Fennica vol. 0 no. 231 article id 7677
Finér L., (1991) Effect of fertilization on dry mass accumulation.. Acta Forestalia Fennica vol. 0 no. 223 article id 7669
Sairanen A., (1990) Site characteristics of Scots pine stands infect.. Acta Forestalia Fennica vol. 0 no. 216 article id 7663
Uotila A., (1990) Infection of pruning wounds in Scots pine by Pha.. Acta Forestalia Fennica vol. 0 no. 215 article id 7662
Hänninen H., (1990) Modelling bud dormancy release in trees from coo.. Acta Forestalia Fennica vol. 0 no. 213 article id 7660
Lääperi A., (1990) Effect of winter feeding on moose damage to youn.. Acta Forestalia Fennica vol. 0 no. 212 article id 7659
Nygren M., (1987) Germination characteristics of autumn collected .. Acta Forestalia Fennica vol. 0 no. 201 article id 7648
Smolander H., (1984) Measurement of fluctuating irradiance in field s.. Acta Forestalia Fennica vol. 0 no. 187 article id 7634
Henttonen H., (1984) The dependence of annual ring indices on some cl.. Acta Forestalia Fennica vol. 0 no. 186 article id 7633
Kauppi P., (1984) Stress, strain, and injury : Scots pine transpla.. Acta Forestalia Fennica vol. 0 no. 185 article id 7632
Pohtila E., Pohjola T. (1983) The timing of foliage spraying during the growin.. Acta Forestalia Fennica vol. 0 no. 181 article id 7628
Nyyssönen A., Ojansuu R. (1982) Assessment of timber assortments, value and valu.. Acta Forestalia Fennica vol. 0 no. 179 article id 7626
Hari P., Kellomäki S. et al. (1982) Dynamics of early development of tree stand Acta Forestalia Fennica vol. 0 no. 177 article id 7624
Thammincha S., (1981) Climatic variation in radial growth of Scots pin.. Acta Forestalia Fennica vol. 0 no. 171 article id 7618
Chung M.-S., (1981) Flowering characteristics of Pinus sylvestris L... Acta Forestalia Fennica vol. 0 no. 169 article id 7616
Heikurainen Leo., (1980) Drainage condition and tree stands on peatlands .. Acta Forestalia Fennica vol. 0 no. 167 article id 7614
Laine J., Mannerkoski H. (1980) Effect on fertilization on tree growth and elk d.. Acta Forestalia Fennica vol. 0 no. 166 article id 7604
Nyyssönen A., Mielikäinen K. (1978) Estimation of stand increment Acta Forestalia Fennica vol. 0 no. 163 article id 7597
Hallman E., Hari P. et al. (1978) Effect of planting shock on the transpiration, p.. Acta Forestalia Fennica vol. 0 no. 161 article id 7595
Heikurainen L., Laine J. (1976) Effect of fertilization, drainage and temperatur.. Acta Forestalia Fennica vol. 0 no. 150 article id 7584
Kilkki P., Siitonen M. (1975) Simulation of artificial stands and derivation o.. Acta Forestalia Fennica vol. 0 no. 145 article id 7579
Brown R. T., Mikola P. (1974) The influence of fruticose soil lichens upon the.. Acta Forestalia Fennica vol. 0 no. 141 article id 7575
Päivänen J., (1974) Nutrient removal from Scots pine canopy on drain.. Acta Forestalia Fennica vol. 0 no. 139 article id 7573
Havas P., (1971) Injury to pines in the vicinity of a chemical pr.. Acta Forestalia Fennica vol. 0 no. 121 article id 7555
Heikurainen L., Veijola P. (1971) Effect of fertilization and ditch spacing on reg.. Acta Forestalia Fennica vol. 0 no. 114 article id 7548
Räsänen P. K., (1970) The effect of lifting date, packing, storing and.. Acta Forestalia Fennica vol. 0 no. 112 article id 7546
Kurkela T., (1969) Antagonism of healthy and diseased Ericaceous pl.. Acta Forestalia Fennica vol. 0 no. 101 article id 7612
Tigerstedt P. M. A., (1969) Progeny tests in a Pinus silvestris (L) seed orc.. Acta Forestalia Fennica vol. 0 no. 99 article id 7602
Seppälä K., (1969) Post-drainage growth rate of Norway spruce and S.. Acta Forestalia Fennica vol. 0 no. 93 article id 7611
Leikola M., (1969) The influence of environmental factors on the di.. Acta Forestalia Fennica vol. 0 no. 92 article id 7610
Yli-Vakkuri P., Räsänen P. K. et al. (1968) Cold-storage and its effects on the field surviv.. Acta Forestalia Fennica vol. 0 no. 88 article id 7188
Häggström B., Lutter R. et al. (2023) Effect of arginine-phosphate addition on early s.. Silva Fennica vol. 57 no. 2 article id 22013
Mäkinen H., Nöjd P. et al. (2022) Recent unexpected decline of forest growth in No.. Silva Fennica vol. 56 no. 4 article id 10769
Goude M., Nilsson U. et al. (2022) Comparing basal area growth models for Norway sp.. Silva Fennica vol. 56 no. 2 article id 10707
Kuehne C., McLean J. P. et al. (2022) A stand-level growth and yield model for thinned.. Silva Fennica vol. 56 no. 1 article id 10627
Haapanen M., Ruotsalainen S. (2021) Adaptive performance of genetically improved and.. Silva Fennica vol. 55 no. 5 article id 10534
Hökkä H., Laurén A. et al. (2021) Defining guidelines for ditch depth in drained S.. Silva Fennica vol. 55 no. 3 article id 10494
Terhonen E.-L., Babalola J. et al. (2021) Sphaeropsis sapinea found as symptomless .. Silva Fennica vol. 55 no. 1 article id 10420
Marčiulynas A., Sirgedaitė-Šėžienė V. et al. (2020) Resistance of Scots pine half-sib families to Silva Fennica vol. 54 no. 4 article id 10276
Matala J., Kilpeläinen H. et al. (2020) Sawlog quality and tree dimensions of Scots pine.. Silva Fennica vol. 54 no. 3 article id 10389
Aro L., Ahtikoski A. et al. (2020) Profitability of growing Scots pine on cutaway p.. Silva Fennica vol. 54 no. 3 article id 10273
Hytönen J., Hökkä H. (2020) Comparison of granulated and loose ash in fertil.. Silva Fennica vol. 54 no. 2 article id 10259
Pikkarainen L., Luoranen J. et al. (2020) Comparison of planting success in one-year-old s.. Silva Fennica vol. 54 no. 1 article id 10243
Karjalainen T., Packalen P. et al. (2019) Predicting factual sawlog volumes in Scots pine .. Silva Fennica vol. 53 no. 4 article id 10183
Korhonen L., Repola J. et al. (2019) Transferability and calibration of airborne lase.. Silva Fennica vol. 53 no. 3 article id 10179
Repola J., Hökkä H. et al. (2018) Models for diameter and height growth of Scots p.. Silva Fennica vol. 52 no. 5 article id 10055
Andersson Gull B., Persson T. et al. (2018) Longitudinal differences in Scots pine shoot elo.. Silva Fennica vol. 52 no. 5 article id 10040
Becker H., Aosaar J. et al. (2018) Annual net nitrogen mineralization and litter fl.. Silva Fennica vol. 52 no. 4 article id 10013
Fedderwitz F., Björklund N. et al. (2018) Does the pine weevil (Hylobius abietis) p.. Silva Fennica vol. 52 no. 3 article id 9946
Egbäck S., Karlsson B. et al. (2018) Effects of phenotypic selection on height-diamet.. Silva Fennica vol. 52 no. 2 article id 7738
Lehtinen M. T., Pulkkinen P. (2017) Effects of Scots pine paternal genotypes of two .. Silva Fennica vol. 51 no. 5 article id 7783
Fajstavr M., Giagli K. et al. (2017) The effect of stem girdling on xylem and phloem .. Silva Fennica vol. 51 no. 4 article id 1760
Egbäck S., Nilsson U. et al. (2017) Modeling early height growth in trials of geneti.. Silva Fennica vol. 51 no. 3 article id 5662
Hytönen J., Jylhä P. et al. (2017) Positive effects of wood ash fertilization and w.. Silva Fennica vol. 51 no. 3 article id 1734
Hebda A., Wójkiewicz B. et al. (2017) Genetic characteristics of Scots pine in Poland .. Silva Fennica vol. 51 no. 2 article id 1721
Fedorkov A., Gutiy L. (2017) Performance of lodgepole pine and Scots pine in .. Silva Fennica vol. 51 no. 1 article id 1692
Vacek S., Vacek Z. et al. (2016) Structure, regeneration and growth of Scots pine.. Silva Fennica vol. 50 no. 4 article id 1564
Ruuhola T., Nikula A. et al. (2016) Effects of bedrock and surficial deposit composi.. Silva Fennica vol. 50 no. 3 article id 1565
Berlin M. E., Persson T. et al. (2016) Scots pine transfer effect models for growth and.. Silva Fennica vol. 50 no. 3 article id 1562
Hallongren H., Kankaanhuhta V. et al. (2016) Cleaning Scots pine seedling stands with mechani.. Silva Fennica vol. 50 no. 3 article id 1514
Zawadzka D., Drozdowski S. et al. (2016) The availability of cavity trees along an age gr.. Silva Fennica vol. 50 no. 3 article id 1441
Nevalainen S., Matala J. et al. (2016) Moose damage in National Forest Inventories (198.. Silva Fennica vol. 50 no. 2 article id 1410
Franke A. K., Aatsinki P. et al. (2015) Quantifying changes of the coniferous forest lin.. Silva Fennica vol. 49 no. 4 article id 1408
Edvardsson J., Hansson A. (2015) Multiannual hydrological responses in Scots pine.. Silva Fennica vol. 49 no. 4 article id 1354
Moilanen M., Hytönen J. et al. (2015) Fertilization increased growth of Scots pine and.. Silva Fennica vol. 49 no. 3 article id 1301
Jansons Ā., Matisons R. et al. (2015) The effect of climatic factors on height increme.. Silva Fennica vol. 49 no. 3 article id 1262
Düthorn E., Schneider L. et al. (2015) On the hidden significance of differing micro-si.. Silva Fennica vol. 49 no. 1 article id 1220
Woziwoda B., Parzych A. et al. (2014) Species diversity, biomass accumulation and carb.. Silva Fennica vol. 48 no. 4 article id 1119
Saarsalmi A., Tamminen P. et al. (2014) Effects of long-term fertilisation on soil prope.. Silva Fennica vol. 48 no. 1 article id 989
Zubizarreta-Gerendiain A., Pellikka P. et al. (2012) Factors affecting wind and snow damage of indivi.. Silva Fennica vol. 46 no. 2 article id 441
Nilsson U., Elfving B. et al. (2012) Productivity of Norway spruce compared to Scots .. Silva Fennica vol. 46 no. 2 article id 54
Siipilehto J., (2011) Local prediction of stand structure using linear.. Silva Fennica vol. 45 no. 4 article id 99
Pulkkinen P., Varis S. et al. (2011) Increasing survival and growth of Scots pine see.. Silva Fennica vol. 45 no. 4 article id 93
Terhonen E., Marco T. et al. (2011) The effect of latitude, season and needle-age on.. Silva Fennica vol. 45 no. 3 article id 104
Androsiuk P., Zielinski R. et al. (2011) B-SAP markers derived from the bacterial KatG ge.. Silva Fennica vol. 45 no. 1 article id 29
Jacobson S., Pettersson F. (2010) An assessment of different fertilization regimes.. Silva Fennica vol. 44 no. 5 article id 123
Berlin M., Lönnstedt L. et al. (2010) Developing a Scots pine breeding objective: a ca.. Silva Fennica vol. 44 no. 4 article id 132
Hallingbäck H. R., Jansson G. et al. (2010) Which annual rings to assess grain angles in bre.. Silva Fennica vol. 44 no. 2 article id 154
Brumelis G., Strazds M. et al. (2009) Stand structure and spatial pattern of regenerat.. Silva Fennica vol. 43 no. 5 article id 172
Varis S., Pakkanen A. et al. (2009) The extent of south-north pollen transfer in Fin.. Silva Fennica vol. 43 no. 5 article id 168
Ikonen V.-P., Kellomäki S. et al. (2009) Sawn timber properties of Scots pine as affected.. Silva Fennica vol. 43 no. 3 article id 197
Kankaanhuhta V., Saksa T. et al. (2009) Variation in the results of Norway spruce planti.. Silva Fennica vol. 43 no. 1 article id 217
Nikula A., Hallikainen V. et al. (2008) Modelling the factors predisposing Scots pine to.. Silva Fennica vol. 42 no. 4 article id 235
Kalliokoski T., Nygren P. et al. (2008) Coarse root architecture of three boreal tree sp.. Silva Fennica vol. 42 no. 2 article id 252
Saksa T., Miina J. (2007) Cleaning methods in planted Scots pine stands in.. Silva Fennica vol. 41 no. 4 article id 274
Siipilehto J., Sarkkola S. et al. (2007) Comparing regression estimation techniques when .. Silva Fennica vol. 41 no. 2 article id 300
Kosinska J., Lewandowski A. et al. (2007) Genetic variability of Scots pine maternal popul.. Silva Fennica vol. 41 no. 1 article id 304
Huuskonen S., Hynynen J. (2006) Timing and intensity of precommercial thinning a.. Silva Fennica vol. 40 no. 4 article id 320
Siipilehto J., (2006) Height distributions of Scots pine sapling stand.. Silva Fennica vol. 40 no. 3 article id 331
Salminen H., Jalkanen R. (2006) Modelling variation of needle density of Scots p.. Silva Fennica vol. 40 no. 2 article id 337
Sariyildiz T., Anderson J. M. (2006) Intra-specific variation in cell wall constituen.. Silva Fennica vol. 40 no. 1 article id 349
Salminen H., Jalkanen R. (2005) Modelling the effect of temperature on height in.. Silva Fennica vol. 39 no. 4 article id 362
Rouvinen S., Rautiainen A. et al. (2005) A relation between historical forest use and cur.. Silva Fennica vol. 39 no. 1 article id 393
Sarkkola S., Hökkä H. et al. (2004) Natural development of stand structure in peatla.. Silva Fennica vol. 38 no. 4 article id 408
Kojola S., Penttilä T. et al. (2004) Impacts of different thinning regimes on the yie.. Silva Fennica vol. 38 no. 4 article id 407
Warensjö M., Rune G. (2004) Stem straightness and compression wood in a 22-y.. Silva Fennica vol. 38 no. 2 article id 424
Varmola M., Salminen H. et al. (2004) Thinning response and growth trends of seeded Sc.. Silva Fennica vol. 38 no. 1 article id 436
Långström B., Hellqvist C. et al. (2004) Comparison of methods for estimation of needle l.. Silva Fennica vol. 38 no. 1 article id 432
Jacobson S., (2003) Addition of stabilized wood ashes to Swedish con.. Silva Fennica vol. 37 no. 4 article id 483
Varhimo A., Kojola S. et al. (2003) Quality and yield of pulpwood in drained peatlan.. Silva Fennica vol. 37 no. 3 article id 494
Rune G., (2003) Slits in container wall improve root structure a.. Silva Fennica vol. 37 no. 3 article id 493
Kaunisto S., Sarjala T. (2003) Foliar potassium concentrations of bilberry, bog.. Silva Fennica vol. 37 no. 3 article id 492
Jutras S., Hökkä H. et al. (2003) Modeling mortality of individual trees in draine.. Silva Fennica vol. 37 no. 2 article id 504
Kozlov M. V., Niemelä P. (2003) Drought is more stressful for northern populatio.. Silva Fennica vol. 37 no. 2 article id 499
Mickovski S. B., Ennos A. R. (2003) Anchorage and asymmetry in the root system of Pi.. Silva Fennica vol. 37 no. 2 article id 498
Pukkala T., Miina J. et al. (2002) Thinning response and thinning bias in a young S.. Silva Fennica vol. 36 no. 4 article id 524
Lindén M., Vollbrecht G. (2002) Sensitivity of Picea abies to butt rot in pure s.. Silva Fennica vol. 36 no. 4 article id 519
Aalto T., Hari P. et al. (2002) Comparison of an optimal stomatal regulation mod.. Silva Fennica vol. 36 no. 3 article id 529
Venäläinen M., Ruotsalainen S. (2002) Procedure for managing large-scale progeny test .. Silva Fennica vol. 36 no. 2 article id 539
Nevalainen S., (2002) The incidence of Gremmeniella abietina in relati.. Silva Fennica vol. 36 no. 2 article id 538
Kurkela T., (2002) Crown condition as an indicator of the incidence.. Silva Fennica vol. 36 no. 2 article id 537
Wallenius T., Kuuluvainen T. et al. (2002) Spatial tree age structure and fire history in t.. Silva Fennica vol. 36 no. 1 article id 557
Saarsalmi A., Mälkönen E. et al. (2001) Effects of wood ash fertilization on forest soil.. Silva Fennica vol. 35 no. 3 article id 590
Siipilehto J., (2000) A comparison of two parameter prediction methods.. Silva Fennica vol. 34 no. 4 article id 617
Kaitera J., (2000) Analysis of Cronartium flaccidum lesion developm.. Silva Fennica vol. 34 no. 1 article id 641
Linkosalo T., (1999) Regularities and patterns in the spring phenolog.. Silva Fennica vol. 33 no. 4 article id 647
Björklund L., (1999) Identifying heartwood-rich stands or stems of Pi.. Silva Fennica vol. 33 no. 2 article id 662
Sundström E., (1998) Afforestation of low-productive peatlands in Swe.. Silva Fennica vol. 32 no. 4 article id 676
Aalto T., (1998) Carbon dioxide exchange of Scots pine shoots as .. Silva Fennica vol. 32 no. 4 article id 674
Palomäki V., Hassinen A. et al. (1998) Open-top chamber fumigation system for exposure .. Silva Fennica vol. 32 no. 3 article id 681
Oleksyn J., Tjoelker M. G. et al. (1998) Adaptation to changing environment in Scots pine.. Silva Fennica vol. 32 no. 2 article id 691
Persson B., (1998) Will climate change affect the optimal choice of.. Silva Fennica vol. 32 no. 2 article id 690
Eriksson G., (1998) Evolutionary forces influencing variation among .. Silva Fennica vol. 32 no. 2 article id 694
Ståhl E. G., (1998) Changes in wood and stem properties of Pinus syl.. Silva Fennica vol. 32 no. 2 article id 693
Terhonen E., (2023) First report of Diplodia tip blight on Scots pin.. Silva Fennica vol. 56 no. 4 article id 22008
Katjutin P. N., Stavrova N. I. et al. (2020) Radial growth of trees differing in their vitali.. Silva Fennica vol. 54 no. 3 article id 10263
Jansons Ā., Robalte L. et al. (2016) Long-term effect of whole tree biomass harvestin.. Silva Fennica vol. 50 no. 5 article id 1661
Sjølie H. K., Sørlie H. A. K. et al. (2015) The performance of two Swedish N fertilization f.. Silva Fennica vol. 49 no. 4 article id 1330
Rautiainen M., Stenberg P. et al. (2005) Estimating canopy cover in Scots pine stands Silva Fennica vol. 39 no. 1 article id 402
Nohrstedt H.-Ö., Börjesson G. (1998) Respiration in a forest soil 27 years after fert.. Silva Fennica vol. 32 no. 4 article id 679
Kurkela T., Nuorteva H. (1998) Short-needle disease of Scots pine: an abnormal .. Silva Fennica vol. 32 no. 1 article id 702