%0 Research article %T Diversifying clearcuts with green-tree retention and woody debris structures: conservation of mammals across forest ecological zones %A Sullivan, Thomas P. %A Sullivan, Druscilla S. %D 2014 %J Silva Fennica %V 48 %N 5 %R doi:10.14214/sf.1219 %U https://silvafennica.fi/article/1219 %X We tested the hypotheses (H) that on newly clearcut-harvested sites, (H1) abundance and species diversity of the forest-floor small mammal community, and (H2) abundance, reproduction, and recruitment of red-backed voles (Myodes gapperi Vigors), would increase with higher levels of structural retention via green-tree retention (GTR) and woody debris (dispersed and constructed into windrows). Study areas were located in three forest ecological zones in southern British Columbia, Canada. For H1, mean total abundance did generally increase with the gradient of retained habitat structure. Mean species richness and diversity were similar among treatment sites but did show an increasing gradient with structural compexity. For H2, mean abundance, reproduction, and recruitment of M. gapperi were higher in GTR and windrow sites than those without retained structures. There was a positive relationship between mean abundance of M. gapperi and total volume of woody debris across treatments. This study is the first investigation of the responses of forest-floor small mammals to an increasing gradient of retained habitat structure via GTR and woody debris on clearcuts. Our assessment of a combination of these two interventions suggested a potentially strong additive effect that could be cautiously extrapolated across three forest ecological zones. With the advent of low levels of GTR on clearcuts, woody debris structures should help provide some habitat to conserve forest mammals on harvest openings.