%0 Research article %T Comparison of gap formation and distribution pattern induced by wind/snowstorm and flood in a temperate secondary forest ecosystem, Northeast China %A Zhu, Chunyu %A Zhu, Jiaojun %A Zheng, Xiao %A Lu, Deliang %A Li, Xiufen %D 2017 %J Silva Fennica %V 51 %N 5 %R doi:10.14214/sf.7693 %U https://silvafennica.fi/article/7693 %X

Canopy gap is the driving force of forest succession. Due to the uncontrollability, however, the influences of natural disturbances on gap formation and gap distribution pattern have been rarely understood in temperate secondary forest ecosystems. We monitored the gap formation and gap distribution pattern using high-resolution remote sensing images before and after two disturbances (wind/snowstorm in 2003 and flood in 2013). The results showed that after wind/snowstorm, the gap nearest neighbor index (GNNI) decreased, the vacant land area did not obviously change while the gap fraction and gaps density (especially medium size) increased. After the flood, GNNI decreased, the number of small gaps increased but larger gaps were in many cases extended to vacant land areas leading to a smaller total number of medium and large gaps but considerable increase in vacant land area. We also found that the gap densities increased with slope and altitude for wind/snowstorm-formed gaps, but they increased with increasing slope and decreasing altitude for flood-formed gaps. These results indicated that gaps were aggregated in steep slope and high altitude areas after wind/snowstorm, but in steep slope and low altitude areas after the flood. Medium gaps were mainly created by the wind/snowstorm due to the individual-level death of dominant tree with the continuous fall of surrounding trees. While, vacant lands were obviously created during the flood because of integral sweeping. Besides, smaller trees were easily damaged by runoff of flood, which induced small gaps. In summary, forest managers may pay more attention to use gaps to accelerate forest succession after wind/snowstorms and to restore vegetation in vacant lands after floods.