Current issue: 53(2)

Under compilation: 53(3)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Leena Finér

Category: Research article

article id 328, category Research article
Pedro J. Aphalo, Markku Lahti, Tarja Lehto, Tapani Repo, Aino Rummukainen, Hannu Mannerkoski, Leena Finér. (2006). Responses of silver birch saplings to low soil temperature. Silva Fennica vol. 40 no. 3 article id 328. https://doi.org/10.14214/sf.328
Two-year-old silver birch (Betula pendula) saplings were grown for a third growing season in controlled-environment rooms (dasotrons) at three soil temperatures (5, 10, and 20 °C). All trees grew the first flush of leaves, but the growth of the second flush was almost completely inhibited at the two lower temperatures. The dry weight of the second-flush leaves was 50 times larger at 20 °C than at 5 and 10 °C, with about 100 times more nitrogen. Root growth was less affected than shoot growth. Chlorophyll content, net assimilation rate and stomatal conductance were lower at low soil temperatures. The value of the cytoplasm resistance estimated from the electric impedance spectra was lower at 5 °C than at 10 or 20 °C. Leaf water potential was highest at the lowest soil temperature, and intercellular carbon dioxide concentration was only slightly lower in saplings growing in cooler soil. We conclude that the effect of long-term exposure to cold soil on net assimilation and growth was not caused by stomatal closure alone. It is likely to be additionally mediated by the limited nitrogen acquisition at the low soil temperatures, and perhaps additionally by some other factor. As the growth depression of aboveground parts in response to low soil temperature was more significant in silver birch than what has earlier been found in conifers, the relative changes in air and soil temperature may eventually determine whether birch will become more dominant in boreal forests with climate change.
  • Aphalo, University of Helsinki, Department of Biological and Environmental Sciences ORCID ID:E-mail:
  • Lahti, The Finnish Forest Research Institute ORCID ID:E-mail:
  • Lehto, University of Joensuu, Faculty of Forestry, Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail: tarja.lehto@joensuu.fi (email)
  • Repo, The Finnish Forest Research Institute ORCID ID:E-mail:
  • Rummukainen, University of Joensuu, Faculty of Forestry, Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail:
  • Mannerkoski, University of Joensuu, Faculty of Forestry, Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail:
  • Finér, The Finnish Forest Research Institute ORCID ID:E-mail:
article id 340, category Research article
Petteri Muukkonen, Raisa Mäkipää, Raija Laiho, Kari Minkkinen, Harri Vasander, Leena Finér. (2006). Relationship between biomass and percentage cover in understorey vegetation of boreal coniferous forests. Silva Fennica vol. 40 no. 2 article id 340. https://doi.org/10.14214/sf.340
In the present study, the aboveground biomass of the understorey vegetation of boreal coniferous forests was modelled according to the percentage cover. A total of 224 observations from 22 stands in upland forests and 195 observations from 14 different studies in peatland forests were utilized for the present analyses. The relationships between biomass and percentage cover can be used in ecosystem and carbon-cycle modelling as a rapid nondestructive method for estimation of the aboveground biomass of lichens, bryophytes, herbs and grasses, and dwarf shrubs in upland forests and bottom and field layers in peatland forests.
  • Muukkonen, Finnish Forest Research Institute, P.O. Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail: petteri.muukkonen@metla.fi (email)
  • Mäkipää, Finnish Forest Research Institute, Unioninkatu 40 A, FI-00170 Helsinki, Finland ORCID ID:E-mail:
  • Laiho, Department of Forest Ecology, P.O. Box 24, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
  • Minkkinen, Department of Forest Ecology, P.O. Box 24, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
  • Vasander, Department of Forest Ecology, P.O. Box 24, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
  • Finér, Finnish Forest Research Institute, P.O. Box 68, FI-80101 Joensuu, Finland ORCID ID:E-mail:

Category: Article

article id 5634, category Article
Leena Finér, Mika Nieminen. (1997). Dry mass and the amounts of nutrients in understorey vegetation before and after fertilization on a drained pine bog. Silva Fennica vol. 31 no. 4 article id 5634. https://doi.org/10.14214/sf.a8536

Dry mass and nutrient (N, P, K, Ca, Mg, B) contents of field layer vegetation and a combination of bottom layer vegetation and litter (referred to as bottom/litter layer in the text) were studied one year before and three years after fertilization (NPK and PK) on a drained low-shrub pine bog in eastern Finland. The results of an earlier study on the tree layer were combined with those of this study in order to estimate the changes caused by fertilization in the total plant biomass and litter. Before fertilization the average dry mass of the field and bottom/litter layers was 8,400 kg ha-1 and 7,650 kg ha-1, respectively. The above-ground parts accounted for 25% of the total field layer biomass. The dry mass of the field and bottom/litter layers together was < 20% of the dry mass accumulated in the total plant biomass and litter. The corresponding figures for N, P, K, Ca, Mg and B were 44%, 38%, 30%, 38%, 31% and 17%, respectively. Fertilization did not significantly affect the dry mass of either the field layer vegetation or the bottom/litter layer. 33% of the applied P was accumulated in the total plant biomass and litter on the PK-fertilized plots, and 25% on the NPK-fertilized plots. For the other elements, the proportions on the PK-fertilized plots were K 31%, Ca 6%, Mg 11% and B 13%. On the NPK-fertilized plots, the corresponding figures were N 62%, K 32%, Ca 6%, Mg 9% and B 13%. Except for B and K, the accumulation of fertilizer nutrients in the understorey vegetation and litter was of the same magnitude or greater than the uptake by the tree layer.

  • Finér, ORCID ID:E-mail:
  • Nieminen, ORCID ID:E-mail:
article id 5527, category Article
Leena Finér. (1994). Variation in needle nutrient concentrations in the crown of Scots pine on peatland. Silva Fennica vol. 28 no. 1 article id 5527. https://doi.org/10.14214/sf.a9161

Variation in needle nutrient concentrations with age and vertical location in the crown was studied in three Scots pine (Pinus sylvestris L.) stands growing on peat soils in Eastern Finland. The concentrations of N, P, Fe and Zn decreased down the crown and those of Ca and Mn increased. Potassium and magnesium concentration patterns differed between sites.

Potassium and Mg concentrations were highest in the current needles at all heights in the crown, iron and manganese concentrations were highest in the oldest needles. The concentrations of N, P and Zn did not vary with needle age.

  • Finér, ORCID ID:E-mail:
article id 5436, category Article
Leena Finér. (1991). Root biomass on an ombrotrophic pine bog and the effects of PK and NPK fertilization. Silva Fennica vol. 25 no. 1 article id 5436. https://doi.org/10.14214/sf.a15590

Scots pine (Pinus sylvestris L.) living root biomass (ø≤ 10 mm) was 640 g/m2 on the studied low-shrub pine bog before fertilization, and that of the ground vegetation almost the same. The total root necromass was 23% of the biomass of living roots. The length of the pine roots was 2,440 m/m2. The biomass of living roots and root necromass were mostly located in the top 20 cm layer of the soil. The ø < 1 mm pine root fraction accounted for almost 90% of the pine root length; in contrast, over 50% of the biomass was in the 1–10 mm thick root biomass, pine root length and PK (MgB) fertilization did not affect total living root biomass, pine root length, nor the root necromass during the three-year observation period.

The PDF includes an abstract in Finnish.

  • Finér, ORCID ID:E-mail:
article id 7669, category Article
Leena Finér. (1991). Effect of fertilization on dry mass accumulation and nutrient cycling in Scots pine on an ombrotrophic bog. Acta Forestalia Fennica no. 223 article id 7669. https://doi.org/10.14214/aff.7669

The first three-year effects of PK(MgB) and NPK(MgB) fertilization on the dry mass accumulation and nutrient cycling were studied in a Scots pine (Pinus sylvestris L.) stand growing on a drained low-shrub pine bog in Eastern Finland. The total dry mass of the tree stand before fertilization was 78 tn/ha, of which the above-ground compartments accounted for 69%. The annual above-ground dry mass production was 6.3 tn/ha, 51% of it accumulating in the tree stand.

The study period was too short for detecting any fertilization response in the stems. The total dry mass accumulation was not affected, because the increase in foliar and cone dry masses after both fertilization treatments, and that of the living branches after NPK fertilization, were compensated by the decrease in the dry mass of dead branches.

The nutrients studied accounted for 392 kg/ha (0.49%) of the total dry mass of the tree stand before fertilization. The amounts were as follows; N 173 kg/ha (44%), Ca 90 kg (23%), K 58 kg/ha (15%). The rest (18%) consisted of P, Mg, S and micronutrients combined. The unfertilized trees took up the following amounts of nutrients of the soil: N 15.6, Ca 12.8, K 4.1, P 1.3, MG 1.7, and S and Mn 1.5 kg/ha. The uptake of Fe and Zn was 510 and 130 g/ha and that of B and Cu less than 100 g/ha. More than 50% of the nutrient uptake, except for that of K and Fe, was released in litterfall. The results indicated very efficient cycling of K, Mn and B between the soil and trees.

The fertilized stands accumulated more N, P, K and B than the unfertilized ones during the tree-year study period. The increased accumulation corresponded to 35% (52 kg/ha) of the N applied on the NPK fertilized plots, 10% of the P, 25% of the K and 10% of the B on the PK and NPK fertilized plots. The increased amount of B released in litterfall after fertilization was equivalent to 4% of the applied B. Fertilization inhibited the uptake of Mn and Ca.

The PDF includes a summary in Finnish.

  • Finér, ORCID ID:E-mail:
article id 7655, category Article
Leena Finér. (1989). Biomass and nutrient cycle in fertilized and unfertilized pine, mixed birch and pine and spruce stands on a drained mire. Acta Forestalia Fennica no. 208 article id 7655. https://doi.org/10.14214/aff.7655

At the beginning of the investigation period the total biomass of the Scots pine (Pinus sylvestris L.) stands on the ordinary sedge pine mire was 48 t/ha. The biomass of the mixed stands of Scots pine and birch (Betula pubescens Erhr.) on the herbrich sedge pine mire was 91 t/ha, out of which 60% was from pine. The biomass of the Norway spruce (Picea abies (L.) H. Karst.) on the Vaccinium-Myrtillus spruce mire was 148 t/ha. The average annual net increment of the stand biomass was 5.8 t/ha in the unfertilized pine stand and 6.7 t/ha in the NPK and micronutrient fertilized one during the six-year investigation period. The corresponding figures in the mixed stand were 7.2 t/ha and 7.6 t/ha. The net increment of the biomass in the unfertilized spruce stand was 6.9 t/ha and in the fertilized 8.4 t/ha. A considerable proportion of the net increment was lost to the ground as litter in all stands.

The nitrogen, phosphorus, potassium, magnesium, iron, manganese, zinc, copper and boron cycles were investigated. The annual nitrogen uptake from the soil was 26–42 kg/ha, that of phosphorus 2.5–3.4 kg/ha, potassium 4.5–12 kg/ha, calcium 12–29 kg/ha, magnesium 2–4 kg/ha, iron 1.4–6.6 kg/ha, manganese less than 2 kg/ha and the other nutrients only some grams. Only part of the fertilized nutrients was fixed in the stand.

The PDF includes a summary in Finnish.

  • Finér, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive