Current issue: 55(2)

Under compilation: 55(3)

Scopus CiteScore 2019: 3.1
Scopus ranking of open access forestry journals: 6th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Tomas Lundmark

Category: Research article

article id 225, category Research article
Johan Bergh, Urban Nilsson, Harald Grip, Per-Ola Hedwall, Tomas Lundmark. (2008). Effects of frequency of fertilisation on production, foliar chemistry and nutrient leaching in young Norway spruce stands in Sweden. Silva Fennica vol. 42 no. 5 article id 225. https://doi.org/10.14214/sf.225
Keywords: sludge; wood-ash; boreal; N; P; K
There is a great need to increase the production in Swedish forests to meet future demand from the forest industry and the bio-energy sector. One option to increase the production is to supply nutrients to young stands of Norway spruce. For the practical application it is important to develop and optimise fertilisation regimes in terms of production, economy and leaching of nutrients. The frequency of fertilisation is one important variable in the fertilisation regime, and this study aimed to study effects of different fertilisation frequencies on production and leaching of nitrogen. In 2001, five field experiments were established in southern, central and northern Sweden. Young stands of Norway spruce were fertilised every year, every second year and every third year. In addition, fertilisation with sludge pellets and wood-ash combined with nitrogen was investigated. The current annual increment after five years of treatment was significantly larger in fertilised than in unfertilised treatments. The difference in production between fertilisation every year and every second year was insignificant, while fertilisation every third year resulted in lower production. Sludge pellets and wood-ash fertilisation gave significantly lower production than fertilisation every second year even though approximately the same amount of nitrogen was applied. There was relatively little leaching of nitrate to ground water in all treatments; 0.6–1 kg N ha–1 a–1 from plots with fertilisation every year or every second year; and 2.7 kg N ha–1 a–1 from plots with fertilisation every third year. Most of the leaching was after the first fertilisation, in all treatments at all sites.
  • Bergh, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID ID:E-mail: johan.bergh@ess.slu.se (email)
  • Nilsson, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID ID:E-mail:
  • Grip, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID ID:E-mail:
  • Hedwall, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID ID:E-mail:
  • Lundmark, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID ID:E-mail:

Category: Research note

article id 311, category Research note
Dan Bergström, Urban Bergsten, Tomas Nordfjell, Tomas Lundmark. (2007). Simulation of geometric thinning systems and their time requirements for young forests. Silva Fennica vol. 41 no. 1 article id 311. https://doi.org/10.14214/sf.311
In Fennoscandia, large areas that have not been subjected to pre-commercial thinning (PCT), and thus support dense stands, are becoming suitable for harvesting biomass. However, efficient systems for harvesting biomass from young stands have not yet been developed. In order to optimise biomass harvesting it is here hypothesized that the handling unit should not be a single tree but a corridor area, i.e., all trees in a specific area should be harvested in the same crane movement cycle. Three types of corridor harvesting approaches (using accumulating felling heads for geometric harvesting in two different patterns) were compared in terms of time required to fell a corridor of standardised size. Corridors are defined as strips of harvested areas between conventional strip-roads. Harvests were simulated in two types of stands, first thinning (FT) and delayed PCT stands, in which the spatial positions of the trees had been mapped. The differences in simulated time consumption per corridor were minor when the only variable changed was the corridor pattern. However, there were ca. 2-fold and 3-fold differences in simulated time consumption per corridor between the harvesting approaches for the FT stand and the PCT-stand, respectively. Furthermore, area handling (felling head accumulating all trees corridor-wise, with no restrictions on the accumulated number of trees except for a certain load limit) was found to give up to 2.4-fold increases in productivity compared to a single-tree (reference) approach for the FT stand. In conclusion, the simulation results clearly show the benefits of applying area-harvesting systems in young, dense stands.
  • Bergström, SLU, Dept. of Forest Resource Management, SE-901 83 Umeå, Sweden ORCID ID:E-mail:
  • Bergsten, SLU, Dept. of Forest Ecology and Management, SE-901 83 Umeå, Sweden ORCID ID:E-mail:
  • Nordfjell, SLU, Dept. of Forest Resource Management, SE-901 83 Umeå, Sweden ORCID ID:E-mail:
  • Lundmark, SLU, Vindeln Experimental Forests, Svartberget Field Station, SE-922 91 Vindeln, Sweden ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive