Current issue: 54(2)

Under compilation: 54(3)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Helena Korpelainen

Category: Research article

article id 1510, category Research article
Tähti Pohjanmies, Sakina Elshibli, Pertti Pulkkinen, Mari Rusanen, Pekka Vakkari, Helena Korpelainen, Tomas Roslin. (2016). Fragmentation-related patterns of genetic differentiation in pedunculate oak (Quercus robur) at two hierarchical scales. Silva Fennica vol. 50 no. 2 article id 1510. https://doi.org/10.14214/sf.1510
Highlights: While long-lived, widespread tree species should be resistant to genetic impoverishment, we detected high differentiation among populations and pronounced genetic structure within populations of Quercus robur in Finland; These patterns seem indicative of population processes active at range margins, and of disequilibrium following historic habitat change; Preservation of remaining genetic variation is thus important in the conservation of Q. robur.

Populations at species’ range margins are expected to show lower genetic diversity than populations at the core of the range. Yet, long-lived, widespread tree species are expected to be resistant to genetic impoverishment, thus showing comparatively high genetic diversity within populations and low differentiation among populations. Here, we study the distribution of genetic variation in the pedunculate oak (Quercus robur L.) at its range margin in Finland at two hierarchical scales using 15 microsatellite loci. At a regional scale, we compared variation within versus among three oak populations. At a landscape scale, we examined genetic structuring within one of these populations, growing on an island of ca 5 km2. As expected, we found the majority of genetic variation in Q. robur to occur within populations. Nonetheless, differentiation among populations was markedly high (FST = 0.12) compared with values reported for populations of Q. robur closer to the core of its range. At the landscape level, some spatial and temporal sub-structuring was observed, likely explained by the history of land-use on the island. Overall, Q. robur fulfils the expectation of the central-marginal hypothesis of high differentiation among marginal populations, but the notable population differentiation has most likely been influenced also by the long, ongoing fragmentation of populations. Finnish oak populations may still be adjusting to the drastic habitat changes of the past centuries. Preservation of genetic variation within the remaining stands is thus an important factor in the conservation of Q. robur at its range margin.

  • Pohjanmies, University of Helsinki, Department of Agricultural Sciences, Spatial Foodweb Ecology Group, P.O. Box 27, FI-00014 University of Helsinki, Finland; University of Jyväskylä, Department of Biological and Environmental Sciences, P.O. Box 35, FI-40014 University of Jyväskylä, Finland ORCID ID:E-mail: tahti.t.pohjanmies@jyu.fi (email)
  • Elshibli, Natural Resources Institute Finland (Luke), Green technology, P.O. Box 18, FI-01301 Vantaa, Finland; University of Helsinki, Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: sakina.elshibli@helsinki.fi
  • Pulkkinen, Natural Resources Institute Finland (Luke), Green technology, Haapastensyrjäntie 34, FI-12600 Läyliäinen, Finland ORCID ID:E-mail: pertti.pulkkinen@luke.fi
  • Rusanen, Natural Resources Institute Finland (Luke), Green technology, P.O. Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail: mari.rusanen@luke.fi
  • Vakkari, Natural Resources Institute Finland (Luke), Green technology, P.O. Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail: pekka.vakkari@luke.fi
  • Korpelainen, University of Helsinki, Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: helena.korpelainen@helsinki.fi
  • Roslin, University of Helsinki, Department of Agricultural Sciences, Spatial Foodweb Ecology Group, P.O. Box 27, FI-00014 University of Helsinki, Finland; Swedish University of Agricultural Sciences, Department of Ecology, P.O. Box 7044, SE-750 07 Uppsala, Sweden ORCID ID:E-mail: tomas.roslin@helsinki.fi
article id 314, category Research article
Yuhua Wang, Helena Korpelainen, Chunyang Li. (2006). Microsatellite polymorphism in the edaphic spruce, Picea asperata, originating from the mountains of China. Silva Fennica vol. 40 no. 4 article id 314. https://doi.org/10.14214/sf.314
Microsatellite variation of Picea asperata Mast. originating from the mountains of China was investigated by analyzing variation at seven SSR loci in 250 individuals representing ten populations. A fair degree of genetic diversity and considerable population subdivision occurred with the mean gene diversity (H) of 0.707, and genetic distances among populations varying between 0.121 and 0.224 (FST) and between 0.100 and 0.537 (RST). However, inter-population genetic distances showed no correlation with geographic distances between the population sites. This ruled out a simple isolation by distance model and suggested that migration does not have a great impact. In fact, the amount of gene flow, detected using private alleles, was very low, equaling only 0.753. Allele permutation tests revealed that stepwise-like mutations, coupled with genetic drift, could contribute to population differentiation. Moreover, significant genetic differences between populations were detected at most loci. The results indicate that natural selection, presumably through environmental stress, may be one of the main factors causing micro-geographical differentiation in the genetic structure of P. asperata. Based on SSR genotypes, 70% of the 250 individuals were correctly classified into their sites of origin. This suggests that microsatellites (SSRs) are effective in distinguishing genotypes of P. asperata originating from diverse eco-geographical sites in China.
  • Wang, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, China ORCID ID:E-mail:
  • Korpelainen, Department of Applied Biology, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
  • Li, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, China ORCID ID:E-mail: licy@cib.ac.cn (email)
article id 326, category Research article
Xuejiang Zhang, Helena Korpelainen, Chunyang Li. (2006). Microsatellite variation of Quercus aquifolioides populations at varying altitudes in the Wolong Natural Reserve of China. Silva Fennica vol. 40 no. 3 article id 326. https://doi.org/10.14214/sf.326
Genetic variation and differentiation were investigated among five natural populations of Quercus aquifolioides occurring along an altitudinal gradient that varied from 2000 to 3600 m above sea level in the Wolong Natural Reserve of China, by analyzing variation at six microsatellite loci. The results showed that the populations were characterized by relatively high intra-population variation with the average number of alleles equaling 11.33 per locus and the average expected heterozygosity (HE) being 0.779. The amount of genetic variation varied only little among populations, which suggests that the influence of altitude factors on microsatellite variation is limited. However, there is a significantly positive correlation between altitude and the number of low-frequency alleles (R2 = 0.97, P < 0.01), which indicates that Q. aquifolioides from high altitudes has more unique variation, possibly enabling adaptation to severe conditions. F statistics showed the presence of a slight deficiency of heterozygosity (FIS = 0.136) and a low level of differentiation among populations (FST = 0.066). The result of the cluster analysis demonstrated that the grouping of populations does not correspond to the altitude of the populations. Based on the available data, it is likely that the selective forces related to altitude are not strong enough to significantly differentiate the populations of Q. aquifolioides in terms of microsatellite variation.
  • Zhang, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, P. R. China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China ORCID ID:E-mail:
  • Korpelainen, Department of Applied Biology, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
  • Li, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, P. R. China ORCID ID:E-mail: licy@cib.ac.cn
article id 381, category Research article
Jianxun Luo, Yuhua Wang, Helena Korpelainen, Chunyang Li. (2005). Allozyme variation in natural populations of Picea asperata. Silva Fennica vol. 39 no. 2 article id 381. https://doi.org/10.14214/sf.381
A survey of allozymic alleles and genetic diversity was conducted for ten natural populations of Picea asperata Mast. originating from the mountains of Southwest China. A total of twenty-seven alleles at seventeen loci were observed. Ten of the loci were found monomorphic. Our results showed that the populations sampled were characterized by low genetic diversity (mean He = 0.096) and a low level of inbreeding (mean Fis = 0.005). The UPGMA tree of genetic relationships indicated that there was significant differentiation among populations. The coefficient of genetic differentiation among populations, based on Fst, equaled 0.311. Such extensive inter-populational differentiation detected in P. asperata could have resulted from allele frequency divergence among populations, particularly, in one population. Introgression from another species, variation in environmental conditions, and differing selection pressures could be some of the factors attributing to significant differences among populations. In addition, our results showed that the geographic and genetic distances were not correlated in the populations of P. asperata. Based on the genetic information obtained, we concluded that monitoring appropriate genetic markers may be an effective means of identifying potential genetic changes occurring during forest tree evolution.
  • Luo, Sichuan Academy of Forestry, Chengdu 610081, P. R. China ORCID ID:E-mail:
  • Wang, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, P. R. China; Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China ORCID ID:E-mail:
  • Korpelainen, Department of Applied Biology, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
  • Li, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, P. R. China ORCID ID:E-mail: licy@cib.ac.cn (email)

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive