Current issue: 54(3)

Under compilation: 54(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Back Tomas Ersson

Category: Research article

article id 1064, category Research article
Back Tomas Ersson, Urban Bergsten, Ola Lindroos. (2014). Reloading mechanized tree planting devices faster using a seedling tray carousel. Silva Fennica vol. 48 no. 2 article id 1064. https://doi.org/10.14214/sf.1064
Highlights: Seedling reloading onto the Bracke Planter crane-mounted planting device was twice as fast with the MagMat tray-wise-loaded carousel as today’s seedling-wise-loaded carousel; Tray-wise reloading combined with deplugging seedlings from suitable cultivation trays has the potential to be an efficient and robust way to feed seedlings on any type of tree planting machine.
On Nordic clearcuts, today’s tree planting machines produce high-quality but costly regenerations. Much of this high cost is attributable to the planting machines’ low productivity. One promising way of raising productivity is to lessen the time spent manually reloading seedlings onto the carousels of crane-mounted planting devices. Using MagMat, a carousel test-rig designed by engineering students, we studied how much faster tray-wise seedling reloading is on the Bracke Planter compared to reloading with today’s seedling-wise-loaded carousel. The MagMat test-rig held eight Hiko cultivation trays from which seedlings were deplugged individually and dropped into the planting tube. The time study confirmed that seedling reloading was on average twice as fast with MagMat compared to today’s seedling carousel, thereby increasing assumed planting machine productivity by 8–9% depending on the planting device used. MagMat’s cost-efficiency was analysed to be particularly reliant on its added investment cost, mechanical availability and how quickly trays can be switched automatically. Nevertheless, MagMat’s field performance illustrated the overall potential of tray-wise loading compared to piecewise seedling loading for increasing the productivity of crane-mounted planting devices. Also, deplugging proved to be a reliable method of extracting seedlings from the rigid, copper-painted Hiko cultivation trays even when performed at the excavator’s boom-tip during mounding work. We conclude that, rather than piecewise seedling loading, tray-wise loading combined with deplugging seedlings from suitable cultivation trays is a reliable and much more time-efficient method to feed seedlings on probably any type of tree planting machine.
  • Ersson, Department of Forest Biomaterials and Technology, SLU, SE-90183 Umeå, Sweden ORCID ID:E-mail: back.tomas.ersson@slu.se (email)
  • Bergsten, Department of Forest Biomaterials and Technology, SLU, SE-90183 Umeå, Sweden ORCID ID:E-mail: urban.bergsten@slu.se
  • Lindroos, Department of Forest Biomaterials and Technology, SLU, SE-90183 Umeå, Sweden ORCID ID:E-mail: ola.lindroos@slu.se
article id 958, category Research article
Back Tomas Ersson, Linus Jundén, Urban Bergsten, Martin Servin. (2013). Simulated productivity of one- and two-armed tree planting machines. Silva Fennica vol. 47 no. 2 article id 958. https://doi.org/10.14214/sf.958
Highlights: Using discrete-event simulation and detailed terrain and machine models, the productivities of excavator-based one- and two-armed tree planting machines were simulated; The machines’ arms were equipped with one-and two-headed planting devices; Two planting heads per arm rather than two arms per base machine is better for increasing the productivity of intermittently advancing planting machines on Nordic clearcuts.
To increase mechanized planting, planting machine productivity must increase in order to improve cost-efficiency. To determine if excavators with two crane arms could potentially help to increase planting machine productivity under Nordic clearcut conditions, we modelled one-armed and semi-automated two-armed excavators with one- and two-headed planting devices. Using a recently developed tool for discrete-event simulation, these machine models then mounded and planted seedlings on terrain models with moraine soil having various frequencies of obstacles (stumps, roots and stones). Compared to if the two heads were mounted pairwise on only one arm, the results showed that productivity did not increase if two planting heads were attached individually to two separate crane arms. But productivity did increase if the planting machine had four planting heads mounted pairwise on two separate arms. However, despite assuming automated mounding and crane motion between planting spots, the two-armed, four-headed model never achieved high enough productivity levels to make it more cost-efficient than one-armed machines. The simulations illustrate that our terrain models generate realistic root architecture and boulder content distributions in moraine soil, while our machine models functionally describe mechanized planting work. Based on our assumptions, we conclude that further development work on two-armed excavator-based planting machines for Nordic clearcut conditions is not warranted. Our simulations reveal that increasing the number of planting heads per crane arm rather than number of crane arms per base machine offers the greatest potential to raise the productivity of intermittently advancing planting machines.
  • Ersson,  Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden ORCID ID:E-mail: back.tomas.ersson@slu.se (email)
  • Jundén,  UMIT Research Lab, Umeå University, SE-901 87 Umeå, Sweden ORCID ID:E-mail: linus.junden@gmail.com
  • Bergsten,  Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden ORCID ID:E-mail: urban.bergsten@slu.se
  • Servin,  UMIT Research Lab, Umeå University, SE-901 87 Umeå, Sweden ORCID ID:E-mail: martin.servin@physics.umu.se
article id 108, category Research article
Back Tomas Ersson, Urban Bergsten, Ola Lindroos. (2011). The cost-efficiency of seedling packaging specifically designed for tree planting machines. Silva Fennica vol. 45 no. 3 article id 108. https://doi.org/10.14214/sf.108
Today’s crane-mounted planting heads plant seedlings with biologically similar or better results than operational manual planting. However, the total cost of mechanized tree planting in southern Sweden must decrease at least 25% to compete economically with manual planting. Although seedlings packed in machine-specific packaging increase the productivity of planting machines by reducing seedling reloading time, they also increase logistics and investment costs. In this study, we analyzed the total cost of outplanting seedlings with an excavator-mounted Bracke Planter and seedlings packed according to four different concepts: cultivation trays, cardboard boxes, band-mounted seedlings in cardboard boxes and linked pots in container modules. The total cost per planted seedling was calculated for each packaging system as the sum of all costs from nursery to the recovery of empty packaging. The results showed that today’s system of transporting seedlings in cultivation trays is the most cost-efficient of the four alternatives. Machine-specific seedling packaging was 16–23% costlier per planted seedling than cultivation trays when trucking distances were 100 km. Sensitivity analyses indicated that machine-specific seedling packaging increased in cost-efficiency relative to cultivation trays primarily when more planting machines were contracted, but also as planting machine fixed costs and productivity increased. Moreover, the relative cost-efficiency of band-mounted seedlings, but not seedlings in container modules, increased with increasing trucking distance. Thus, we show that investments in machine-specific seedling packaging for today’s planting machines are justified only when the fixed costs, productivity and number of contracted planting machines increase substantially.
  • Ersson, Swedish University of Agricultural Sciences, Department of Forest Resource Management, SE-90183 Umeå, Sweden ORCID ID:E-mail: back.tomas.ersson@slu.se (email)
  • Bergsten, Swedish University of Agricultural Sciences, Department of Forest Resource Management, SE-90183 Umeå, Sweden ORCID ID:E-mail:
  • Lindroos, Swedish University of Agricultural Sciences, Department of Forest Resource Management, SE-90183 Umeå, Sweden ORCID ID:E-mail:

Category: Research note

article id 1136, category Research note
Håkan Lideskog, Back Tomas Ersson, Urban Bergsten, Magnus Karlberg. (2014). Determining boreal clearcut object properties and characteristics for identification purposes. Silva Fennica vol. 48 no. 3 article id 1136. https://doi.org/10.14214/sf.1136
Highlights: We define the quantitative properties and qualitative characteristics of stumps, stones, slash, and roots, the most important objects interacting with machine activities after clearcutting; We develop a flowchart showing how a computer-aided system using clearcut object identification should be executed.
After clearcutting, machines traffic the clearcut conducting different silvicultural activities. Many objects on a forest clearcut (slash residues, stones, stumps and roots) may disturb e.g. site preparation and planting. This paper describes properties and characteristics of these objects. A flowchart was developed that describes a possible computer-aided system that identifies the objects, and ultimately, makes a machine avoid or target them. A system for obstacle identification creates conditions for further technical development and (semi)automation of e.g., site preparation, mechanized planting, and stump removal.
  • Lideskog, Division of Product and Production Development, Luleå University of Technology, SE-97187 Luleå, Sweden ORCID ID:E-mail: hakan.lideskog@ltu.se (email)
  • Ersson, Department of Forest Biomaterials and Technology, SLU, SE-90183 Umeå, Sweden ORCID ID:E-mail: back.tomas.ersson@slu.se
  • Bergsten, Department of Forest Biomaterials and Technology, SLU, SE-90183 Umeå, Sweden ORCID ID:E-mail: urban.bergsten@slu.se
  • Karlberg, Division of Product and Production Development, Luleå University of Technology, SE-97187 Luleå, Sweden ORCID ID:E-mail: magnus.karlberg@ltu.se

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive