Current issue: 53(3)

Under compilation: 53(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Björn Berg

Category: Research article

article id 180, category Research article
Hongzhang Kang, Björn Berg, Chunjiang Liu, Carl J. Westman. (2009). Variation in mass-loss rate of foliar litter in relation to climate and litter quality in Eurasian forests: differences among functional groups of litter. Silva Fennica vol. 43 no. 4 article id 180. https://doi.org/10.14214/sf.180
With a data set of litter decomposition collected by means of literature survey, our objectives are 1) to determine the differences in the variation in the first-year mass loss (%) of leaf litter with regard to climate and litter quality among different functional groups of tree species in Eurasian forests, and 2) to determine the difference in effect of mean annual temperature (°C), annual precipitation (dm), as well as concentration of nitrogen (%), and lignin (%) on first-year mass loss over a wide range in climate and litter quality. The main results are as follows. 1) The significant differences between litter types in the relationships between first-year mass loss and climatic factors plus litter quality revealed clearly different decomposition patterns over the continent. Thus, differences were found between coniferous and broadleaf litter, between deciduous broadleaf and evergreen broadleaf as well as between genera and even within a genus, viz. between deciduous and evergreen Quercus. 2) With a change in a relative unit of climate and litter quality variables, there were clear differences in effects of mean annual temperature, annual precipitation, and nitrogen on first-year mass loss for different functional groups of trees. 3) We identified some broadleaf litter species that decomposed to 100% in one year and thus did not contribute to carbon sequestration in a humus layer. Thus, the variation in pattern of foliar litter decomposition with climate and litter quality across functional groups in Eurasian forests showed different decomposition strategies for litter of different groups and genera.
  • Kang, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai 200240, P. R. China ORCID ID:E-mail:
  • Berg, Department of Forest Ecology, University of Helsinki, Latokartanonkaari 7, FIN-00014 Finland; Dipartimento Biologia Strutturale e Funzionale. Complesso Universitario, Monte S. Angelo, Via Cinthia, IT-80126 Napoli, Italy ORCID ID:E-mail:
  • Liu, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Rd. 800, Shanghai 200240, P. R. China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, P. R. China, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, P. R. China ORCID ID:E-mail: chjliu@sjtu.edu.cn (email)
  • Westman, Dipartimento Biologia Strutturale e Funzionale. Complesso Universitario, Monte S. Angelo, Via Cinthia, IT-80126 Napoli, Italy ORCID ID:E-mail:

Category: Special section

article id 288, category Special section
Björn Berg, Per Gundersen, Cecilia Akselsson, Maj-Britt Johansson, Åke Nilsson, Lars Vesterdal. (2007). Carbon sequestration rates in Swedish forest soils – a comparison of three approaches. Silva Fennica vol. 41 no. 3 article id 288. https://doi.org/10.14214/sf.288

Carbon sequestration rates in forest soil can be estimated using the concept of calculable stable remains in decomposing litter. In a case study of Swedish forest land we estimated C-sequestration rates for the two dominant tree species in the forest floor on top of the mineral soil. Carbon sequestration rates were upscaled to the forested land of Sweden with 23 x 106 ha with Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (Karst.) L.). Two different theoretical approaches, based on limit-value for litter decomposition and N-balance for vegetation and SOM gave rates of the same magnitude. For the upscaling, using these methods, 17 000 grids of 5 x 5 km were used.

The ‘limit-value approach’ gave a sequestration of 4.8   106 tons of C, annually sequestered in the forest floor, with an average of 180 kg C ha–1 yr–1 and a range from 40 to 410 kg C ha–1 yr–1. The ‘N-balance approach’ gave an average value of c. 96 kg ha–1 yr–1 and a range from –60 to 360 kg ha–1 yr–1. A method based on direct measurements of changes in humus depth over 40 years, combined with C analyses gave an average rate that was not very different from the calculated rates, viz. c. 180 kg ha–1 yr–1 and a range from –20 to 730 kg ha–1 yr–1. These values agree with forest floor C sequestration rate based on e.g. sampling of chronsequences but differ from CO2 balance measurements.

The three approaches showed different patterns over the country and regions with high and low carbon sequestration rates that were not always directly related to climate.

  • Berg, Dept. of Forest Ecology, University of Helsinki, Finland (present address: Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte S. Angelo, Napoli, Italy ORCID ID:E-mail: bjorn.berg@helsinki.fi (email)
  • Gundersen, Forest & Landscape Denmark, University of Copenhagen, Denmark ORCID ID:E-mail:
  • Akselsson, Swedish Environmental Research Institute, IVL, Gothenburg, Sweden ORCID ID:E-mail:
  • Johansson, Department of Forest Soils, SLU, Uppsala, Sweden ORCID ID:E-mail:
  • Nilsson, Department of Forest Soils, SLU, Uppsala, Sweden ORCID ID:E-mail:
  • Vesterdal, Forest & Landscape Denmark, University of Copenhagen, Denmark ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive