Scarification is a mechanical site preparation technique designed to create microsites that will favor the growth of planted tree seedlings after clearcutting. However, the positive growth response of black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) to scarification varies across different sites. We hypothesized that this was due to different forms of physiological stress induced by different climates or by the severity of competition from ericaceous shrubs. We thus compared the effects of scarification on black spruce needle gas exchange and other foliar properties, as well as on indices of soil water and nitrogen availability, in relatively warm-dry (Abitibi) vs. cool-humid (Côte-Nord) climates in the province of Québec (Canada). We found a similar positive effect of scarification on tree height in Abitibi and Côte-Nord. Scarification reduced soil moisture in both climatic regions, but increased soil N mineralization in Côte-Nord only. Accordingly, scarification increased the instantaneous water use efficiency in both climate regions, but decreased photosynthetic N use efficiency in Côte-Nord only. In both regions, we found a positive relationship between foliar δ18O and δ13C on scarified plots, providing further evidence that increased growth due to scarification depends on a decrease in stomatal conductance. We conclude that scarification increases total evapotranspiration of trees evenly across the east-to-west moisture gradient in the province of Québec, but also improves long-term soil nutritional quality in a cooler-humid climate.
In the boreal forest of eastern Canada, a large proportion of black spruce (Picea mariana [Mill.] Britton, Sterns & Poggenb.) stands are affected by paludification. Edaphic conditions that are created by paludification processes, including an abundance of microsites with high moisture and low nutrient contents, hinder forest regeneration. Disturbance of paludified sites by mechanical soil preparation (MSP) reduces organic layer thickness, while generating a range of substrates for regeneration establishment. Yet, little information is available regarding the effects of these substrates on tree growth. Our objective was to determine the effect of organic, mineral and organo-mineral substrates that are created following MSP of a paludified site on the growth and root development of black spruce seedlings in a semi-controlled environment. We demonstrated that substrate exerted a significant effect on seedling growth and foliar concentrations of N, P and K. Increase in height and diameter were respectively greatest on clay (mineral) and mesic substrates. Substrate effects did not affect total biomass increases or final root biomass. Foliar nutrients (N, P, K) were relatively high in seedlings that were established on mesic substrates and relatively low for those established on clay substrates. To ensure successful seedling establishment, we recommend the application of MSP techniques that expose organic-mesic substrates on sites that are susceptible to paludification.
During the past 30 years, genetics research has accumulated much information on black spruce (Picea mariana). The adoption of less intensive and faster plustree selection, establishment of seedling seed orchards and family selection significantly increased the rate of progress in improvement of the species. In New Brunswick this approach made it possible to obtain substantial quantities of seeds 10 years after the initiation of the program, and now all the seeds used in reforestation are derived from seed orchards.
Fourteen years after beginning the black spruce breeding program, second generation breeding is underway. The possibility of implementing alternative breeding strategies using ”breeding – cloning” procedures are explored for the advanced generation. Until somatic embryogenesis techniques become fully operational, ”backward selection” schemes and crossing in breeding halls followed by vegetative multiplication using serial rooted cuttings can be adopted. Larger genetic gains than those from conventional breeding are expected not only from the utilization of both additive and non-additive variances, but also from the elimination of inefficiencies of large conventional seed orchards.
Visible frost damage to forest trees in Sweden seldom occurs in winter but is frequent in late spring, summer and early autumn. Frosts are frequent in all seasons in various parts of Sweden, even in the southernmost part (lat. 56°, N) and temperatures may be as low as -10°C even around mid-summer. Ice crystal formation within the tissues, which in most seedlings takes place at around -2°C, causes injury, not the sub-zero temperatures themselves.
The apical meristem, the elongated zone, and the needles of seedlings of Picea abies (L.) H. Karst. in a growing phase were damaged at about -3°C and those of Pinus sylvestris L. at about -6°C. Other species of the genus Pinus were tested and most were found to be damaged at about -6°C, with some variations. Picea species tested were damaged at about -3°C to -4°C.
A method has been designed to compare the response of different species to winter desiccation, which occurs under conditions of (1) low night temperature, (2) very high irradiation and increase in needle temperature during the photoperiod, (3) frozen soil, and (4) low wind speed. There were differences in response to winter desiccation between pine and spruce species. Seedlings of Pinus contorta tolerated these winter desiccation conditions much better than those of P. sylvestris or Picea abies. Picea mariana was the least tolerant of the species tested.
The PDF includes an abstract in Finnish.