Current issue: 53(2)

Under compilation: 53(3)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'change detection'.

Category: Research article

article id 345, category Research article
Pekka Hyvönen, Perttu Anttila. (2006). Change detection in boreal forests using bi-temporal aerial photographs. Silva Fennica vol. 40 no. 2 article id 345. https://doi.org/10.14214/sf.345
Increased need for timely forest information is leading to continuous updating of stand databases. In continuous updating, stand attributes are estimated in the field after an operation and stored in databases. To find the changes caused by operations and forest damage, a semi-automatic method based on bi-temporal aerial photographs was developed. The test data were classified into three classes: No-change (952 stands), Moderate-change (163 stands) and Considerable-change (44 stands). The aerial photographs were acquired in years 2001 and 2004 with almost the same image specifications. Altogether 110 features at stand level were extracted and used in change detection analysis. The test data were classified with stepwise discriminant analysis. The overall accuracy of classification varied between 75.3 and 84.7%. The considerable changes were found without error, whereas the Moderate-change and No-change classes were often confused. However, 84.2% of thinned stands were classified correctly. The best accuracy in classification was obtained by using the histogram and textural features extracted from the original, uncorrected images. Radiometric correction did not improve the accuracy of classification. Soil type, characteristics of the growing stock and the location of a stand in an image were found to affect the change detection. Before the method can be applied operationally, issues related to, e.g., confusion between No-change and Moderate-change must be solved.
  • Hyvönen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland ORCID ID:E-mail: pekka.hyvonen@metla.fi (email)
  • Anttila, University of Joensuu, Faculty of Forestry, P.O. Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail:
article id 355, category Research article
Ilkka Korpela. (2006). Geometrically accurate time series of archived aerial images and airborne lidar data in a forest environment. Silva Fennica vol. 40 no. 1 article id 355. https://doi.org/10.14214/sf.355
Reconstructing three-dimensional structural changes in the forest over time is possible using archived aerial photographs and photogrammetric techniques, which have recently been introduced to a larger audience with the advent of digital photogrammetry. This paper explores the feasibility of constructing an accurate time-series of archived aerial photographs spanning 42 years using different types of geometric data and estimation methods for image orientation. A recent airborne laser scanning (lidar) data set was combined with the image block and assessed for geometric match. The results suggest that it is possible to establish the multitemporal geometry of an image block to an accuracy that is better than 0.5 m in 3D and constant over time. Even geodetic ground control points can be omitted from the estimation if the most recent images have accurate direct sensor orientation, which is becoming a standard technique in aerial photography. This greatly reduces the costs and facilitates the work. An accurate multitemporal image block combined with recent lidar scanning for the estimation of topography allows accurate monitoring and retrospective analysis of forest vegetation and management operations.
  • Korpela, Department of Forest Resource Management, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: ilkka.korpela@helsinki.fi (email)

Category: Article

article id 7524, category Article
Jari Varjo. (1997). Change detection and controlling forest information using multi-temporal Landsat TM imagery. Acta Forestalia Fennica no. 258 article id 7524. https://doi.org/10.14214/aff.7524

A method was developed for relative radiometric calibration of single multitemporal Landsat TM image, several multitemporal images covering each other, and several multitemporal images covering different geographical locations. The radiometrically calibrated different images were used for detecting rapid changes on forest stands. The nonparametric Kernel method was applied for change detection. The accuracy of the change detection was estimated by inspecting the image analysis results in field.

The change classification was applied for controlling the quality of the continuously updated forest stand information. The aim was to ensure that all the manmade changes and any forest damages were correctly updated including the attribute and stand delineation information. The image analysis results were compared with the registered treatments and the stand information base. The stands with discrepancies between these two information sources were recommended to be field inspected.

  • Varjo, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive