Current issue: 53(3)

Under compilation: 53(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'deciduous trees'.

Category: Research article

article id 45, category Research article
Guolei Li, Yong Liu, Yan Zhu, Qing Mei Li, R. Karsten Dumroese. (2012). Effect of fall-applied nitrogen on growth, nitrogen storage and frost hardiness of bareroot Larix olgensis seedlings. Silva Fennica vol. 46 no. 3 article id 45. https://doi.org/10.14214/sf.45
Nursery response of evergreen trees to fall fertilization has been studied widely, but little attention has been given to deciduous trees. Bareroot Olga Bay larch (Larix olgensis Henry) seedlings were fertilized in the nursery with urea at four rates (0, 30, 60, 90 kg N ha–1), with half of each rate applied on two dates (September 16 and October 1, 2009). The seedlings were excavated for evaluation on October 15. In the unfertilized (control) treatment, root and shoot dry mass increased by 100% and 57% respectively, while N concentration in the roots and shoots increased by 43% and 40% during the 30 day period. This indicated that substantial biomass growth during this period did not lead to internal nutrient dilution. Root dry mass increased when fall fertilization rates were ≥ 60 kg N ha–1. Fall fertilization increased N concentrations in root tissue by 48–73%. Compared with the control, shoot tissues of fall fertilized seedlings had slightly higher N concentration and content and significantly higher frost hardiness.
  • Li, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing 100083, China ORCID ID:E-mail:
  • Liu, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing 100083, China ORCID ID:E-mail: lyong@bjfu.edu.cn (email)
  • Zhu, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing 100083, China ORCID ID:E-mail:
  • Li, Research Institute of Forestry, Chinese Academy of Forestry; Key Laboratory of Forest Silviculture of State Forestry Administration, Beijing 100091, China ORCID ID:E-mail:
  • Dumroese, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, ID, USA ORCID ID:E-mail:

Category: Review article

article id 535, category Review article
Thomas J. Givnish. (2002). Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica vol. 36 no. 3 article id 535. https://doi.org/10.14214/sf.535
Patterns in the dominance of evergreen vs. deciduous plants have long interested ecologists, biogeographers, and global modellers. But previous models to account for these patterns have significant weaknesses. Bottom-up, mechanistic models – based on physiology, competition, and natural selection – have often been non-quantitative or restricted to a small range of habitats, and almost all have ignored belowground costs and whole-plant integration. Top-down, ecosystem-based models have succeeded in quantitatively reproducing several patterns, but rely partly on empirically derived constants and thresholds that lack a mechanistic explanation. It is generally recognized that seasonal drought can favor deciduous leaves, and that infertile soils can favor long-lived evergreen leaves. But no model has yet explained three great paradoxes, involving dominance by 1) evergreens in highly seasonal, boreal forests, 2) deciduous larch in many nutrient-poor peatlands, and 3) evergreen leaf-exchangers in nutrient-poor subtropical forests, even though they shed their leaves just as frequently as deciduous species. This paper outlines a generalized optimality model to account for these and other patterns in leaf longevity and phenology, based on maximizing whole-plant carbon gain or height growth, and building on recent advances in our understanding of the quantitative relationships of leaf photosynthesis, nitrogen content, and mass per unit area to leaf life-span. Only a whole-plant approach can explain evergreen dominance under realistic ecological conditions, or account for the boreal paradox, the larch paradox, the leaf-exchanger paradox, and expected shifts in shade tolerance associated with leaf phenology. Poor soils favor evergreens not merely by increasing the costs of nutrient acquisition, but also by depressing the maximum rate of photosynthesis and thus the seasonal contrast in photosynthetic return between leaves adapted to favorable vs. unfavorable conditions. The dominance of evergreens in western North America beyond the coastal zone of mild winters and winter rainfall appears related to the unusually long photosynthetic season for evergreen vs. deciduous plants there. Future models for optimal leaf phenology must incorporate differences between evergreen and deciduous plants in allocation to photosynthetic vs. non-photosynthetic tissue, rooting depth, stem allometry, xylem anatomy, and exposure to herbivores and leaching, and analyze how these differences interact with the photosynthetic rate, transpiration, and nutrient demands of leaves with different life-spans to affect rates of height growth in specific microsites.
  • Givnish, Dept of Botany, University of Wisconsin, Madison, WI 53706, USA ORCID ID:E-mail: givnish@facstaff.wisc.edu (email)

Category: Article

article id 7114, category Article
Paavo Yli-Vakkuri. (1960). Metsiköiden routa- ja lumisuhteista. Acta Forestalia Fennica vol. 71 no. 5 article id 7114. https://doi.org/10.14214/aff.7114
English title: Snow cover and ground frost in Finnish forests.

Snow cover and ground frost was studied in 29 forest stands in Southern and Central Finland in 1957–1959. The tree species influenced greatly accumulation of snow on the forest floor. Norway spruce (Picea abies (L.) Karst.) retains snow in its crown. In addition, snow and water falling from the branches compress the snow cover under the trees, and the ground freezes deeper because of the shallow snow cover. In the spring, the dense crown prevents rain and radiation reaching the ground, which remains cold longer. However, ground frost may protect spruce, which has a weak root system, from wind damages.

Scots pine (Pinus sylvestris L.) has similar, but milder, effects on snow cover within the forest. The crowns of pine seedlings and young trees pass snow easily, but later the crowns intercept it considerably. The lower branches are, however, high up and the snow is evenly spread on the ground. The deciduous trees intercept little snow and in the spring the snow smelts and the frozen soil thaws early. The snow conditions of deciduous forests are, however, changed by a spruce undergrowth.

It can be assumed that the unfavourable conditions in spruce forests can be alleviated by thinning. Also, mixture of pine and deciduous trees can transform the conditions more favourable in the spruce stands.

The PDF includes a summary in English.

  • Yli-Vakkuri, ORCID ID:E-mail:
article id 5506, category Article
Risto Heikkilä, Sauli Härkönen. (1993). Moose (Alces alces L.) browsing in young Scots pine stands in relation to the characteristics of their winter habitats. Silva Fennica vol. 27 no. 2 article id 5506. https://doi.org/10.14214/sf.a15667

Moose (Alces alces L.) browsing was studied in young Scots pine (Pinus sylvestris L.) stands mixed with deciduous trees in high-density winter ranges. The proportional use of twig biomass decreased as the availability increased. The total as well as proportional biomass consumption were higher on the moist than on the dry type of forest. The per tree consumption of pine was higher on the moist type, where the availability of pine was lower. Deciduous trees were more consumed on the moist type, where their availability was relatively high. The consumption of pine saplings increased as the availability of birch increased. Pine stem breakages were most numerous when birch occurred as overgrowth above pine and at high birch densities. The availability of other deciduous tree species did not correlate with browsing intensity of Scots pine. Moose browsing had seriously inhibited the development of Scots pines in 6% of the stands, over 60% of available biomass having been removed. Rowan and aspen were commonly over-browsed and their height growth was inhibited, which occurred rarely by birch. There was no difference in the proportion of young stands in forest areas with high and low moose density. A high proportion of peatland forests was found to indicate relatively good feeding habitats in the high-density areas.

The PDF includes an abstract in Finnish.

  • Heikkilä, ORCID ID:E-mail:
  • Härkönen, ORCID ID:E-mail:
article id 4627, category Article
Paavo Jaakko Ollinmaa. (1952). Jalot lehtipuumme luontaisina ja viljeltyinä. Silva Fennica no. 77 article id 4627. https://doi.org/10.14214/sf.a9099
English title: Native and cultivated southern broadleaved tree species in Finland.

The aim of the study was to update knowledge of natural range of English oak (Quercus robur L.), European ash (Fraxinus exelsior L.), Norway maple (Acer platanoides L.), small-leaved lime (Tilia cordata Miller), wych elm (Ulmus glabra Mill.) and European white elm (Ulmus laevis Pall.) in Finland, and estimate how far north they could be grown as forest trees or as park trees. The study is based on literature and questionnaires sent to cities and towns, District Forestry Boards, districts of Forest Service, Forestry Management Associations and railway stations.

The northern borders in the natural range of the species succeed one another from south to north as follows: English oak, European ash, Norway maple, wych elm, and small-leaved lime. Occurrence of European white elm is sporadic. The English oak forms forests in the southernmost Finland, while the other species grow only as small stands, groups or solitary trees. According to experiences of planted stands or trees, the northern limits of the species succeed one another from south to north as follows: European ash, English oak, Norway maple, European white elm, wych elm and small-leaved lime. All the species are grown in parks fairly generally up to the district of Kuopio-Vaasa (63 °). The northern limits where the species can be grown as park trees reach considerably further north in the western part of the country than in the east.

The article includes a summary in English.

  • Ollinmaa, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive