Current issue: 55(3)

Under compilation: 55(4)

Scopus CiteScore 2019: 3.1
Scopus ranking of open access forestry journals: 6th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'hyperspectral'.

Category: Research article

article id 10244, category Research article
Hans Ole Ørka, Endre H. Hansen, Michele Dalponte, Terje Gobakken, Erik Næsset. (2021). Large-area inventory of species composition using airborne laser scanning and hyperspectral data. Silva Fennica vol. 55 no. 4 article id 10244. https://doi.org/10.14214/sf.10244
Highlights: A methodology for using hyperspectral data in the area-based approach is presented; Hyperspectral data produced satisfactory results for species composition in 90% of the cases; Parametric Dirichlet regression is an applicable method to predicting species proportions; Normalization and a tree-based selection of pixels provided the overall best results; Both visible to near-infrared and shortwave-infrared sensors gave acceptable results.

Tree species composition is an essential attribute in stand-level forest management inventories and remotely sensed data might be useful for its estimation. Previous studies on this topic have had several operational drawbacks, e.g., performance studied at a small scale and at a single tree-level with large fieldwork costs. The current study presents the results from a large-area inventory providing species composition following an operational area-based approach. The study utilizes a combination of airborne laser scanning and hyperspectral data and 97 field sample plots of 250 m2 collected over 350 km2 of productive forest in Norway. The results show that, with the availability of hyperspectral data, species-specific volume proportions can be provided in operational forest management inventories with acceptable results in 90% of the cases at the plot level. Dominant species were classified with an overall accuracy of 91% and a kappa-value of 0.73. Species-specific volumes were estimated with relative root mean square differences of 34%, 87%, and 102% for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and deciduous species, respectively. A novel tree-based approach for selecting pixels improved the results compared to a traditional approach based on the normalized difference vegetation index.

  • Ørka, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway ORCID ID: https://orcid.org/0000-0002-7492-8608 E-mail: hans-ole.orka@nmbu.no (email)
  • Hansen, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway; Norwegian Forest Extension Institute, Honnevegen 60, NO-2836 Biri, Norway ORCID ID: https://orcid.org/0000-0001-5174-4497 E-mail: eh@skogkurs.no
  • Dalponte, Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione E. Mach, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy ORCID ID: https://orcid.org/0000-0001-9850-8985 E-mail: michele.dalponte@fmach.it
  • Gobakken, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway ORCID ID: https://orcid.org/0000-0001-5534-049X E-mail: terje.gobakken@nmbu.no
  • Næsset, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, NO-1432 Ås, Norway ORCID ID:E-mail: erik.naesset@nmbu.no
article id 10331, category Research article
Jussi Juola, Aarne Hovi, Miina Rautiainen. (2020). Multiangular spectra of tree bark for common boreal tree species in Europe. Silva Fennica vol. 54 no. 4 article id 10331. https://doi.org/10.14214/sf.10331
Highlights: Novel multiangular measurement set-up for hyperspectral imaging; Multiangular spectra of silver birch (Betula pendula), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) stem bark samples were collected; Intra- and interspecific variations in reflectance were analyzed; Demonstration of tree species identification based on stem bark spectra; Collected spectra openly available in SPECCHIO Spectral Information System.

Despite the importance of spectral properties of woody tree structures, they are seldom represented in research related to forests, remote sensing, and reflectance modeling. This study presents a novel imaging multiangular measurement set-up that utilizes a mobile handheld hyperspectral camera (Specim IQ, 400–1000 nm), and can measure stem bark spectra in a controlled laboratory setting. We measured multiangular reflectance spectra of silver birch (Betula pendula Roth), Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stem bark, and demonstrated the potential of using bark spectra in identifying tree species using a Support Vector Machine (SVM) based approach. Intraspecific reflectance variability was the lowest in visible (400–700 nm), and the highest in near-infrared (700–1000 nm) wavelength regions. Interspecific variation was the largest in the red, red-edge and near-infrared spectral bands. Spatial variation of reflectance along the tree height and different sides of the stem (north and south) were found. Both birch and pine had increased reflectance in the forward-scattering directions for visible to near-infrared wavelength regions, whilst spruce displayed the same only for the visible wavelength region. In addition, spruce had increased reflectance in the backward-scattering directions. In spite of the intraspecific variations, SVM could identify tree species with 88.8% overall accuracy when using pixel-specific spectra, and with 97.2% overall accuracy when using mean spectra per image. Based on our results it is possible to identify common boreal tree species based on their stem bark spectra using images from mobile hyperspectral cameras.

  • Juola, Aalto University, School of Engineering, Department of Built Environment, P.O. Box 14100, FI-00760 Aalto, Finland ORCID ID: https://orcid.org/0000-0002-6050-7247 E-mail: jussi.juola@aalto.fi (email)
  • Hovi, Aalto University, School of Engineering, Department of Built Environment, P.O. Box 14100, FI-00760 Aalto, Finland ORCID ID: https://orcid.org/0000-0002-4384-5279 E-mail: aarne.hovi@aalto.fi
  • Rautiainen, Aalto University, School of Engineering, Department of Built Environment, P.O. Box 14100, FI-00760 Aalto, Finland; Aalto University, School of Electrical Engineering, Department of Electronics and Nanoengineering, P.O. Box 15500, FI-00760 Aalto, Finland ORCID ID: https://orcid.org/0000-0002-6568-3258 E-mail: miina.a.rautiainen@aalto.fi
article id 7721, category Research article
Sakari Tuominen, Andras Balazs, Eija Honkavaara, Ilkka Pölönen, Heikki Saari, Teemu Hakala, Niko Viljanen. (2017). Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables. Silva Fennica vol. 51 no. 5 article id 7721. https://doi.org/10.14214/sf.7721
Highlights: Hyperspectral imagery and photogrammetric 3D point cloud based on RGB imagery were acquired under weather conditions changing from cloudy to sunny; Calibration of hyperspectral imagery was required for compensating the effect of varying weather conditions; The combination of hyperspectral imagery and photogrammetric point cloud data resulted in accurate forest estimates, especially for volumes per tree species.

Remote sensing using unmanned aerial vehicle (UAV) -borne sensors is currently a highly interesting approach for the estimation of forest characteristics. 3D remote sensing data from airborne laser scanning or digital stereo photogrammetry enable highly accurate estimation of forest variables related to the volume of growing stock and dimension of the trees, whereas recognition of tree species dominance and proportion of different tree species has been a major complication in remote sensing-based estimation of stand variables. In this study the use of UAV-borne hyperspectral imagery was examined in combination with a high-resolution photogrammetric canopy height model in estimating forest variables of 298 sample plots. Data were captured from eleven separate test sites under weather conditions varying from sunny to cloudy and partially cloudy. Both calibrated hyperspectral reflectance images and uncalibrated imagery were tested in combination with a canopy height model based on RGB camera imagery using the k-nearest neighbour estimation method. The results indicate that this data combination allows accurate estimation of stand volume, mean height and diameter: the best relative RMSE values for those variables were 22.7%, 7.4% and 14.7%, respectively. In estimating volume and dimension-related variables, the use of a calibrated image mosaic did not bring significant improvement in the results. In estimating the volumes of individual tree species, the use of calibrated hyperspectral imagery generally brought marked improvement in the estimation accuracy; the best relative RMSE values for the volumes for pine, spruce, larch and broadleaved trees were 34.5%, 57.2%, 45.7% and 42.0%, respectively.

  • Tuominen, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 2, FI-00791 Helsinki, Finland ORCID ID: http://orcid.org/0000-0001-5429-3433 E-mail: sakari.tuominen@luke.fi (email)
  • Balazs, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 2, FI-00791 Helsinki, Finland ORCID ID:E-mail: andras.balazs@luke.fi
  • Honkavaara, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland ORCID ID:E-mail: eija.honkavaara@nls.fi
  • Pölönen, University of Jyväskylä, Faculty of Information Technology, P.O. Box 35, FI-40014 Jyväskylä, Finland ORCID ID:E-mail: ilkka.polonen@jyu.fi
  • Saari, VTT Microelectronics, P.O. Box 1000, FI-02044 VTT, Finland ORCID ID:E-mail: heikki.saari@vtt.fi
  • Hakala, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland ORCID ID:E-mail: teemu.hakala@nls.fi
  • Viljanen, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02430 Masala, Finland ORCID ID:E-mail: niko.viljanen@nls.fi

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive