Current issue: 54(2)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'mechanistic'.

Category: Research article

article id 204, category Research article
Gaby Deckmyn, Bostjan Mali, Hojka Kraigher, Niko Torelli, Maarten Op de Beeck, Reinhart Ceulemans. (2009). Using the process-based stand model ANAFORE including Bayesian optimisation to predict wood quality and quantity and their uncertainty in Slovenian beech. Silva Fennica vol. 43 no. 3 article id 204. https://doi.org/10.14214/sf.204
The purpose of this study was to expand an existing semi-mechanistic forest model, ANAFORE (ANAlysing Forest Ecosystems), to allow for the prediction of log quality and the accompanying uncertainty as influenced by climate and management. The forest stand is described as consisting of trees of different cohorts, either of the same or of different species (deciduous or coniferous). In addition to photosynthesis, transpiration, total growth and yield, the model simulates the daily evolution in vessel biomass and radius, parenchyma and branch development. From these data early and latewood biomass, wood tissue composition, knot formation and density are calculated. The new version presented here, includes the description of log quality, including red heart formation of beeches. A Bayesian optimisation routine for the species parameters was added to the stand model. From a given range of input parameters (prior), the model calculates an optimised range for the parameters (posterior) based on given output data, as well as an uncertainty on the predicted values. A case study was performed for Slovenian beech forests to illustrate the main model functioning and more in particular the simulation of the wood quality. The results indicate that the ANAFORE model is a useful tool for analyzing wood quality development and forest ecosystem functioning in response to management, climate and stand characteristics. However, the Bayesian optimization showed that the remaining uncertainty on the input parameters for the chosen stand was very large, due to the large number of input parameters in comparison to the limited stand data.
  • Deckmyn, Research Group Plant and Vegetation Ecology, University of Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium ORCID ID:E-mail: gaby.deckmyn@ua.ac.be (email)
  • Mali, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia ORCID ID:E-mail:
  • Kraigher, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia ORCID ID:E-mail:
  • Torelli, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia ORCID ID:E-mail:
  • Op de Beeck, Research Group Plant and Vegetation Ecology, University of Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium ORCID ID:E-mail:
  • Ceulemans, Research Group Plant and Vegetation Ecology, University of Antwerpen, Universiteitsplein 1, 2610 Antwerpen, Belgium ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive