Current issue: 53(1)

Under compilation: 53(2)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'mykorritsa'.

Category: Article

article id 7160, category Article
Peitsa Mikola. (1965). Studies on the ectendotrophic mycorrhiza of Scots pine in Finland. Acta Forestalia Fennica vol. 79 no. 2 article id 7160. https://doi.org/10.14214/aff.7160

The differences between different types of mycorrhiza; endomycorrhiza, ectomycorrhiza and ectendomycorrhiza, and the use of the terms have been variable in the earlier research. Studied of mycorrhiza in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seedlings may suggest that the conditions affect which kind of mycorrhiza develops in the seedlings. This study is aimed mainly at finding out whether the difference of ectotrophic and ectendotrophic mycorrhizae depends on fungal symbionts or envirionmental conditions. Furthermore, the occurrence of ectendotrophic mycorrhiza in Finland under various conditions was studied, and experiments on the physiology and ecology of the mycorrhiza and the fungal partner were conducted.

The ectendotrophic mycorrhiza as described in this paper has proved to be very common on Scots pine in Finnish nurseries, but it was not found in Norway spruce seedlings. The results did not support the hypothesis presented in some earlier studies that ectendotrophic mycorrhiza is more parasitic than the other mycorrhizal fungi. The nursery survey showed that no correlation existed between the size and vigour of the seedlings and the presence of ectendotrophic mycorrhiza. Furthermore, greenhouse-grown seedlings with and without the fungus grew equally well. The type of mycorrhiza was, however, almost exclusively confined to young (1–3-years-old) seedlings and to nursery soils. The experiments indicates also that ectendomycorrhizal fungus has a very wide ecological amplitude in regard to light intensity, soil fertility, acidity, and humus content. It has, however, a weak competitive ability in natural forest soils against the indigenous fungal population. When the seedlings were transplanted from the nursery to forest soil, their mycorrhizal population was largely changed.

  • Mikola, ORCID ID:E-mail:
article id 7160, category Article
Peitsa Mikola. (1965). Studies on the ectendotrophic mycorrhiza of Scots pine in Finland. Acta Forestalia Fennica vol. 79 no. 2 article id 7160. https://doi.org/10.14214/aff.7160

The differences between different types of mycorrhiza; endomycorrhiza, ectomycorrhiza and ectendomycorrhiza, and the use of the terms have been variable in the earlier research. Studied of mycorrhiza in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seedlings may suggest that the conditions affect which kind of mycorrhiza develops in the seedlings. This study is aimed mainly at finding out whether the difference of ectotrophic and ectendotrophic mycorrhizae depends on fungal symbionts or envirionmental conditions. Furthermore, the occurrence of ectendotrophic mycorrhiza in Finland under various conditions was studied, and experiments on the physiology and ecology of the mycorrhiza and the fungal partner were conducted.

The ectendotrophic mycorrhiza as described in this paper has proved to be very common on Scots pine in Finnish nurseries, but it was not found in Norway spruce seedlings. The results did not support the hypothesis presented in some earlier studies that ectendotrophic mycorrhiza is more parasitic than the other mycorrhizal fungi. The nursery survey showed that no correlation existed between the size and vigour of the seedlings and the presence of ectendotrophic mycorrhiza. Furthermore, greenhouse-grown seedlings with and without the fungus grew equally well. The type of mycorrhiza was, however, almost exclusively confined to young (1–3-years-old) seedlings and to nursery soils. The experiments indicates also that ectendomycorrhizal fungus has a very wide ecological amplitude in regard to light intensity, soil fertility, acidity, and humus content. It has, however, a weak competitive ability in natural forest soils against the indigenous fungal population. When the seedlings were transplanted from the nursery to forest soil, their mycorrhizal population was largely changed.

  • Mikola, ORCID ID:E-mail:
article id 7476, category Article
Leo Heikurainen. (1958). Sekametsiköiden juuristoista ojitetulla suolla. Acta Forestalia Fennica vol. 67 no. 2 article id 7476. https://doi.org/10.14214/aff.7476
English title: Root systems of mixed forest in drained peatlands.

Draining transforms root systems of trees growing in peatlands towards the ones growing on mineral soil. However, even after efficient draining the root systems differ from the root systems of trees growing on mineral soil. This investigation concentrates on root systems of forests of similar mire types growing in similar draining conditions but having different tree species compositions. The peatland, situated in Pieksämäki in Southern Finland, was drained in 1937. Sample plots, measured in 1956, consisted of mixed forest of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L. Karst.) and birch (Betula sp.) in different compositions, and were in natural condition.

The sedge pine bog studied in this investigation was shown to have larger total amount of roots and mycorrhiza than in previously studied dwarf shrub pine bogs. This reflects better growth conditions of the better site. The depth of root system was, however, similar. Root systems of birch were deeper than those of the coniferous tree species. Differences between Scots pine and Norway spruce were small. Corresponding differences between the species were found in the density and total number of mycorrhizas. The abundance of mycorrhizas in the roots of birch increased in deeper layers of peat, but decreased especially in spruce roots. In earlier studies the abundance of mycorrhizas decreased in the roots growing in deeper layers in pure Scots pine stands, but no such variation was seen in this study. The result suggest that the deep root system of birch may affect also the root systems of the coniferous trees. On the other hand, birch roots can have advantage over the coniferous trees.

The PDF includes a summary in German.

  • Heikurainen, ORCID ID:E-mail:
article id 7466, category Article
Leo Heikurainen. (1955). Rämemännikön juuriston rakenne ja kuivatuksen vaikutus siihen. Acta Forestalia Fennica vol. 65 no. 3 article id 7466. https://doi.org/10.14214/aff.7466
English title: Structure of Scots pine root systems in a pine swamp and effect of draining on the structure.
Original keywords: räme; ojitus; juuristo; mänty; mykorritsa; suo

The root system of a Scots pine (Pinus sylvestris L.) growing on a peatland is restricted, according to earlier studies, on the top layers of the peat above the groundwater level. Drainage of the peatland affects growth of the root system. This investigation aims at studying the root systems on the point of view of draining of peatlands. The structure and distribution, and the growth of mycorrhiza in Scots pine roots in pine swamps varying from natural state to well drained state is studied.

The study shows that Scots pine on pine swamps has more extensive root system than has earlier assumed, it is common to find 1,000 m of roots in one cubic meter in a healthy stand. The trees reach this density of roots early on. In a drained peatland, the total root length is markedly higher than in a similar stand in natural state. The root systems proved to be very shallow. Even in a well-drained site the roots did not grow deeper than 20 cm. 70% of all roots were found in the upper 5 cm layer of peat, and 90% in the upper 10 cm layer. Root systems were deeper in drained peatlands, but the difference was small. In a site in natural state the average depth of the roots was 4 cm, and in a drained site 5 cm. About 85% of the roots were under 1 mm of diameter. Short roots were found only in the fine roots. Draining increases strongly the number of short roots. Mycorrhizas of the types A, B, C and D as well as pseudomychorrizas were found in the pine roots.

The PDF includes a summary in German.

  • Heikurainen, ORCID ID:E-mail:
article id 5408, category Article
Olavi Laiho. (1990). Mykorritsat ja niiden vaikutus metsään. Silva Fennica vol. 24 no. 1 article id 5408. https://doi.org/10.14214/sf.a15560
English title: The significance of mycorrhizae to forest.

While the most common type of mycorrhizae is endomycorrhizae, ectomycorrhizae dominate in the case of coniferous trees. Pine, in particular, has a strong association with mycorrhizae. Mycorrhizae enable trees to take up water and nutrients much more efficiently than the roots themselves. The fungus, in return, obtain carbohydrates and is able to grow and fruit. Mycorrhizal fungi are probably numbered in their thousands but so far few are known. Knowledge about their physiology, in particular, is lacking and studies dealing with their isolation and inoculation, which may be commercially valuable, remain unpublished. A new challenge for mycorrhiza research is the effects of air pollution. Forest suffering from extensive air pollution have few mycorrhizal fungi., infection is weak and the number of root deformations is high. As good mycorrhizae are important to tree health, there is a particular need to intensify mycorrhiza research.

The PDF includes an abstract in English.

  • Laiho, ORCID ID:E-mail:
article id 5408, category Article
Olavi Laiho. (1990). Mykorritsat ja niiden vaikutus metsään. Silva Fennica vol. 24 no. 1 article id 5408. https://doi.org/10.14214/sf.a15560
English title: The significance of mycorrhizae to forest.

While the most common type of mycorrhizae is endomycorrhizae, ectomycorrhizae dominate in the case of coniferous trees. Pine, in particular, has a strong association with mycorrhizae. Mycorrhizae enable trees to take up water and nutrients much more efficiently than the roots themselves. The fungus, in return, obtain carbohydrates and is able to grow and fruit. Mycorrhizal fungi are probably numbered in their thousands but so far few are known. Knowledge about their physiology, in particular, is lacking and studies dealing with their isolation and inoculation, which may be commercially valuable, remain unpublished. A new challenge for mycorrhiza research is the effects of air pollution. Forest suffering from extensive air pollution have few mycorrhizal fungi., infection is weak and the number of root deformations is high. As good mycorrhizae are important to tree health, there is a particular need to intensify mycorrhiza research.

The PDF includes an abstract in English.

  • Laiho, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive