# Articles containing the keyword 'optimointi'.

## Category: Article

article id 4915, category Article
(1975). Raakapuukuljetusten optimointi. Silva Fennica vol. 9 no. 1 article id 4915. https://doi.org/10.14214/sf.a14759
English title: Optimization of roundwood transport.

The paper deals with the optimization of roundwood transport in cases where many destinations for it exist and where several means of transport are available. It is also understood that the capacities of the factories to which wood is transported can be used at varying degree. A model was developed for a case such as Finland which sells most of its products abroad.

In the above case, the optimization of roundwood transport does not necessarily mean minimization of transport costs. What is aimed at is to obtain, by using different combinations (mill destinations and the media of transport) the maximum difference between the allowable cut (calculated) and real (actual) transport costs.

The PDF includes a summary in English.

• Roitto, ORCID ID:E-mail:
article id 7630, category Article
(1983). Eräiden matemaattisen ohjelmoinnin menetelmien käyttö puun korjuun ja kuljetuksen sekä tehdaskäsittelyn menetelmävalinnan apuvälineenä. Acta Forestalia Fennica no. 183 article id 7630. https://doi.org/10.14214/aff.7630
English title: The usefulness of some techniques of the mathematical programming as a tool for the choice of timber harvesting system.

The applicability of five mathematical programming methods, namely standard linear programming, parametric programming, goal programming, mixed integer programming and integer programming is discussed as a planning tool for the choice of wood procurement method.

Theoretically, the goal programming approach seems to be the best routine for mathematical handling of problems related to wood procurement. The parametric approach must include enough large post-optimality analysis routine. If the effect of the variables expressed with different measures is to be studied, interpretation of the economic information given by the approach becomes a problem. The other drawback is that the approach does not allow determination of the hierarchy of the goals objectively as they depend on the subjective preferences of the decision maker.

From the practical point of view, standard linear programming is the best method if the objective function can be formulated in economic terms, for instance. If there are several goals to be attained or satisfied the best method is goal programming.

According to the sub-studies, every method under consideration can be used as a solution routine for the minimization of wood procurement costs. In cost minimization the best methods are goal programming and standard linear programming. The best method for harvesting system evaluation purposes is parametric because it allows varied cost calculations within a certain cost range. The best method for harvesting equipment investment planning is mixed integer programming with binary decision variables.

The more complicated and restricted the problem environment is, the better the mathematical programming approach will be, also in harvesting related problems.

The PDF includes a summary in English.

• Mikkonen, ORCID ID:E-mail:
article id 7630, category Article
(1983). Eräiden matemaattisen ohjelmoinnin menetelmien käyttö puun korjuun ja kuljetuksen sekä tehdaskäsittelyn menetelmävalinnan apuvälineenä. Acta Forestalia Fennica no. 183 article id 7630. https://doi.org/10.14214/aff.7630
English title: The usefulness of some techniques of the mathematical programming as a tool for the choice of timber harvesting system.

The applicability of five mathematical programming methods, namely standard linear programming, parametric programming, goal programming, mixed integer programming and integer programming is discussed as a planning tool for the choice of wood procurement method.

Theoretically, the goal programming approach seems to be the best routine for mathematical handling of problems related to wood procurement. The parametric approach must include enough large post-optimality analysis routine. If the effect of the variables expressed with different measures is to be studied, interpretation of the economic information given by the approach becomes a problem. The other drawback is that the approach does not allow determination of the hierarchy of the goals objectively as they depend on the subjective preferences of the decision maker.

From the practical point of view, standard linear programming is the best method if the objective function can be formulated in economic terms, for instance. If there are several goals to be attained or satisfied the best method is goal programming.

According to the sub-studies, every method under consideration can be used as a solution routine for the minimization of wood procurement costs. In cost minimization the best methods are goal programming and standard linear programming. The best method for harvesting system evaluation purposes is parametric because it allows varied cost calculations within a certain cost range. The best method for harvesting equipment investment planning is mixed integer programming with binary decision variables.

The more complicated and restricted the problem environment is, the better the mathematical programming approach will be, also in harvesting related problems.

The PDF includes a summary in English.

• Mikkonen, ORCID ID:E-mail:
article id 7630, category Article
(1983). Eräiden matemaattisen ohjelmoinnin menetelmien käyttö puun korjuun ja kuljetuksen sekä tehdaskäsittelyn menetelmävalinnan apuvälineenä. Acta Forestalia Fennica no. 183 article id 7630. https://doi.org/10.14214/aff.7630
English title: The usefulness of some techniques of the mathematical programming as a tool for the choice of timber harvesting system.

The applicability of five mathematical programming methods, namely standard linear programming, parametric programming, goal programming, mixed integer programming and integer programming is discussed as a planning tool for the choice of wood procurement method.

Theoretically, the goal programming approach seems to be the best routine for mathematical handling of problems related to wood procurement. The parametric approach must include enough large post-optimality analysis routine. If the effect of the variables expressed with different measures is to be studied, interpretation of the economic information given by the approach becomes a problem. The other drawback is that the approach does not allow determination of the hierarchy of the goals objectively as they depend on the subjective preferences of the decision maker.

From the practical point of view, standard linear programming is the best method if the objective function can be formulated in economic terms, for instance. If there are several goals to be attained or satisfied the best method is goal programming.

According to the sub-studies, every method under consideration can be used as a solution routine for the minimization of wood procurement costs. In cost minimization the best methods are goal programming and standard linear programming. The best method for harvesting system evaluation purposes is parametric because it allows varied cost calculations within a certain cost range. The best method for harvesting equipment investment planning is mixed integer programming with binary decision variables.

The more complicated and restricted the problem environment is, the better the mathematical programming approach will be, also in harvesting related problems.

The PDF includes a summary in English.

• Mikkonen, ORCID ID:E-mail:
article id 7630, category Article
(1983). Eräiden matemaattisen ohjelmoinnin menetelmien käyttö puun korjuun ja kuljetuksen sekä tehdaskäsittelyn menetelmävalinnan apuvälineenä. Acta Forestalia Fennica no. 183 article id 7630. https://doi.org/10.14214/aff.7630
English title: The usefulness of some techniques of the mathematical programming as a tool for the choice of timber harvesting system.

The applicability of five mathematical programming methods, namely standard linear programming, parametric programming, goal programming, mixed integer programming and integer programming is discussed as a planning tool for the choice of wood procurement method.

Theoretically, the goal programming approach seems to be the best routine for mathematical handling of problems related to wood procurement. The parametric approach must include enough large post-optimality analysis routine. If the effect of the variables expressed with different measures is to be studied, interpretation of the economic information given by the approach becomes a problem. The other drawback is that the approach does not allow determination of the hierarchy of the goals objectively as they depend on the subjective preferences of the decision maker.

From the practical point of view, standard linear programming is the best method if the objective function can be formulated in economic terms, for instance. If there are several goals to be attained or satisfied the best method is goal programming.

According to the sub-studies, every method under consideration can be used as a solution routine for the minimization of wood procurement costs. In cost minimization the best methods are goal programming and standard linear programming. The best method for harvesting system evaluation purposes is parametric because it allows varied cost calculations within a certain cost range. The best method for harvesting equipment investment planning is mixed integer programming with binary decision variables.

The more complicated and restricted the problem environment is, the better the mathematical programming approach will be, also in harvesting related problems.

The PDF includes a summary in English.

• Mikkonen, ORCID ID:E-mail:
article id 7630, category Article
(1983). Eräiden matemaattisen ohjelmoinnin menetelmien käyttö puun korjuun ja kuljetuksen sekä tehdaskäsittelyn menetelmävalinnan apuvälineenä. Acta Forestalia Fennica no. 183 article id 7630. https://doi.org/10.14214/aff.7630
English title: The usefulness of some techniques of the mathematical programming as a tool for the choice of timber harvesting system.

The applicability of five mathematical programming methods, namely standard linear programming, parametric programming, goal programming, mixed integer programming and integer programming is discussed as a planning tool for the choice of wood procurement method.

Theoretically, the goal programming approach seems to be the best routine for mathematical handling of problems related to wood procurement. The parametric approach must include enough large post-optimality analysis routine. If the effect of the variables expressed with different measures is to be studied, interpretation of the economic information given by the approach becomes a problem. The other drawback is that the approach does not allow determination of the hierarchy of the goals objectively as they depend on the subjective preferences of the decision maker.

From the practical point of view, standard linear programming is the best method if the objective function can be formulated in economic terms, for instance. If there are several goals to be attained or satisfied the best method is goal programming.

According to the sub-studies, every method under consideration can be used as a solution routine for the minimization of wood procurement costs. In cost minimization the best methods are goal programming and standard linear programming. The best method for harvesting system evaluation purposes is parametric because it allows varied cost calculations within a certain cost range. The best method for harvesting equipment investment planning is mixed integer programming with binary decision variables.

The more complicated and restricted the problem environment is, the better the mathematical programming approach will be, also in harvesting related problems.

The PDF includes a summary in English.

• Mikkonen, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.