Current issue: 54(2)

Under compilation: 54(3)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'satellite images'.

Category: Research article

article id 587, category Research article
Erkki Tomppo, Kari T. Korhonen, Juha Heikkinen, Hannu Yli-Kojola. (2001). Multi-source inventory of the forests of the Hebei Forestry Bureau, Heilongjiang, China. Silva Fennica vol. 35 no. 3 article id 587. https://doi.org/10.14214/sf.587
A multi-source forest inventory method is applied to the estimation of forest resources in the area of the Hebei Forest Bureau in Heilongjiang province in North-East China. A stratified systematic cluster sampling design was utilised in field measurements. The design was constructed on the basis of information from earlier stand-level inventories, aerial orthophotographs, experiences from other sampling inventories and the available budget. Sample tree volumes were estimated by means of existing models. New models were constructed and their parameters estimated for tallied tree volumes and volume increments. The estimates for the area of the Bureau were computed from field measurements, and for the areas of the forest farms estimated from field measurements and satellite images. A k-nearest neighbour method was utilised. This method employing satellite image data makes it possible to estimate all variables, particularly for smaller areas than that possible using field measurements only. The methods presented, or their modifications, could also be applied to the planning and realisation of forest inventories elsewhere in Temperate or Boreal zones. The inventory in question gave an estimate of 114 m3/ha (the multi-source inventory 119 m3/ha) instead of 72 m3/ha as previously estimated from available information. Totally nineteen tree species, genera of species or tree species groups were identified (Appendix 1). The forests were relatively young, 60% of them younger than 40 years and 85% younger than 60 years.
  • Tomppo, Finnish Forest Research Institute, Unioninkatu 40 A, FIN-00170 Helsinki, Finland ORCID ID:E-mail: erkki.tomppo@metla.fi (email)
  • Korhonen, Finnish Forest Research Institute, Unioninkatu 40 A, FIN-00170 Helsinki, Finland ORCID ID:E-mail:
  • Heikkinen, Finnish Forest Research Institute, Unioninkatu 40 A, FIN-00170 Helsinki, Finland ORCID ID:E-mail:
  • Yli-Kojola, Finnish Forest Research Institute, Unioninkatu 40 A, FIN-00170 Helsinki, Finland ORCID ID:E-mail:

Category: Discussion article

article id 610, category Discussion article
Risto Päivinen, Perttu Anttila. (2001). How reliable is a satellite forest inventory? Silva Fennica vol. 35 no. 1 article id 610. https://doi.org/10.14214/sf.610
  • Päivinen, European Forest Institute, Torikatu 34, FIN-80101 Joensuu, Finland ORCID ID:E-mail: risto.paivinen@efi.fi (email)
  • Anttila, European Forest Institute, Torikatu 34, FIN-80101 Joensuu, Finland ORCID ID:E-mail:

Category: Article

article id 7675, category Article
Erkki Tomppo. (1992). Satellite image aided forest site fertility estimation for forest income taxation. Acta Forestalia Fennica no. 229 article id 7675. https://doi.org/10.14214/aff.7675

Two operative forest site class estimation methods utilizing satellite images have been developed for forest income taxation purposes. For this, two pixelwise classification methods and two post-processing methods for estimating forest site fertility are compared using different input data. The pixelwise methods are discriminant analysis, based on generalized squared distances, and logistic regression analysis. The results of pixelwise classifications are improved either with mode filtering within forest stands or assuming a Markov random field type dependence between pixels. The stand delineation is obtained by using ordinary segmentation techniques. Optionally, known stand boundaries given by the interpreter can be applied. The spectral values of images are corrected using a digital elevation model of the terrain. Some textural features are preliminary tested in classification. All methods are justified by using independent test data.

A test of the practical methods was carried out and a cost-benefit analysis computed. The estimated cost saving in site quality classification varies from 14% to 35% depending on the distribution of the site classes of the area. This means a saving of about 2.0–4.5 million FMK per year in site fertility classification for income taxation purposes. The cost savings would rise even to 60% if that version of the method were chosen where field checking is totally omitted. The classification accuracy at the forest holding level would still be similar to that of traditional method.

The PDF includes a summary in Finnish.

  • Tomppo, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive