Current issue: 54(4)

Under compilation: 54(5)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
Acta Forestalia Fennica

Articles containing the keyword 'stand management'.

Category: Research article

article id 1665, category Research article
Lauri Haataja, Ville Kankaanhuhta, Timo Saksa. (2018). Reliability of self-control method in the management of non-industrial private forests. Silva Fennica vol. 52 no. 1 article id 1665.
Highlights: Self-control method was found reliable at the main stages of the forest regeneration process; Only slight overestimation was found in self-control results of soil preparation and planting and small underestimation in self-control of young stand management; Diverse utilizing of self-control data is possible in support of service providers operations.
This study seeks to determine the extent to which self-control data can be relied upon in the management of private forests. Self-control (SC) requires the forest workers to evaluate their own work quality to ensure the clients’ needs are met in terms of soil preparation, planting and young stand management. Self-control data were compared to an independent evaluation of the same worksites. Each dataset had a hierarchical structure (e.g., sample plot, regeneration area and contractor), and key quality indicators (i.e., number of prepared mounds, planted seedlings or crop trees) were measured for each plot.  Self-control and independent-assessments (IA) were analyzed by fitting a multi-level multivariate model containing explanatory variables. No significant differences were observed in terms of soil preparation (number of mounds) or young stand management (number of crop trees) between self-control and independent-assessments. However, the self-control planting data included a slight but significant overestimation of the number of planted seedlings. Discrepancies are discussed in terms of sampling error and other explanatory factors. According to overall results, self-control methods are reliable at every stage of the forest regeneration process. As such, the diverse utilizing of self-control data is possible in support of service providers operations.
  • Haataja, Natural Resources Institute Finland (Luke), Natural resources, Juntintie 154, FI-77600 Suonenjoki, Finland ORCID ID:E-mail: (email)
  • Kankaanhuhta, Natural Resources Institute Finland (Luke), Natural resources, Juntintie 154, FI-77600 Suonenjoki, Finland ORCID ID:E-mail:
  • Saksa, Natural Resources Institute Finland (Luke), Natural resources, Juntintie 154, FI-77600 Suonenjoki, Finland ORCID ID:E-mail:
article id 220, category Research article
Jani Heikkilä, Matti Sirén, Anssi Ahtikoski, Jari Hynynen, Tiina Sauvula, Mika Lehtonen. (2009). Energy wood thinning as a part of stand management of Scots pine and Norway spruce. Silva Fennica vol. 43 no. 1 article id 220.
The effects of combined production of industrial and energy wood on yield and harvesting incomes, as well as the feasibility of energy wood procurement, were studied. Data for 22 Scots pine (Pinus sylvestris L.) and 21 Norway spruce (Picea abies (L.) Karst.) juvenile stands in Central and Southern Finland were used to compare six combined production regimes to conventional industrial wood production. The study was based on simulations made by the MOTTI stand simulator, which produces growth predictions for alternative management regimes under various site and climatic conditions. The combined production regimes included precommercial thinning at 4–8 m dominant height to a density of 3000–4000 stems ha–1 and energy wood harvesting at 8, 10 or 12 m dominant height. Combined production did not decrease the total yield of industrial wood during the rotation period. Differences in the mean annual increment (MAI) were small, and the rotation periods varied only slightly between the alternatives. Combined production regime can be feasible for a forest owner if the price of energy wood is 3–5 EUR m–3 in pine stands, and 8–9 EUR m–3 in spruce stands. Energy wood procurement was not economically viable at the current energy price (12 EUR MWh–1) without state subsidies. Without subsidies a 15 EUR MWh–1 energy price would be needed. Our results imply that the combined production of industrial and energy wood could be a feasible stand management alternative.
  • Heikkilä, L&T Biowatti Oy, P.O. Box 738, FI-60101 Seinäjoki, Finland ORCID ID:E-mail: (email)
  • Sirén, Finnish Forest Research Institute, Vantaa Research Unit, P.O.Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail:
  • Ahtikoski, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O.Box 16, FI-96301 Rovaniemi, Finland ORCID ID:E-mail:
  • Hynynen, Finnish Forest Research Institute, Vantaa Research Unit, P.O.Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail:
  • Sauvula, Seinäjoki University of Applied Sciences, School of Agriculture and Forestry, Tuomarniementie 55, FI-63700 Ähtäri, Finland ORCID ID:E-mail:
  • Lehtonen, Finnish Forest Research Institute, Vantaa Research Unit, P.O.Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail:
article id 245, category Research article
Saija Huuskonen, Jari Hynynen, Risto Ojansuu. (2008). Stand characteristics and external quality of young Scots pine stands in Finland. Silva Fennica vol. 42 no. 3 article id 245.
The effects of silvicultural practices (regeneration method and young stand management) on the stand characteristics of young Scots pine (Pinus sylvestris (L.)) stands were studied. Stand density, mean diameter, crown ratio and external quality of young Scots pine stands were analysed on the basis of extensive inventory data. The study material consisted of 181 stands containing inventory growth plots, representing the most common site types for Scots pine and covering all the important wood production areas in Finland. Intensive management practices, i.e. artificial regeneration and precommercial thinning, clearly enhanced mean diameter development of the stand. The overall stand density of the crop trees was relatively low in the material (1925 trees ha–1). In more than one third of the stands, the stem number of crop trees was below 1500 trees ha–1. Stand density was not affected by forest management, but it was slightly higher in Southern than in Northern Finland. The geographical location, in terms of annual effective temperature sum, affected the average slenderness and crown ratio. At a given mean stand diameter, the dominant height of the stand was lower, and the mean crown ratio was higher, in Northern than in Southern Finland. The average external quality of the Scots pine trees was relatively low. The proportion of trees without any observed defects was 54%. The most common external defects were curved stems (23%) and branchiness (9%). Branchiness was more frequent among the largest trees, while curved stems were more common in smaller trees. Defects were the most frequent in planted stands, and in stands growing on fresh sites. The defects were more frequent in Northern Finland than in Southern Finland. The relatively low stand density and poor external quality of the young stands emphasize the importance of stem quality as a tree selection criterion in commercial thinnings of Scots pine stands, if the goal is to produce high quality timber.
  • Huuskonen, University of Helsinki, Department of Forest Ecology, Helsinki, Finland ORCID ID:E-mail: (email)
  • Hynynen, Finnish Forest Research Institute, Vantaa Research Unit, Vantaa, Finland ORCID ID:E-mail:
  • Ojansuu, Finnish Forest Research Institute, Vantaa Research Unit, Vantaa, Finland ORCID ID:E-mail:

Category: Article

article id 5618, category Article
Marja-Leena Nykänen, Marianne Broadgate, Seppo Kellomäki, Heli Peltola, Christopher Quine. (1997). Factors affecting snow damage of trees with particular reference to European conditions. Silva Fennica vol. 31 no. 2 article id 5618.

Within the European Community snow damage affects an estimated 4 million m3 of timber every year, causing significant economic losses to forest owners. In Northern Europe, for example, the occurrence of snow damage has increased over the last few decades mainly due to the increase in total growing stock. The most common form of damage is stem breakage, but trees can also be bent or uprooted. Trees suffering snow damage are also more prone to consequential damage through insect or fungal attacks.

Snow accumulation on trees is strongly dependent upon weather and climatological conditions. Temperature influences the moisture content of snow and therefore the degree to which it can accumulate on branches. Wind can cause snow to be shed, but can also lead to large accumulations of wet snow, rime or freezing rain. Wet snow is most likely in late autumn or early spring. Geographic location and topography influence the occurrence of damaging forms of snow, and coastal locations and moderate to high elevations experience large accumulations. Slope plays a less important role and the evidence on the role of aspect is contradictory. The occurrence of damaging events can vary from every winter to once every 10 years or so depending upon regional climatology. In the future, assuming global warming in northern latitudes, the risk of snow damage could increase, because the relative occurrence of snowfall near temperatures of zero could increase.

The severity of snow damage is related to tree characteristics. Stem taper and crown characteristics are the most important factors controlling the stability of trees. Slightly tapering stems, asymmetric crowns, and rigid horizontal branching are all associated with high risk. However, the evidence on species differences is less clear due to the interaction with location. Management of forests can alter risk through choice of regeneration, tending, thinning and rotation. However, quantification and comparison of the absolute effect of these measures is not yet possible. An integrated risk model is required to allow the various locational and silvicultural factors to be assessed. Plans are presented to construct such a model, and gaps in knowledge are highlighted.

  • Nykänen, ORCID ID:E-mail:
  • Broadgate, ORCID ID:E-mail:
  • Kellomäki, ORCID ID:E-mail:
  • Peltola, ORCID ID:E-mail:
  • Quine, ORCID ID:E-mail:
article id 5509, category Article
Markku Siitonen. (1993). Experiences in the use of forest management planning models. Silva Fennica vol. 27 no. 2 article id 5509.

Model-based information systems have proved valuable planning tools for analysing the production possibilities of forests as well as for understanding forest resources dynamics, stand management practices and forest economics. Computerized forest models implemented in the users’ information systems facilitate the transfer and application of research results in practical forestry.

Conclusions and visions concerning modelling are drawn from experiences in developing the MELA system and its application in solving timber production problems on both the national and forest holding level in Finland. The precondition for predicting forest resource dynamics and for planning the utilization of forests is to accept conditions, uncertainties and a restricted period of time.

The interactive process of forest resource, growth and drain monitoring, and forest management planning supported by forest research and modelling, are the means to enable an operational information base for a dynamic regulation and adaptation strategy for forest resource management under changing conditions and uncertainty.

The PDF includes an abstract in Finnish.

  • Siitonen, ORCID ID:E-mail:
article id 7678, category Article
Lauri. Valsta. (1992). An optimization model for Norway spruce management based on individual-tree growth models. Acta Forestalia Fennica no. 232 article id 7678.

A nonlinear programming algorithm was combined with two individual-tree growth simulators consisting of distance-independent diameter and height growth models and mortality models. Management questions that can be addressed by the optimization model include the timing, intensity and type of thinning, rotation age, and initial density. The results were calculated for Norway spruce (Picea abies (L.) H. Karst.) stands on Oxalis-Myrtillus site in Southern Finland, where the stand density after clearing of a seedling stand is about 2,000 trees/ha.

The optimum thinning programs were characterized by late first thinnings (at dominant height of 15–17 m) and relatively high growing stock levels. It was optimal to thin from above, unless mean annual increment was maximized instead of an economic objective. In most cases, the optimum number of thinnings was two or three. Compared to a no-thinning alternative, thinnings increased revenues by 15 –45% depending on the objective of stand management. Optimum rotation was strongly dependent on the interest rate.

Hooke and Jeeves’ direct search method was used for determining optimum solutions. The performance of the optimization algorithm was examined in terms of the number of functional evaluations and the equivalence of the objective function values of repeated optimizations.

The PDF includes a summary in Finnish.

  • Valsta, ORCID ID:E-mail:

Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive