Current issue: 54(1)

Under compilation: 54(2)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'timberline'.

Category: Research article

article id 206, category Research article
Qiaoying Zhang, Yunchun Zhang, Shaolin Peng, Eshetu Yirdaw, Ning Wu. (2009). Spatial structure of alpine trees in Mountain Baima Xueshan on the southeast Tibetan Plateau. Silva Fennica vol. 43 no. 2 article id 206. https://doi.org/10.14214/sf.206
Most of the trees at treeline on the Tibetan Plateau are endemic to the Plateau. Yet little is known about these species. The study focused on the population structure, spatial patterns and associations of the treeline species Abies forestii var. georgei and Juniperus saltuaria at treeline and timberline in Mountain Baima Xueshan on the southeast Tibetan Plateau. These species form monodominant communities on the north- and south-facing slopes, respectively. Stem density, DBH-distribution, distribution pattern of different tree size classes, and intraspecific spatial association between different tree size classes of both species were analyzed. Spatial structure varied between A. forestii var. georgei and J. saltuaria, and for the same species, the spatial structures were also different from timberline to treeline. Stem density, mean tree height and young individuals of A. forestii var. georgei were significantly higher than those of J. saltuaria. For the same species, they were different from timberline to treeline, i.e., stem density and mean tree height of both species became lower. Size classes of both species were mainly clustered either at treeline or at timberline but at different scales, and spatial patterns of young J. saltuaria were mainly dominated by random patterns. Clumps of trees created more favorable microenvironments in harsh environments at treeline and timberline. Most tree size classes showed positive intraspecific spatial associations, but positive associations between size classes of J. saltuaria were not as significant as those of A. forestii var. georgei. The south-facing slope was usually subjected to varying intensities of pastoralism. Livestock disturbance greatly changed the microhabitat and reduced the number of young individuals. The potential of trees to regenerate was greatly inhibited, while A. forestii var. georgei showed greater regeneration potential. Spatial structures of J. saltuaria were also modified by this kind of human impact.
  • Zhang, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan Province, China ORCID ID:E-mail: lsspsl@mail.sysu.edu.cn (email)
  • Zhang, Shandong Institute of Light Industry, Jinan 250353, Shandong Province, China ORCID ID:E-mail:
  • Peng, State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou 510275, Guangdong Province, China ORCID ID:E-mail:
  • Yirdaw, Viikki Tropical Resources Institute (VITRI), P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
  • Wu, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan Province, China ORCID ID:E-mail:
article id 308, category Research article
Ville Hallikainen, Mikko Hyppönen, Juha Hyvönen, Juhani Niemelä. (2007). Establishment and height development of harvested and naturally regenerated Scots pine near the timberline in North-East Finnish Lapland. Silva Fennica vol. 41 no. 1 article id 308. https://doi.org/10.14214/sf.308
Researchers and professionals in practical forestry have faced problems concerning the regeneration success of Scots pine in natural regeneration near the timberline in North-East Lapland. The aim of the study was to analyze the seedling establishment and seedling height development of Scots pine in seed-tree stands in the area. The average number of living pine seedlings in the study stands was about 1000 ha–1, but there was considerable variation between the stands. The seedling density was modelled using a multinomial logistic regression with a random factor. Forest site type and the time since seed-tree cutting were the most significant explanatory variables in the model. The probability of reaching the acceptable seedling density was higher on dry site types than on the more fertile ones. The probability increased with the time elapsed since the regeneration activities. Effective temperature sum and the number of intermediate pines also positively affected the probability, but the presence of residual trees negatively. On northern and eastern slopes the probability was lower than on southern and western ones. Seedling height was modelled using a linear mixed model. The age of a dominant seedling was the most positively effective explanatory variable in the height development model. Other positively affecting significant predictors were time since seed-tree cutting, number of intermediate birches, and distance between a seedling and the nearest seed tree. Degree of paludification had a negative effect. The study suggests that the regeneration of Scots pine in North-East Lapland is a relatively slow process.
  • Hallikainen, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland ORCID ID:E-mail: ville.hallikainen@metla.fi (email)
  • Hyppönen, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland ORCID ID:E-mail: mikko.hypponen@metla.fi
  • Hyvönen, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland ORCID ID:E-mail: juha.hyvonen@metla.fi
  • Niemelä, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland ORCID ID:E-mail:
article id 329, category Research article
Vesa Juntunen, Seppo Neuvonen. (2006). Natural regeneration of Scots pine and Norway spruce close to the timberline in northern Finland. Silva Fennica vol. 40 no. 3 article id 329. https://doi.org/10.14214/sf.329
Two different datasets were analyzed in order to clarify the factors that affect regeneration success of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in the climatically extreme areas in northern Finland. First, pine seed maturity and the number of cones in the trees were investigated at five pairs of study sites during the period 1997–2003. Secondly, the rate of seedling establishment and seedling survival of Scots pine and Norway spruce were monitored and compared among three different timberline zones (forest zone, timberline, tree line) in 13 localities during the period 1983–1999. The first study showed that both cone production (bud formation) and seed maturity may be limiting factors for successful reproduction in the climatically marginal habitats. Seed maturity correlated well with the temperature sum of the summer, but variation in the number of cones had a periodic component rather than strictly following the temperature sum of the summer of bud formation. Monitoring surveys since 1983 showed that pine and spruce regenerated more or less regularly in all the zones during 1983–1999. However, seedling mortality of pines was much higher compared to spruce. In general, initially small sized seedlings showed higher mortality compared with larger ones. The results suggest that besides restrictions in reproduction, stand dynamics in the timberline habitats are strongly controlled by seedling mortality due to a variety of causes.
  • Juntunen, Finnish Forest Research Institute, Kolari Research Unit, Muoniontie 21, FI-95900 Kolari, Finland ORCID ID:E-mail: vesa.juntunen@metla.fi (email)
  • Neuvonen, Finnish Forest Research Institute, Joensuu Research Unit, P.O. Box 68, FI-80101 Joensuu, Finland ORCID ID:E-mail:
article id 436, category Research article
Martti Varmola, Hannu Salminen, Mauri Timonen. (2004). Thinning response and growth trends of seeded Scots pine stands at the arctic timberline. Silva Fennica vol. 38 no. 1 article id 436. https://doi.org/10.14214/sf.436
Growth patterns and reactions of Scots pine (Pinus sylvestris L.) to thinning in extremely harsh climatic conditions were studied in two seeded Scots pine stands located on the arctic timberline. Coniferous trees usually do not form closed stands at the timberline, but occur only in scattered tree groups. The trial was established in two stands in 1985–1986 when the trees were at an age of 47 and 56 years and an average dominant height of 6.0–6.9 m. The trial was remeasured in 1998. The thinning treatments reduced the stem number for five different levels; final density of 300, 550, 800, 1050, and 1300 stems ha–1 and unthinned. The experiment had a randomised block design with four replications in each stand. The increased growing space provided by thinning accelerated diameter growth after a delay of 2–3 years. The differences between the radial growth of the thinning treatments were very clear during the whole 13- to 14-year observation period. Annual increment of the mean diameter was regularly the higher, the larger the spacing. Dominant diameter was less influenced by treatments. There were no significant differences in dominant height between any of the treatments. Both basal area and volume were regularly the greater the higher the stem number was. Even a relatively light thinning had a distinct positive effect on tree growth, i.e. not carrying out thinning resulted in a production loss of merchantable wood. According to the results, seeded stands on the arctic timberline can grow surprisingly well in favourable conditions and reach a dominant height of 12–14 m in 100 years and a mean annual increment of 1.0–1.5 m3 ha–1 y–1 over a rotation period of 130–160 years. Based on increment figures and thinning reactions, a spacing of ca. 1000 stems ha–1 can be recommended.
  • Varmola, The Finnish Forest Research Institute, Rovaniemi Research Station, P.O.Box 16, FIN-96301 Rovaniemi, Finland ORCID ID:E-mail: martti.varmola@metla.fi (email)
  • Salminen, The Finnish Forest Research Institute, Rovaniemi Research Station, P.O.Box 16, FIN-96301 Rovaniemi, Finland ORCID ID:E-mail:
  • Timonen, The Finnish Forest Research Institute, Rovaniemi Research Station, P.O.Box 16, FIN-96301 Rovaniemi, Finland ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive