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In forest planning, the decision maker chooses for each stand a treatment schedule for a 
predefined planning period. The choice is based either on optimization calculations or on 
silvicultural guidelines. Schedules for individual stands are obtained using a growth simulator, 
where measured stand characteristics such as the basal area, mean diameter, site class and 
mean height are used as input variables. These characteristics include errors, however, which 
may lead to incorrect decisions. In this study, the aim is to study the sensitivity of harvest 
decisions to errors in a dataset of 157 stands. Correct schedules according to silvicultural 
guidelines were first determined using error-free data. Different amounts of errors were then 
generated to the stand-specific characteristics, and the treatment schedule was selected again 
using the erroneous data. The decision was defined as correct, if the type of harvest in these 
two schedules were similar, and if the timings deviated at maximum ±2 for thinning and ±3 
years for clear-cut. The dependency of probability of correct decisions on stand characteristics 
and the degree of errors was then modelled. The proposed model can be used to determine the 
required level of measurement accuracy for each characteristics in different kinds of stands, 
with a given accuracy requirement for the timing of treatments. This information can further 
be utilized in selecting the most appropriate inventory method.
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1 Introduction
In forest planning, the decision maker chooses for 
each stand a treatment schedule for a predefined 
planning period. Typically the choice is based 
on maximizing the net present value (NPV) of 
the stand. The optimal schedule is selected from 
alternative harvest schedules simulated for each 
stand using a growth simulator. Another option 
is to simulate the treatment schedule according 
to silvicultural guidelines. These guidelines are 
often based on optimization calculations for “typi-
cal” forest stands, but are not necessarily optimal 
for a given stand. 

Observed values for stand characteristics 
such as the basal area, mean diameter, site type 
and mean height are used as input variables in 
simulation. While generally better decisions can 
be obtained with more accurate data, accuracy 
alone does not determine the usefulness of the 
data in decision making (e.g. Kangas 2010). 
The usefulness depends on whether the errors 
result in inoptimal harvest decisions. When the 
adopted schedule differs from the optimal, it 
incurs inoptimality losses. The loss is defined as 
the difference between the outcome (typically 
NPV) of the optimal schedule and the selected 
schedule.

In cost-plus-loss analysis, the expected inopti-
mality losses are added to the total costs of the 
forest inventory (Hamilton 1978, Burkhart et al. 
1978, Ståhl 1994, Ståhl et al. 1994). The decision 
maker is assumed to maximize the net present 
value (NPV) of the forest area from decisions 
concerning the timing and intensity of different 
silvicultural treatments in each stand, and the 
losses are also defined in terms of NPV (e.g. Eid 
2000, Holmström et al. 2003, Eid et al. 2004, 
Duvemo et al. 2007, Borders et al. 2008, Islam et 
al. 2009). The losses, in turn, can be interpreted as 
the expected value of perfect information, EVPI 
(Lawrence 1999, Kangas 2010). According to Eid 
(2000), the losses were highest in stands close to 
their commercial maturity, but in very old stands 
the losses were negligible as the optimal decision 
was always to do a clear-cut immediately. Similar 
observations were made by Holmström et al. 
(2003). Consequently, the average losses depend 
on the age distribution of the area in consideration 
(Holmström et al. 2003). 

In practical forest management, the selection of 
treatments is often based on silvicultural guide-
lines. In this case, inoptimality losses cannot be 
calculated, but the correctness of the scheduling 
decision can still be defined. A question of interest 
is, how large errors can be tolerated, i.e. which 
is the magnitude of error that leads to a different 
decision than error-free data. This depends on 
whether the decision to be made is about final 
harvest or thinning, as the stand characteristics 
that trigger these decisions are different. It is obvi-
ous that also the direction of the errors matters: in 
some cases overestimates may be more detrimen-
tal than underestimates and vice versa. Obviously, 
optimal or correct decision in each and every case 
requires perfect information. Thus, assessing the 
accuracy with which the probability of making an 
optimal or correct decision is within a given level, 
say 95%, is a more useful approach.

In this study, the aim is to study the sensitivity 
of the harvest decisions to errors in a dataset of 
157 stands. First, we defined the correct treatment 
schedule for each stand for a 10-year period based 
on the silvicultural recommendations of UPM-
Kymmene using error-free data. Next, we gener-
ated errors to the input variables and defined the 
treatment schedule based on this erroneous data. 
The probability of obtaining a correct schedule 
decision within different error level, stand char-
acteristics and treatment classes was calculated. 
The main aim is to define the maximum error 
in the input variables that produces an accept-
able probability of correct decisions in a given 
stand. Ultimately, this information can be used 
to select an appropriate inventory method for a 
given forest area. 

The probability of correct decisions was 
assumed to depend not only on the error of the 
input variables but also on the stand characteris-
tics. Thus, the dependence of the probability on 
stand characteristics and the magnitude of errors 
was then studied graphically and modelled using 
logistic regression and classification and regres-
sion trees (CART). Two approaches were tested, 
as these approaches have different uses.
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2 Material and Methods
2.1 The Problem Formulation

First, we defined the correct treatment schedule 
– the correct decision – for each of the stands 
based on the silvicultural recommendations using 
error-free data. Then we generated errors to the 
data, and defined the treatment schedule for each 
stand with each error combination. The next step 
was to define if the treatment schedule decisions 
obtained with the erroneous data were correct. 
The decision was defined as correct, if the type of 
harvest in these two schedules were similar (first 
thinning, later thinning, clear-cut), and if the tim-
ings deviated at maximum ±2 years for thinning 
and ±3 years for clear-cut. Finally, we analysed 
the probability of obtaining a correct decision 
within different error, stand characteristics and 
treatment classes, and modelled the probability 
as a function of them.

The forest planning computations, ie. growth 
simulation and harvest scheduling, in this study 
were done using SIMO (SIMulation and Opti-
mization) software (Rasinmäki et al. 2009). The 
guidelines are modified for UPM-Kymmene from 
the Recommendations of Tapio (2006). A stand 
is defined as mature (i.e. ready for clear cut) 
when either the diameter or age is above a speci-
fied limit value depending on the site type. The 
criteria for the need of first thinning are site type, 
dominant height and number of stems. In later 
thinnings, the need for thinning is defined using 
site type, dominant height and basal area, accord-
ing to a thinning model (Fig. 1). In thinnings, 
the limiting number of stems or basal area thus 
depends on both dominant height and site type. 
The main difference between the two thinnings 
in practise is that the first thinning is carried out 
for silvicultural reasons, but the later thinnings 
also for incomes.

The whole simulation period used was 30 years, 
but the correctness of the decisions was analysed 
only for the first ten years. The rest of the simula-
tion period was used to define the difference in 
timing, if the next treatment in either the correct 
or erroneous schedule occurred after the first 10 
years. In the first 10 years, a one-year step was 
utilised in the simulation, and in later years the 
step was longer.

The simulator includes growth models for 
all Finland’s main tree species and forest types 
(Hynynen et al. 2002). The simulation was car-
ried out with a tree-level growth simulator. The 
dependent variables in these models were growth 
in height and basal area, while the independent 
variables included a substantial number of varia-
bles describing the characteristics of a single tree, 
the stand and the geographical area. However, 
the only input variables in the system were basal 
area G, mean diameter D, mean height H and site 
type ST, all other variables were calculated based 
on these. For instance, as the tree-level models 
operate on individual trees, diameter and height 
of all trees needs to be available. In this study, 
the diameters of the trees were predicted using a 
diameter distribution model and the heights with 

Fig. 1. The Finnish thinning model for medium fertil-
ity (MT) Scots pine and Norway spruce stands in 
Southern Finland. (Recommendations of Tapio, 
2006). A thinning is scheduled when the basal area 
(y-axis) at given dominant height (x-axis) is above 
the thinning recommendation (the lower dotted 
line), and urgently recommended when basal area 
is above the upper dotted line. In thinning, the basal 
area is suggested to be reduced to between the two 
solid lines of the model. 
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a H/D curve included in the system. In addition, 
the simulator includes models for different forest 
treatments. 

2.2 Material

The data in this study is from the stand register 
data of UPM-Kymmene. 157 spruce stands from 
three different development classes (young, mid-
dle-aged and mature) were selected with strati-
fied sampling based on basal area. These data 
are assumed error-free in this study. The data 
included basal area (G), basal area median diam-
eter (D, hereafter called mean diameter), height 
of basal area median tree (H, mean height) and 
site type (ST), commonly measured in the Finnish 
compartmentwise inventory system. 

For each of the selected stands, errors from 
–30% to +30% with 1% steps (i.e. 61 different 
error levels) were simulated for either G, D or 
H, assuming the other variables were assumed 
error-free. Optimally, the dataset used would 
include also all possible combinations of these 
errors. This would, however, mean 61∙61∙61 error 
combinations for each stand. Therefore, for each 
two-variable combination, we used the errors 
generated above for the first variable, and added 
random variation for the second and third vari-
ables. For continuous variables a normal distri-
bution was used with either 10%, 20% or 30% 
standard deviation (61∙3 combinations). In site 
type (ST), the simulated errors were ±2 classes 
(the number of site type classes is 6, and most of 
the stands belong to two most common classes, 3 
and 4) (61 combinations). The error combinations 
considered were

G, 
D, 
H,
G + H, 
D + H,
D + ST, 
G + ST, 
D + H + ST, 
G + H + ST, 
D + G + H, 

resulting altogether 182 438 realizations. It means 
that we simulated 1032 different error levels for 

each stand. The error distribution was not based 
on any pre-defined forest inventory method, nor 
did it follow any pre-defined statistical distribu-
tion. The purpose is to get observations from 
all possible combinations or errors and stand 
characteristics, in order to be able to define the 
maximum error that still produces an accept-
able accuracy of the decisions with given stand 
characteristics.

No errors were generated to number of stems 
nor to dominant height, which are also important 
in defining the correct treatment, as these were 
calculated within the simulator used. However, 
the calculation of dominant height depends on 
both mean diameter and mean height, meaning 
that error in either has an effect on the estimate 
of dominant height. Likewise, the number of 
stems estimate is calculated based on basal area 
and mean diameter, which means that error in 
either causes errors in number of stems estimate 
(see e.g. Mäkinen et al. 2010, Holopainen et al. 
2010). 

2.3 The Probability of Making a Correct 
Decision

The dataset was first classified according to the 
error level in each input variable (G, D and H). 
The errors in G and D were classified into inter-
vals [–30%,–20%[, [–20%,–10%[, [–10%,0%[, 
[0%,10%[, [10%,20%[, [20%,30%]. The errors in 
H were also classified into intervals [–30%,–5%[, 
[–5%,5%[, [5%,30%[. The probability of making 
a correct decision was calculated in each class. 
However, as the probability of correct decision 
depends on the stand characteristics besides the 
error level, we decided to model the probability. 
The probability of correct decision was modelled 

Table 1 The main characteristics of the data.

 G, m2/ha D, cm Site type 

Min 5 6 1
Median 22 19 3
Max 39 36 6
SD 5.15 5.69 
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with i) logistic regression using function glm in 
the R statistical package, and ii) with a classifica-
tion and regression tree (CART) using function 
rpart (R development core team 2009). 

A binomial model with logit link was fitted 
(with ML) to the data. Let random variable OKi 
determine whether schedule i was ok (OKi = 1) or 
not (OKi = 0). Assume that the binary indicator 
variable follows the Bernoulli distribution with 
probability of success π:

OKi ~ Bernoulli(π   (1)

Furthermore, assume that the probability of suc-
cess can be written using the logit link as 

ln ( )
π

π
β β β

1
20 1 1−


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= + + +x xp p…
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1
1

1 1

0 1 1

− = =
+ + +( )

+ + + +
α π

β β β

β β
ˆ

exp ˆ ˆ ˆ

exp ˆ ˆ ˆ
0 …

…

x x

x

p p

ββp px( ) ( )3

where α is the tolerated probability for incorrect 
decision. The goodness-of-fit is analyzed with the 
ratio of residual deviance to the null deviance. In 
this analysis, the observations were assumed to 
be independent, even though there are very many 
observations from the same stands. The reasons 
for this decision are given in discussion. 

For modelling purposes, the errors in stand 
characteristics were divided into negative and 
positive errors (i.e., negative error is 0 when error 
is positive and vice versa). To take into account 
the nonlinear relationship between logit of the 
response and the predictors, the positive and nega-
tive errors entered into the model in a polynomial 
form with up to 3 degrees. Interactions of stand 
characteristics and terms of the polynomials were 
included to allow different relationship for differ-
ent values of stand characteristics. The different 
responses with different mean diameter and basal 
area classes were accounted by forming dummy 
variables for small (< 15), medium (> 20), large 
(> 25) and very large (> 30) diameters (SD, MD, 
LD and XLD, respectively), and for small (< 15), 

large (> 20) and very large (> 25) basal areas (SG, 
MG, and LG, respectively). This made it pos-
sible to depict the differences in the responses 
in these different areas. The dummy variables 
were also used in interaction terms, so that each 
independent variable could have a different coef-
ficient in the different areas. The cutting points 
for the dummy variables (15, 20, 25 and 30) were 
selected by testing different values and selecting 
the ones with biggest improvement in information 
criterion AIC. 

In the CART approach, we modelled the same 
dependent variable OK as in logistic case. In 
CART, the approach is to divide the dataset hierar-
chically to homogeneous groups (terminal nodes 
or leaves). In applications the whole group will 
have the same prediction, in this case the prob-
ability of correct decision. In a regression tree, 
the division is based on the sum of squares of the 
dependent variable (also called deviance in rpart), 
and the division is carried out in order to maxi-
mize the difference of the original sum of squares 
and the sum of the sum of squares in the two 
branches, i.e. max(SSparent – (SSleft + SSright)) 
(see e.g. Breiman et al.1984). The size of the tree 
is controlled through a complexity parameter cp. 
In this case, the model was estimated using first 
cp = 0.00005 and then pruned. The cp parameter 
was set to a very low level at first, in order to find 
the cp that gave the minimum variance in the stud-
ied case. However, very low values of cp produce 
highly complicated regression trees, and the tree 
was then pruned to value cp = 0.005, giving a tree 
with both reasonable size and fit. 

3 Results

3.1 The Probabilities within Classes

The probability of correct decisions with each 
level of errors in basal area (eG) and mean diam-
eter (eD), assuming the absolute error in mean 
height (eH) lower than 5% is given in Table 2. If 
the required accuracy for the decisions were 95%, 
the errors in the input variables G and D should 
always be in the interval [0%,10%[. The interval 
[–10%,0[ was already much weaker (probability 
of correct decisions 84%). However, the differ-
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ence between these two classes is mainly due to 
the observations with zero error with respect to 
one or two characteristics.

Besides the errors, the probability of errors also 
depends on the stand characteristics, basal area 
(G) and the basal area median diameter (D) and 
height (H), and the type of the true next treatment 
(final felling, first thinning or later thinning). To 
illustrate the effects of these characteristics, the 
proportion of correct schedules were plotted on 
the realized relative errors in basal area, mean 

Table 2. The probability of making a correct decision 
in different error classes for G and D. The error of 
H is assumed to be [–5%–5%].

G\D  –25 –15 –5 5 15 25

 –25 0.55 0.54 0.40 0.39 0.31 0.23
 –15 0.75 0.74 0.62 0.47 0.44 0.37
 –5 0.66 0.78 0.84 0.90 0.59 0.50
 5 0.54 0.79 0.93 0.96 0.81 0.62
 15 0.31 0.41 0.48 0.54 0.67 0.63
 25 0.26 0.31 0.38 0.33 0.43 0.44

Fig. 2. The probability of correctly defined final felling as a function of the relative errors in basal area (up), 
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G < 22, 
black:22 < G < 26, grey:G > 26) and mean diameter (right, light grey: D < 25, black: 25 < D < 29, grey:29 > D). 
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-
tions in the class. 
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diameter and mean height in different classes 
of basal area and mean diameter. Fig. 2 shows 
these relationships in stands where the next cor-
rect treatment was final felling, Fig. 3 in stands 
where the next correct treatment is first thinning, 
and finally, Fig. 4 in stands where the next correct 
treatment is later thinning. In this classification, 
the next correct treatment may happen at any 
point in time within the simulation period of 30 
years, not necessarily within the first ten years. 

The plots show the relationship in classes of 

basal area and mean diameter. These plots are 
somewhat similar, because there is a rather high, 
linear correlation between basal area and mean 
diameter in the data (r = 0.52). 

The solid lines in upper plots of Fig. 2 show 
that overestimation of basal area decreases the 
probability of having the final felling correctly 
scheduled, especially in stands with low mean 
diameter and basal area. In contrast, underestima-
tion of basal area seems to increase the probability 
of correctly scheduled final felling. This may be 

Fig. 3. The probability of correctly defined first thinning as a function of the relative errors in basal area (up), 
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G < 18, 
black:18 < G < 22, grey:G > 22) and mean diameter (right, light grey: D < 11, black: 11 < D < 13, grey:13 < D). 
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-
tions in the class. 



700

Silva Fennica 45(4), 2011 research articles

explained by the fact that overestimation of basal 
area may lead to scheduling a thinning instead of 
the final felling. 

The solid lines in middle plots of Fig. 2 show 
the effect of errors in mean diameter on the sched-
uling of final felling. In stands with high mean 
diameter, underestimation of diameter leads to 
delayed final fellings. On the other hand, over-
estimation does not lead to incorrect decision, 
because the initial diameter is already above the 
final felling limit. In stands with medium mean 
diameter (25–29 cm), both over- and underestima-

tion decrease the probability of correct schedule: 
overestimation leads to early and underestimation 
to late clear-cuts. In the lowest diameter class 
(21–25 cm) the correct timing for final felling is 
usually after the 10 year simulation period. Thus, 
underestimation or slight overestimation of diam-
eter does not necessarily change the schedule for 
the next 10 years. However, large overestimation 
of diameter may make it happen already within 
the next ten years.

Underestimation of stand density causes 
delayed thinnings in all classes of basal area 

Fig. 4. The probability of correctly defined later thinning as a function of the relative errors in basal area (up), 
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G < 19, 
black:19 < G < 23, grey:G > 23) and mean diameter (right, light grey: D < 17, black: 17 < D < 20, grey:20 > D). 
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-
tions in the class. 



701

Kangas et al. Sensitivity of Harvest Decisions to Errors in Stand Characteristics

and mean diameter (solid lines in upper plots of 
Figs. 3 and 4). The effect of overestimation of 
basal area varies according to initial basal area 
and treatment. In dense stands overestimation 
does not decrease the probability of a correctly 
scheduled first thinning (solid lines in upper left 
Fig. 3), but in later thinnings it does (solid lines in 
upper left Fig. 4). The reason may be that in case 
of later thinnings also the highest class of basal 
area (23–40) includes quite many stands that are 
not to be thinned immediately (thinning limit is 
usually above 30 m2/ha, see Fig. 1). 

Both positive and negative errors in mean 
diameter decreased the probability of correctly 
scheduled first and later thinnings. The greatest 
decrease in the probability was observed when 
the mean diameter was overestimated in later 
thinning stands with a high mean diameter. These 
stands were then incorrectly scheduled to a clear-
cut. The solid lines in lowest plots of Figs. 3 and 
4 show that errors in mean height do have only 
a slight effect. 

A striking feature in the middle plots of Figs. 3 
and 4 is a clear decrease in the probability of cor-
rectly defined thinning when there is no error in 
the mean diameter. However, this is an artefact, 
which results from the way in which the data were 
generated. Almost all realizations where error in 
mean diameter is 0 have nonzero errors in other 
variables, whereas high proportion of realiza-
tions with nonzero error in mean diameter has 
zero errors in other characteristics. This can also 
be seen from Table 2, where all the errors were 
controlled at the same time.

3.2 Modeling the Errors 

3.2.1 The Logistic Model

According to the Figs. 2–4, the dependency 
between the probability of correct schedule, π, 
the stand characteristics and the errors in them 
seems to be nonlinear (this was confirmed by 
plotting the graphs of Figs. 2–4 with y-axis in 
the logit scale). Furthermore, there seems to be 
several important interactions. All three different 
errors (eG, eD, and eH) seem to have different 
effect on the probability of correct decision with 
different values of basal area, mean diameter, and 

the next operation. The effects are usually differ-
ent for positive and negative errors. 

The estimated model is shown in Table 3. The 
dashed lines in Figs. 2–4 show the mean of fitted 
values in the classes of errors and stand variables. 
The final model estimated with logistic regression 
is very complicated, with almost 100 independent 
variables that are all modifications of the basic 
variables D, G, H, ST, the future operation and the 
errors. All these independent variables are statisti-
cally significant, however, except the coefficients for 
site classes 5 and 6, but these were included in the 
model to ensure model logicality. With this model, 
the predicted probabilities in the different classes 
were fairly well in accordance with the observed 
probabilities (see Figs. 2–4). The deviance could 
be reduced from the original 227498 to 132398, 
i.e. to 58.2% of the original (meaning that the 
explained variation was 41.8%). This model was 
able to correctly classify the future decisions (as 
correct or incorrect) in 84.05% of cases. 

Calculating analytically the acceptable error 
levels for each type of stand with this model 
(formula 3) is somewhat complicated. 

3.2.2 The CART Model

The CART model was first fitted with cp = 0.00005, 
and then pruned to a cp providing the minimum 
error. This cp was 0.00005841 (Fig. 5). This 
model had 1203 splits and over 130 million differ-
ent nodes. With this cp, the model was very flex-
ible, and could follow the observed probabilities 
almost perfectly. The proportion of correctly clas-
sified decisions was 92.14%. The original residual 
error could in this case be reduced to 27.7% % 
of the original variation, i.e. the explained vari-
ation was 72.3%. However, interpretation of the 
model is practically impossible because it is so 
complicated. This model is way too complex for 
practical use. Pruning the tree to the same propor-
tion of explained variation than the glm model, 
would give cp = 0.0027 and 34 splits, which would 
classify correctly 83% of the decisions. However, 
the model was further pruned to cp = 0.005 and 
15 splits, after which the improvements with new 
splits were already small. Then, the total number 
of nodes was 263, of which the number of ter-
minal nodes (i.e. different predictions) was 16. 
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The relative error of the model was 65% of the 
initial variation. This model is already pretty 
simple to interpret (Fig. 6), and the predictions 
are still fairly good (Figs. 7–9). The proportion 
of correctly classified decisions with this model 
was 80.05%. 

4 Discussion

In this study, we analyzed the errors in the forest 
data from the decision making point of view. The 
aim was to define what is the accuracy required 
in stand characteristics, in order to achieve an 
acceptable accuracy in the decisions of harvest 
scheduling. The analysis carried out also helps in 
defining in which kinds of stands the good quality 
data is most important. The analysis was carried 
out by analysing the probabilities in different error 
classes, by visual inspection in stands with dif-
ferent next operations and by making a logistic 
or a CART model for the probability of correct 
decisions. 

Fig. 5. The relative error in CART, as a function of 
complexity parameter cp (times 10000) and the 
tree size (number of splits). The horizontal dashed 
line describes the minimum error level and the 
vertical dashed line the cp parameter producing 
the minimum relative error.

Fig. 6. The CART model with cp = 0.005. The definitions of the variables are the same as in Table 2. For 
example, G is basal area, eG is error in basal area, and eG2 its second power. GdivD means basal 
area divided by mean diameter. Oper = b means clear-cut, c means first thinning and d thinning.
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Fig. 7. The probability of correctly defined final felling as a function of the relative errors in basal area (up), 
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G < 22, 
black:22 < G < 26, grey: G > 26) and mean diameter (right, light grey: D < 25, black: 25 < D < 29, grey: D > 29). 
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-
tions in the class. 
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Fig. 8. The probability of correctly defined first thinning as a function of the relative errors in basal area (up), 
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G < 18, 
black:18 < G < 22, grey:G > 22) and mean diameter (right, light grey: D < 11, black: 11 < D < 13, grey:D > 13). 
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-
tions in the class. 
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Fig. 9. The probability of correctly defined later thinning as a function of the relative errors in basal area (up), 
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G < 19, 
black:19 < G < 23, grey:G > 23) and mean diameter (right, light grey: D < 17, black: 17 < D < 20, grey:D > 20). 
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-
tions in the class. 
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In this study, we assumed that the treatment rec-
ommended in the silvicultural guidelines was the 
optimal one. This was done in order to be able to 
simulate just one treatment schedule (i.e. the one 
recommended in the silvicultural guidelines) for 
each stand and each error scenario. The reasoning 
is that the guidelines have been formed to produce 
the optimal treatment for an average stand (e.g. 
Hyytiäinen et al. 2004). Another justification to 
our approach is that the applied guidelines are 
the main tools of practical harvest scheduling 
in Finland. Here, as the selected stands are not 
so important as such, but tolerable average error 
levels in different kinds of stands are of main 
interest, this can be justified. In principle it is, 
however, possible that some “incorrect” sched-
ules were actually closer to the optimal than the 
“correct” schedules. 

In the SIMO simulator (like in other computer 
simulators) the rules for the treatment sched-
ules are exact: if the stand characteristic consid-
ered exceeds a given exact limit, the treatment 
is scheduled for the year in question, but not 
otherwise. This makes the system very sensitive 
to the errors. Therefore, we utilised the tolerance 
limits of ±2 or ±3 years. It also means that the 
tolerable error limit for each input variable could 
be inferred directly from the given limits for the 
treatments, if the treatments were to be carried 
out immediately. For instance, if the diameter 
limit for clear-cut were 28 cm, then for 32 cm 
stand the largest tolerable underestimate would 
be 4 cm, and overestimation had no effect. Since 
the treatments can happen at any time during the 
10-year period, but the decisions are based on 
the data measured in the beginning of the period, 
the situation is not quite as simple, as the effect 
of growth needs to be considered. Further com-
plication comes from the tolerance limit given to 
the timing and from the interactions of errors in 
several variables. Therefore, we decided to model 
the probability.

Islam et al (2010) used the realized errors to 
predict the monetary inoptimality losses due to 
inventory errors. Their data did not show any 
reason to treat positive and negative errors sepa-
rately, whereas our data showed. One possible 
reason for this difference may be that their sched-
ules were based on optimization using a stand 
level growth simulator, whereas we applied the 

silvicultural guidelines, i.e. rule-based reasoning. 
Another possible explanation is that our data set 
was much larger, and included a large number 
of both under- and overestimates for each stand 
and variable: the larger the data, and the wider 
the ranges of independent variables, the easier 
it is to observe the trends and obtain statistically 
significant differences.

The results (Table 2, Figs. 2–4) show that pre-
cise estimates for basal area are very important for 
thinning decisions. In practise, the errors should 
be within ±10% in order to obtain correct deci-
sions with high probability (> 80%). This degree 
of accuracy is not often obtained with the cur-
rent inventory methods: in the traditional com-
partmentwise inventory with a RMSE of 25%, 
within these limits are about 39% of the basal 
area assessments (Kangas and Lappi 2011). With 
the currently adopted laser scanning methodology 
the proportion is about 54% (Kangas and Lappi 
2011). The errors in mean diameter and height do 
not seem quite as detrimental, but obtaining esti-
mates within ±20% would give high probabilities 
for good decisions in most cases. This accuracy is 
obtained with both above mentioned methods at 
least in 70% of cases (Kangas and Lappi 2011). 
Consequently, using either of these methods the 
overall probability of correct decisions in any 
given stand is much lower than 80%. 

This result is confirmed in the CART analysis. 
The first division in CART model is based on 
the second power of error in basal area (eG2), 
and if this error is low enough (< 121.7, i.e. 
|eG| < 11.03%), the probability of making a cor-
rect decision is 0.79, and in the other branch 0.42. 
If the error in basal area is higher than 11%, then 
it is still possible to obtain good accuracy of deci-
sions (0.81) if the next operation is clear-cut (b) 
instead of first thinning (c) or thinning (d) (0.31). 
In the thinning stands, if basal area G is small 
compared to mean diameter D (GdivD < 0.94), it 
is still possible to make accurate decisions (prob-
ability 0.81). If the error of basal area is small, and 
the absolute error of mean diameter is also less 
than 15.5%, the probability of correct decisions 
is as high as 0.88. It is notable that in one of the 
leaves only the probability is as high as 0.95.

Our results apply at the stand level, and can be 
used for selecting the accuracy needed in meas-
uring a given stand. The overall accuracy of the 
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decisions in a forest area, would depend on the 
age distribution of the area, for instance, besides 
the measurement accuracy. The forest-area level 
analysis is out of the scope of this study, but the 
models estimated could be used to simulate the 
accuracy of decisions in a forest area where the 
inventory is carried out with a given method, with 
a given error distribution. Such a tool could be 
used for defining if a planned inventory method 
is accurate enough for decision making.

In this study, we modelled the probability both 
with a parametric logistic regression and with 
a non-parametric regression tree CART. Two 
methods were used, as both of them have their 
pros and cons. With logistic model, it would be 
possible to analytically solve the error level that 
would produce a given probability of accuracy 
for the decisions in a given stand. As the error is 
included as a signed error and in different powers, 
it means that the equation has to be separately 
solved for positive and negative errors and the 
correct sign of the possible solutions needs to 
be chosen accordingly. The produced model is 
overwhelmingly complicated, however, and very 
difficult to interpret. Interpreting the results of 
the model would require a computer tool for 
predicting the probability in different situations. 
CART model, on the other hand, is very simple to 
interpret visually from the tree plot. The problem 
is that the model does not allow for calculations 
of probability for any other combinations of stand 
characteristics and errors than the ones predicted. 
It is not, therefore, possible to determine a com-
bination where the accuracy of decisions would 
be, say 97%. The CART results would thus be 
useful for forest practitioners, who could very 
efficiently see how reliable data they would need 
for making the decisions, and the logistic model 
for researchers, who could use it to simulate area-
level inventories and analyse the accuracy of the 
overall results.

A notable difference between the CART model 
and logistic regression model was that in the 
CART model positive and negative errors needed 
not to be treated separately, dummy variables 
were not useful and also the interactions were less 
useful than in the logistic model. It means that 
with CART, the modeller does not need to worry 
about the model shape, at least as much as in para-
metric regression. It also means that it is much 

easier to get reasonable results in a complicated 
modelling task like this. For instance, it is prob-
able that the parametric model could be improved 
to the same level as the variance minimizing 
CART model, with R2 72%, if new interaction 
terms were discovered. This would, however, 
mean a lot of work. Therefore, CART models are 
also used in datamining applications. 

In principle, the regression models should be 
estimated using methods that take into account the 
correlation of observations that are simulated for 
the same stands. However, as the OLS estimates 
are still unbiased (although the p-values may 
be overestimated), this further complication was 
not deemed necessary here. The reasoning is 
that the stand-level variation would describe such 
between-stand variation that cannot be explained 
with the used predictors. In this case, the possibil-
ity of such variation was deemed negligible, as 
all correct treatments were generated using the 
same, exact rules, and the same growth models, 
that were assumed correct. Thus, all the varia-
tion in the data set is due to simulated errors, and 
none due to random variation, all the predictors 
that have significant values are truly useful in 
the model. 
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