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In forest planning, the decision maker chooses for each stand a treatment schedule for a
predefined planning period. The choice is based either on optimization calculations or on
silvicultural guidelines. Schedules for individual stands are obtained using a growth simulator,
where measured stand characteristics such as the basal area, mean diameter, site class and
mean height are used as input variables. These characteristics include errors, however, which
may lead to incorrect decisions. In this study, the aim is to study the sensitivity of harvest
decisions to errors in a dataset of 157 stands. Correct schedules according to silvicultural
guidelines were first determined using error-free data. Different amounts of errors were then
generated to the stand-specific characteristics, and the treatment schedule was selected again
using the erroneous data. The decision was defined as correct, if the type of harvest in these
two schedules were similar, and if the timings deviated at maximum =2 for thinning and +3
years for clear-cut. The dependency of probability of correct decisions on stand characteristics
and the degree of errors was then modelled. The proposed model can be used to determine the
required level of measurement accuracy for each characteristics in different kinds of stands,
with a given accuracy requirement for the timing of treatments. This information can further
be utilized in selecting the most appropriate inventory method.

Keywords forest planning, inventory, measurement errors, decision making, logistic regres-
sion, regression tree

Addresses Kangas and Vanhatalo, Department of Forest Sciences, P.O. Box 27, FI-00014
University of Helsinki, Finland; Mehtdtalo, University of Eastern Finland, School of Forest
Sciences, Joensuu, Finland; Mdkinen, Simosol Oy, Riihimiki, Finland

E-mail annika.kangas @helsinki.fi

Received 28 June 2011 Revised 9 August 2011 Accepted 1 September 2011

Available at http://www.metla.fi/silvafennica/full/sf45/sf454693.pdf

693



Silva Fennica 45(4), 2011

research articles

1 Introduction

In forest planning, the decision maker chooses for
each stand a treatment schedule for a predefined
planning period. Typically the choice is based
on maximizing the net present value (NPV) of
the stand. The optimal schedule is selected from
alternative harvest schedules simulated for each
stand using a growth simulator. Another option
is to simulate the treatment schedule according
to silvicultural guidelines. These guidelines are
often based on optimization calculations for “typi-
cal” forest stands, but are not necessarily optimal
for a given stand.

Observed values for stand characteristics
such as the basal area, mean diameter, site type
and mean height are used as input variables in
simulation. While generally better decisions can
be obtained with more accurate data, accuracy
alone does not determine the usefulness of the
data in decision making (e.g. Kangas 2010).
The usefulness depends on whether the errors
result in inoptimal harvest decisions. When the
adopted schedule differs from the optimal, it
incurs inoptimality losses. The loss is defined as
the difference between the outcome (typically
NPV) of the optimal schedule and the selected
schedule.

In cost-plus-loss analysis, the expected inopti-
mality losses are added to the total costs of the
forest inventory (Hamilton 1978, Burkhart et al.
1978, Stahl 1994, Stahl et al. 1994). The decision
maker is assumed to maximize the net present
value (NPV) of the forest area from decisions
concerning the timing and intensity of different
silvicultural treatments in each stand, and the
losses are also defined in terms of NPV (e.g. Eid
2000, Holmstrom et al. 2003, Eid et al. 2004,
Duvemo et al. 2007, Borders et al. 2008, Islam et
al. 2009). The losses, in turn, can be interpreted as
the expected value of perfect information, EVPI
(Lawrence 1999, Kangas 2010). According to Eid
(2000), the losses were highest in stands close to
their commercial maturity, but in very old stands
the losses were negligible as the optimal decision
was always to do a clear-cut immediately. Similar
observations were made by Holmstrom et al.
(2003). Consequently, the average losses depend
on the age distribution of the area in consideration
(Holmstrom et al. 2003).
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In practical forest management, the selection of
treatments is often based on silvicultural guide-
lines. In this case, inoptimality losses cannot be
calculated, but the correctness of the scheduling
decision can still be defined. A question of interest
is, how large errors can be tolerated, i.e. which
is the magnitude of error that leads to a different
decision than error-free data. This depends on
whether the decision to be made is about final
harvest or thinning, as the stand characteristics
that trigger these decisions are different. It is obvi-
ous that also the direction of the errors matters: in
some cases overestimates may be more detrimen-
tal than underestimates and vice versa. Obviously,
optimal or correct decision in each and every case
requires perfect information. Thus, assessing the
accuracy with which the probability of making an
optimal or correct decision is within a given level,
say 95%, is a more useful approach.

In this study, the aim is to study the sensitivity
of the harvest decisions to errors in a dataset of
157 stands. First, we defined the correct treatment
schedule for each stand for a 10-year period based
on the silvicultural recommendations of UPM-
Kymmene using error-free data. Next, we gener-
ated errors to the input variables and defined the
treatment schedule based on this erroneous data.
The probability of obtaining a correct schedule
decision within different error level, stand char-
acteristics and treatment classes was calculated.
The main aim is to define the maximum error
in the input variables that produces an accept-
able probability of correct decisions in a given
stand. Ultimately, this information can be used
to select an appropriate inventory method for a
given forest area.

The probability of correct decisions was
assumed to depend not only on the error of the
input variables but also on the stand characteris-
tics. Thus, the dependence of the probability on
stand characteristics and the magnitude of errors
was then studied graphically and modelled using
logistic regression and classification and regres-
sion trees (CART). Two approaches were tested,
as these approaches have different uses.



Kangas et al.

Sensitivity of Harvest Decisions to Errors in Stand Characteristics

2 Material and Methods

2.1 The Problem Formulation

First, we defined the correct treatment schedule
— the correct decision — for each of the stands
based on the silvicultural recommendations using
error-free data. Then we generated errors to the
data, and defined the treatment schedule for each
stand with each error combination. The next step
was to define if the treatment schedule decisions
obtained with the erroneous data were correct.
The decision was defined as correct, if the type of
harvest in these two schedules were similar (first
thinning, later thinning, clear-cut), and if the tim-
ings deviated at maximum =2 years for thinning
and +3 years for clear-cut. Finally, we analysed
the probability of obtaining a correct decision
within different error, stand characteristics and
treatment classes, and modelled the probability
as a function of them.

The forest planning computations, ie. growth
simulation and harvest scheduling, in this study
were done using SIMO (SIMulation and Opti-
mization) software (Rasinmaéki et al. 2009). The
guidelines are modified for UPM-Kymmene from
the Recommendations of Tapio (2006). A stand
is defined as mature (i.e. ready for clear cut)
when either the diameter or age is above a speci-
fied limit value depending on the site type. The
criteria for the need of first thinning are site type,
dominant height and number of stems. In later
thinnings, the need for thinning is defined using
site type, dominant height and basal area, accord-
ing to a thinning model (Fig. 1). In thinnings,
the limiting number of stems or basal area thus
depends on both dominant height and site type.
The main difference between the two thinnings
in practise is that the first thinning is carried out
for silvicultural reasons, but the later thinnings
also for incomes.

The whole simulation period used was 30 years,
but the correctness of the decisions was analysed
only for the first ten years. The rest of the simula-
tion period was used to define the difference in
timing, if the next treatment in either the correct
or erroneous schedule occurred after the first 10
years. In the first 10 years, a one-year step was
utilised in the simulation, and in later years the
step was longer.
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Fig. 1. The Finnish thinning model for medium fertil-
ity (MT) Scots pine and Norway spruce stands in
Southern Finland. (Recommendations of Tapio,
2006). A thinning is scheduled when the basal area
(y-axis) at given dominant height (x-axis) is above
the thinning recommendation (the lower dotted
line), and urgently recommended when basal area
is above the upper dotted line. In thinning, the basal
area is suggested to be reduced to between the two
solid lines of the model.

The simulator includes growth models for
all Finland’s main tree species and forest types
(Hynynen et al. 2002). The simulation was car-
ried out with a tree-level growth simulator. The
dependent variables in these models were growth
in height and basal area, while the independent
variables included a substantial number of varia-
bles describing the characteristics of a single tree,
the stand and the geographical area. However,
the only input variables in the system were basal
area G, mean diameter D, mean height H and site
type ST, all other variables were calculated based
on these. For instance, as the tree-level models
operate on individual trees, diameter and height
of all trees needs to be available. In this study,
the diameters of the trees were predicted using a
diameter distribution model and the heights with
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a H/D curve included in the system. In addition,
the simulator includes models for different forest
treatments.

2.2 Material

The data in this study is from the stand register
data of UPM-Kymmene. 157 spruce stands from
three different development classes (young, mid-
dle-aged and mature) were selected with strati-
fied sampling based on basal area. These data
are assumed error-free in this study. The data
included basal area (G), basal area median diam-
eter (D, hereafter called mean diameter), height
of basal area median tree (H, mean height) and
site type (ST), commonly measured in the Finnish
compartmentwise inventory system.

For each of the selected stands, errors from
-30% to +30% with 1% steps (i.e. 61 different
error levels) were simulated for either G, D or
H, assuming the other variables were assumed
error-free. Optimally, the dataset used would
include also all possible combinations of these
errors. This would, however, mean 61-61-61 error
combinations for each stand. Therefore, for each
two-variable combination, we used the errors
generated above for the first variable, and added
random variation for the second and third vari-
ables. For continuous variables a normal distri-
bution was used with either 10%, 20% or 30%
standard deviation (61-3 combinations). In site
type (ST), the simulated errors were +2 classes
(the number of site type classes is 6, and most of
the stands belong to two most common classes, 3
and 4) (61 combinations). The error combinations
considered were

G,

D,

H,

G+H,

D+H,

D+ST,

G+ST,

D+H+ST,

G+H+ST,

D+G+H,

resulting altogether 182438 realizations. It means
that we simulated 1032 different error levels for
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Table 1 The main characteristics of the data.

G, m%/ha D, cm Site type
Min 5 6 1
Median 22 19 3
Max 39 36 6
SD 5.15 5.69

each stand. The error distribution was not based
on any pre-defined forest inventory method, nor
did it follow any pre-defined statistical distribu-
tion. The purpose is to get observations from
all possible combinations or errors and stand
characteristics, in order to be able to define the
maximum error that still produces an accept-
able accuracy of the decisions with given stand
characteristics.

No errors were generated to number of stems
nor to dominant height, which are also important
in defining the correct treatment, as these were
calculated within the simulator used. However,
the calculation of dominant height depends on
both mean diameter and mean height, meaning
that error in either has an effect on the estimate
of dominant height. Likewise, the number of
stems estimate is calculated based on basal area
and mean diameter, which means that error in
either causes errors in number of stems estimate
(see e.g. Mikinen et al. 2010, Holopainen et al.
2010).

2.3 The Probability of Making a Correct
Decision

The dataset was first classified according to the
error level in each input variable (G, D and H).
The errors in G and D were classified into inter-
vals [-30%,-20%], [-20%,-10%[, [-10%,0%,
[0%,10%], [10%,20%], [20%,30%]. The errors in
H were also classified into intervals [-30%,-5%],
[-5%,5%I, [5%,30%]. The probability of making
a correct decision was calculated in each class.
However, as the probability of correct decision
depends on the stand characteristics besides the
error level, we decided to model the probability.
The probability of correct decision was modelled
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with 1) logistic regression using function glm in
the R statistical package, and ii) with a classifica-
tion and regression tree (CART) using function
rpart (R development core team 2009).

A binomial model with logit link was fitted
(with ML) to the data. Let random variable OK;
determine whether schedule i was ok (OK;=1) or
not (OK;=0). Assume that the binary indicator
variable follows the Bernoulli distribution with
probability of success 7

OK; ~ Bernoulli(r) (n

Furthermore, assume that the probability of suc-
cess can be written using the logit link as

In il
1_

The model can later be used to calculate the error
level that will give the given accuracy with given
stand characteristics, i.e. solving the error from

ﬂ]=ﬁ0+ﬁ1x1+...+ﬂpxl, 2)

exp( B+ B -+ By, )
1+exp(ﬁ0 +[§1x1 +...+[3pxp)

l-a=7f=

3

where ¢ is the tolerated probability for incorrect
decision. The goodness-of-fit is analyzed with the
ratio of residual deviance to the null deviance. In
this analysis, the observations were assumed to
be independent, even though there are very many
observations from the same stands. The reasons
for this decision are given in discussion.

For modelling purposes, the errors in stand
characteristics were divided into negative and
positive errors (i.e., negative error is 0 when error
is positive and vice versa). To take into account
the nonlinear relationship between logit of the
response and the predictors, the positive and nega-
tive errors entered into the model in a polynomial
form with up to 3 degrees. Interactions of stand
characteristics and terms of the polynomials were
included to allow different relationship for differ-
ent values of stand characteristics. The different
responses with different mean diameter and basal
area classes were accounted by forming dummy
variables for small (<15), medium (>20), large
(>25) and very large (>30) diameters (SD, MD,
LD and XLD, respectively), and for small (< 15),

large (>20) and very large (>25) basal areas (SG,
MG, and LG, respectively). This made it pos-
sible to depict the differences in the responses
in these different areas. The dummy variables
were also used in interaction terms, so that each
independent variable could have a different coef-
ficient in the different areas. The cutting points
for the dummy variables (15, 20, 25 and 30) were
selected by testing different values and selecting
the ones with biggest improvement in information
criterion AIC.

In the CART approach, we modelled the same
dependent variable OK as in logistic case. In
CART, the approach is to divide the dataset hierar-
chically to homogeneous groups (terminal nodes
or leaves). In applications the whole group will
have the same prediction, in this case the prob-
ability of correct decision. In a regression tree,
the division is based on the sum of squares of the
dependent variable (also called deviance in rpart),
and the division is carried out in order to maxi-
mize the difference of the original sum of squares
and the sum of the sum of squares in the two
branches, i.e. max(SSparent — (SSleft+ SSright))
(see e.g. Breiman et al. 1984). The size of the tree
is controlled through a complexity parameter cp.
In this case, the model was estimated using first
cp=0.00005 and then pruned. The cp parameter
was set to a very low level at first, in order to find
the cp that gave the minimum variance in the stud-
ied case. However, very low values of cp produce
highly complicated regression trees, and the tree
was then pruned to value cp=0.005, giving a tree
with both reasonable size and fit.

3 Results
3.1 The Probabilities within Classes

The probability of correct decisions with each
level of errors in basal area (eG) and mean diam-
eter (eD), assuming the absolute error in mean
height (eH) lower than 5% is given in Table 2. If
the required accuracy for the decisions were 95%,
the errors in the input variables G and D should
always be in the interval [0%,10%]. The interval
[-10%,0[ was already much weaker (probability
of correct decisions 84%). However, the differ-
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Table 2. The probability of making a correct decision
in different error classes for G and D. The error of
H is assumed to be [-5%—-5%].

G\D -25 -15 -5 5 15 25
-25 055 054 040 039 031 0.23
-15 075 074 0.62 047 044 037
-5 066 078 084 090 059 0.50
5 054 079 093 09 081 0.62
15 031 041 048 054 067 0.63
25 026 031 038 033 043 044
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ence between these two classes is mainly due to
the observations with zero error with respect to
one or two characteristics.

Besides the errors, the probability of errors also
depends on the stand characteristics, basal area
(G) and the basal area median diameter (D) and
height (H), and the type of the true next treatment
(final felling, first thinning or later thinning). To
illustrate the effects of these characteristics, the
proportion of correct schedules were plotted on
the realized relative errors in basal area, mean
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Fig. 2. The probability of correctly defined final felling as a function of the relative errors in basal area (up),
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G<22,
black:22 <G <26, grey:G>26) and mean diameter (right, light grey: D <25, black: 25<D <29, grey:29>D).
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-

tions in the class.
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diameter and mean height in different classes
of basal area and mean diameter. Fig. 2 shows
these relationships in stands where the next cor-
rect treatment was final felling, Fig. 3 in stands
where the next correct treatment is first thinning,
and finally, Fig. 4 in stands where the next correct
treatment is later thinning. In this classification,
the next correct treatment may happen at any
point in time within the simulation period of 30
years, not necessarily within the first ten years.
The plots show the relationship in classes of
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basal area and mean diameter. These plots are
somewhat similar, because there is a rather high,
linear correlation between basal area and mean
diameter in the data (r=0.52).

The solid lines in upper plots of Fig. 2 show
that overestimation of basal area decreases the
probability of having the final felling correctly
scheduled, especially in stands with low mean
diameter and basal area. In contrast, underestima-
tion of basal area seems to increase the probability
of correctly scheduled final felling. This may be
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Fig. 3. The probability of correctly defined first thinning as a function of the relative errors in basal area (up),
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G<18,
black:18 <G <22, grey:G>22) and mean diameter (right, light grey: D<11, black: 11 <D <13, grey:13<D).
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-

tions in the class.
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Fig. 4. The probability of correctly defined later thinning as a function of the relative errors in basal area (up),
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G<19,
black:19<G <23, grey:G>23) and mean diameter (right, light grey: D< 17, black: 17<D <20, grey:20>D).
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-

tions in the class.

explained by the fact that overestimation of basal
area may lead to scheduling a thinning instead of
the final felling.

The solid lines in middle plots of Fig. 2 show
the effect of errors in mean diameter on the sched-
uling of final felling. In stands with high mean
diameter, underestimation of diameter leads to
delayed final fellings. On the other hand, over-
estimation does not lead to incorrect decision,
because the initial diameter is already above the
final felling limit. In stands with medium mean
diameter (25-29 cm), both over- and underestima-
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tion decrease the probability of correct schedule:
overestimation leads to early and underestimation
to late clear-cuts. In the lowest diameter class
(21-25 cm) the correct timing for final felling is
usually after the 10 year simulation period. Thus,
underestimation or slight overestimation of diam-
eter does not necessarily change the schedule for
the next 10 years. However, large overestimation
of diameter may make it happen already within
the next ten years.

Underestimation of stand density causes
delayed thinnings in all classes of basal area
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and mean diameter (solid lines in upper plots of
Figs. 3 and 4). The effect of overestimation of
basal area varies according to initial basal area
and treatment. In dense stands overestimation
does not decrease the probability of a correctly
scheduled first thinning (solid lines in upper left
Fig. 3), but in later thinnings it does (solid lines in
upper left Fig. 4). The reason may be that in case
of later thinnings also the highest class of basal
area (23—40) includes quite many stands that are
not to be thinned immediately (thinning limit is
usually above 30 m?/ha, see Fig. 1).

Both positive and negative errors in mean
diameter decreased the probability of correctly
scheduled first and later thinnings. The greatest
decrease in the probability was observed when
the mean diameter was overestimated in later
thinning stands with a high mean diameter. These
stands were then incorrectly scheduled to a clear-
cut. The solid lines in lowest plots of Figs. 3 and
4 show that errors in mean height do have only
a slight effect.

A striking feature in the middle plots of Figs. 3
and 4 is a clear decrease in the probability of cor-
rectly defined thinning when there is no error in
the mean diameter. However, this is an artefact,
which results from the way in which the data were
generated. Almost all realizations where error in
mean diameter is 0 have nonzero errors in other
variables, whereas high proportion of realiza-
tions with nonzero error in mean diameter has
zero errors in other characteristics. This can also
be seen from Table 2, where all the errors were
controlled at the same time.

3.2 Modeling the Errors
3.2.1 The Logistic Model

According to the Figs. 2-4, the dependency
between the probability of correct schedule, ,
the stand characteristics and the errors in them
seems to be nonlinear (this was confirmed by
plotting the graphs of Figs. 2—4 with y-axis in
the logit scale). Furthermore, there seems to be
several important interactions. All three different
errors (eG, eD, and eH) seem to have different
effect on the probability of correct decision with
different values of basal area, mean diameter, and

the next operation. The effects are usually differ-
ent for positive and negative errors.

The estimated model is shown in Table 3. The
dashed lines in Figs. 2—4 show the mean of fitted
values in the classes of errors and stand variables.
The final model estimated with logistic regression
is very complicated, with almost 100 independent
variables that are all modifications of the basic
variables D, G, H, ST, the future operation and the
errors. All these independent variables are statisti-
cally significant, however, except the coefficients for
site classes 5 and 6, but these were included in the
model to ensure model logicality. With this model,
the predicted probabilities in the different classes
were fairly well in accordance with the observed
probabilities (see Figs. 2—4). The deviance could
be reduced from the original 227498 to 132398,
1.e. to 58.2% of the original (meaning that the
explained variation was 41.8%). This model was
able to correctly classify the future decisions (as
correct or incorrect) in 84.05% of cases.

Calculating analytically the acceptable error
levels for each type of stand with this model
(formula 3) is somewhat complicated.

3.2.2 The CART Model

The CART model was first fitted with cp=0.00005,
and then pruned to a cp providing the minimum
error. This cp was 0.00005841 (Fig. 5). This
model had 1203 splits and over 130 million differ-
ent nodes. With this cp, the model was very flex-
ible, and could follow the observed probabilities
almost perfectly. The proportion of correctly clas-
sified decisions was 92.14%. The original residual
error could in this case be reduced to 27.7% %
of the original variation, i.e. the explained vari-
ation was 72.3%. However, interpretation of the
model is practically impossible because it is so
complicated. This model is way too complex for
practical use. Pruning the tree to the same propor-
tion of explained variation than the glm model,
would give cp=0.0027 and 34 splits, which would
classify correctly 83% of the decisions. However,
the model was further pruned to cp=0.005 and
15 splits, after which the improvements with new
splits were already small. Then, the total number
of nodes was 263, of which the number of ter-
minal nodes (i.e. different predictions) was 16.
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Fig. 5. The relative error in CART, as a function of

complexity parameter cp (times 10000) and the
tree size (number of splits). The horizontal dashed
line describes the minimum error level and the
vertical dashed line the cp parameter producing
the minimum relative error.

The relative error of the model was 65% of the
initial variation. This model is already pretty
simple to interpret (Fig. 6), and the predictions
are still fairly good (Figs. 7-9). The proportion
of correctly classified decisions with this model
was 80.05%.

4 Discussion

In this study, we analyzed the errors in the forest
data from the decision making point of view. The
aim was to define what is the accuracy required
in stand characteristics, in order to achieve an
acceptable accuracy in the decisions of harvest
scheduling. The analysis carried out also helps in
defining in which kinds of stands the good quality
data is most important. The analysis was carried
out by analysing the probabilities in different error
classes, by visual inspection in stands with dif-
ferent next operations and by making a logistic
or a CART model for the probability of correct
decisions.

eG2-2121 7
06s
oper=cd eD2=52405
042 0.7o
GoivD=10.9428  eG=={11.94 Gafan  etehy _Sf'?aa -

oy | EDZ50E | & :
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047 064 : :
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Fig. 6. The CART model with cp=0.005. The definitions of the variables are the same as in Table 2. For
example, G is basal area, eG is error in basal area, and eG2 its second power. GdivD means basal
area divided by mean diameter. Oper=b means clear-cut, ¢ means first thinning and d thinning.
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Fig. 7. The probability of correctly defined final felling as a function of the relative errors in basal area (up),
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Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-
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Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-
tions in the class.
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Fig. 9. The probability of correctly defined later thinning as a function of the relative errors in basal area (up),
mean diameter (middle), and height (low) in different classes of true basal area (left, light grey: G<19,
black:19<G<23, grey:G>23) and mean diameter (right, light grey: D< 17, black: 17<D <20, grey:D > 20).
Solid lines shows the proportion of correct schedules in each class, and the dashed line the mean of predic-
tions in the class.
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In this study, we assumed that the treatment rec-
ommended in the silvicultural guidelines was the
optimal one. This was done in order to be able to
simulate just one treatment schedule (i.e. the one
recommended in the silvicultural guidelines) for
each stand and each error scenario. The reasoning
is that the guidelines have been formed to produce
the optimal treatment for an average stand (e.g.
Hyytidinen et al. 2004). Another justification to
our approach is that the applied guidelines are
the main tools of practical harvest scheduling
in Finland. Here, as the selected stands are not
so important as such, but tolerable average error
levels in different kinds of stands are of main
interest, this can be justified. In principle it is,
however, possible that some “incorrect” sched-
ules were actually closer to the optimal than the
“correct” schedules.

In the SIMO simulator (like in other computer
simulators) the rules for the treatment sched-
ules are exact: if the stand characteristic consid-
ered exceeds a given exact limit, the treatment
is scheduled for the year in question, but not
otherwise. This makes the system very sensitive
to the errors. Therefore, we utilised the tolerance
limits of +2 or 3 years. It also means that the
tolerable error limit for each input variable could
be inferred directly from the given limits for the
treatments, if the treatments were to be carried
out immediately. For instance, if the diameter
limit for clear-cut were 28 cm, then for 32 cm
stand the largest tolerable underestimate would
be 4 cm, and overestimation had no effect. Since
the treatments can happen at any time during the
10-year period, but the decisions are based on
the data measured in the beginning of the period,
the situation is not quite as simple, as the effect
of growth needs to be considered. Further com-
plication comes from the tolerance limit given to
the timing and from the interactions of errors in
several variables. Therefore, we decided to model
the probability.

Islam et al (2010) used the realized errors to
predict the monetary inoptimality losses due to
inventory errors. Their data did not show any
reason to treat positive and negative errors sepa-
rately, whereas our data showed. One possible
reason for this difference may be that their sched-
ules were based on optimization using a stand
level growth simulator, whereas we applied the

silvicultural guidelines, i.e. rule-based reasoning.
Another possible explanation is that our data set
was much larger, and included a large number
of both under- and overestimates for each stand
and variable: the larger the data, and the wider
the ranges of independent variables, the easier
it is to observe the trends and obtain statistically
significant differences.

The results (Table 2, Figs. 2-4) show that pre-
cise estimates for basal area are very important for
thinning decisions. In practise, the errors should
be within £10% in order to obtain correct deci-
sions with high probability (>80%). This degree
of accuracy is not often obtained with the cur-
rent inventory methods: in the traditional com-
partmentwise inventory with a RMSE of 25%,
within these limits are about 39% of the basal
area assessments (Kangas and Lappi 2011). With
the currently adopted laser scanning methodology
the proportion is about 54% (Kangas and Lappi
2011). The errors in mean diameter and height do
not seem quite as detrimental, but obtaining esti-
mates within +20% would give high probabilities
for good decisions in most cases. This accuracy is
obtained with both above mentioned methods at
least in 70% of cases (Kangas and Lappi 2011).
Consequently, using either of these methods the
overall probability of correct decisions in any
given stand is much lower than 80%.

This result is confirmed in the CART analysis.
The first division in CART model is based on
the second power of error in basal area (eG2),
and if this error is low enough (<121.7, i.e.
leG|<11.03%), the probability of making a cor-
rect decision is 0.79, and in the other branch 0.42.
If the error in basal area is higher than 11%, then
itis still possible to obtain good accuracy of deci-
sions (0.81) if the next operation is clear-cut (b)
instead of first thinning (c) or thinning (d) (0.31).
In the thinning stands, if basal area G is small
compared to mean diameter D (GdivD <0.94), it
is still possible to make accurate decisions (prob-
ability 0.81). If the error of basal area is small, and
the absolute error of mean diameter is also less
than 15.5%, the probability of correct decisions
is as high as 0.88. It is notable that in one of the
leaves only the probability is as high as 0.95.

Our results apply at the stand level, and can be
used for selecting the accuracy needed in meas-
uring a given stand. The overall accuracy of the
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decisions in a forest area, would depend on the
age distribution of the area, for instance, besides
the measurement accuracy. The forest-area level
analysis is out of the scope of this study, but the
models estimated could be used to simulate the
accuracy of decisions in a forest area where the
inventory is carried out with a given method, with
a given error distribution. Such a tool could be
used for defining if a planned inventory method
is accurate enough for decision making.

In this study, we modelled the probability both
with a parametric logistic regression and with
a non-parametric regression tree CART. Two
methods were used, as both of them have their
pros and cons. With logistic model, it would be
possible to analytically solve the error level that
would produce a given probability of accuracy
for the decisions in a given stand. As the error is
included as a signed error and in different powers,
it means that the equation has to be separately
solved for positive and negative errors and the
correct sign of the possible solutions needs to
be chosen accordingly. The produced model is
overwhelmingly complicated, however, and very
difficult to interpret. Interpreting the results of
the model would require a computer tool for
predicting the probability in different situations.
CART model, on the other hand, is very simple to
interpret visually from the tree plot. The problem
is that the model does not allow for calculations
of probability for any other combinations of stand
characteristics and errors than the ones predicted.
It is not, therefore, possible to determine a com-
bination where the accuracy of decisions would
be, say 97%. The CART results would thus be
useful for forest practitioners, who could very
efficiently see how reliable data they would need
for making the decisions, and the logistic model
for researchers, who could use it to simulate area-
level inventories and analyse the accuracy of the
overall results.

A notable difference between the CART model
and logistic regression model was that in the
CART model positive and negative errors needed
not to be treated separately, dummy variables
were not useful and also the interactions were less
useful than in the logistic model. It means that
with CART, the modeller does not need to worry
about the model shape, at least as much as in para-
metric regression. It also means that it is much
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easier to get reasonable results in a complicated
modelling task like this. For instance, it is prob-
able that the parametric model could be improved
to the same level as the variance minimizing
CART model, with R? 72%, if new interaction
terms were discovered. This would, however,
mean a lot of work. Therefore, CART models are
also used in datamining applications.

In principle, the regression models should be
estimated using methods that take into account the
correlation of observations that are simulated for
the same stands. However, as the OLS estimates
are still unbiased (although the p-values may
be overestimated), this further complication was
not deemed necessary here. The reasoning is
that the stand-level variation would describe such
between-stand variation that cannot be explained
with the used predictors. In this case, the possibil-
ity of such variation was deemed negligible, as
all correct treatments were generated using the
same, exact rules, and the same growth models,
that were assumed correct. Thus, all the varia-
tion in the data set is due to simulated errors, and
none due to random variation, all the predictors
that have significant values are truly useful in
the model.

References

Borders, B.E., Harrison, W.M., Clutter, M.L., Shiver,
B.D. & Souter, R.A. 2008. The value of timber
inventory information for management planning.
Canadian Journal of Forest Research 38: 2287-
2294.

Breiman, L., Friedman, J.H., Olshen, R.D. & Stone,
C.J. 1984. Classification and regression trees.
Wadsworth & Brooks, Belmont, CA.

Burkhart, H.E., Stuck, R,D., Leuschner, W.A. & Rey-
nolds, M.A. 1978. Allocating inventory resources
for multiple-use planning. Canadian Journal of
Forest Research 8: 100-110.

Duvemo, K. 2009. The influence of data uncertainty on
planning and decision processes in forest manage-
ment. Doctoral Thesis. Faculty of Forest Sciences,
Department of Forest Resource Management,
Umed. Acta Universitatis Agriculturae Sueciae.
60 p. + appendices.

— , Barth, A. & Wallerman, J. 2007. Evaluating



Kangas et al.

Sensitivity of Harvest Decisions to Errors in Stand Characteristics

sample plot imputation techniques as evaluating
sample plot imputation techniques as input in forest
management planning. Canadian Journal of Forest
Research 37: 2069-2079.

Eid, T. 2000. Use of uncertain inventory data in forestry
scenario models and consequential incorrect har-
vest decisions. Silva Fennica 34: 89-100.

— , Gobakken, T. & Nasset E. 2004. Comparing
stand inventories for large areas based on photo-
interpretation and laser scanning by means of cost-
plus-loss analysis. Scandinavian Journal of Forest
Research 19: 512-523.

Hamilton, D.A. 1978. Specifying precision in natural
resource inventories. In: Integrated inventories of
renewable resources: proceedings of the workshop.
USDA Forest Service, General Technical Report
RM-55: 276-281.

Holopainen, M., Mikinen, A., Rasinméki, J., Hyyppa,
J., Hyyppa, H., Kaartinen, H., Viitala, R., Vas-
taranta, M. & Kangas, A. 2010. Effect of tree-level
airborne laser-scanning measurement accuracy on
the timing and expected value of harvest deci-
sions. European Journal of Forest Research 129:
899-907.

Hynynen, J., Ojansuu, R., Hokkd, H., Siipilehto, J.,
Salminen, H. & Haapala, P. 2002. Models for
predicting stand development in MELA system.
Finnish Forest Research Institute Research Papers
835.

Hyytidinen, K., Hari, P, Kokkila, T., Mikeld, A.,
Tahvonen, O. & Taipale, J. 2004. Connecting a
process-based forest growth model to stand-level
economic optimization. Canadian Journal of Forest
Research 34: 2060-2073.

Islam, N., Kurttila, M., Mehtitalo, L. & Haara, A.
2009. Analyzing the effects of inventory errors on
holding-level forest plans: the case of measurement
error in the basal area of the dominated tree species.
Silva Fennica 43: 71-85.

Islam, Md.N., Kurttila, M., Mehtitalo, L. & Pukkala,
T. 2010. Inoptimality losses in forest manage-
ment decisions caused by errors in an inventory
based on airborne laser scanning and aerial photo-
graphs. Canadian Journal of Forest Research 40:
2427-2438.

Kangas, A. 2010. Value of forest information. European
Journal of Forest Research 129: 863-874.

— & Lappi J. On comparing agreement of forest
variable estimates obtained with different methods.
Submitted manuscript.

— & Rasinméki, J. 2008. (eds.). SIMO Adaptable
simulation and optimization for forest management
planning. Department of Forest Resource Manage-
ment Publications 41. 40 p.

Lawrence, D.B. 1999. The economic value of informa-
tion. Springer. 393 p.

Mikinen, A., Holopainen, M., Kangas, A. & Rasin-
miki, J. 2010. Propagating the errors of initial
forest variables through stand- and tree-level simu-
lators. European Journal of Forest Research 129:
887-897.

Rasinmiki, J., Kalliovirta, J. & Maikinen, A. 2009.
An adaptable simulation framework for multiscale
forest resource data. Computers and Electronics in
Agriculture 66: 76-84.

R Development Core Team. 2009. R: a language and
environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0. Available at: http://www.R-
project.org.

[Recommendations of Tapio for good silviculture].
2006. Metsédkustannus. 100 p. (In Finnish).

Stéhl, G. 1994. Optimizing the utility of forest inven-
tory activities. Swedish University of Agricultural
Sciences, Department of Biometry and Forest Man-
agement. Report 27.

— , Carlson, D. & Bondesson, L. 1994. A method to
determine optimal stand data acquisition policies.
Forest Science 40:630-649.

Total of 23 references

709



	Sensitivity of Harvest Decisions to Errors in Stand Characteristics
	1 Introduction
	2 Material and Methods
	2.1 The Problem Formulation
	2.2 Material
	2.3 The Probability of Making a Correct Decision

	3 Results
	3.1 The Probabilities within Classes
	3.2 Modeling the Errors
	3.2.1 The Logistic Model
	3.2.2 The CART Model


	4 Discussion
	References



