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Highlights
• The most accurate tree-level alternative is to include crown base height (CBH) to nearest 

neighbour imputation.
• Also mixed-effects models can be applied to predict CBH using tree attributes and airborne 

laser scanning (ALS) metrics.
• CBH prediction can be included with an accuracy of 1–1.5 m to forest management inven-

tory applications.

Abstract
This study examines the alternatives to include crown base height (CBH) predictions in operational 
forest inventories based on airborne laser scanning (ALS) data. We studied 265 field sample plots 
in a strongly pine-dominated area in northeastern Finland. The CBH prediction alternatives used 
area-based metrics of sparse ALS data to produce this attribute by means of: 1) Tree-level imputa-
tion based on the k-nearest neighbor (k-nn) method and full field-measured tree lists including CBH 
observations as reference data; 2) Tree-level mixed-effects model (LME) prediction based on tree 
diameter (DBH) and height and ALS metrics as predictors of the models; 3) Plot-level prediction 
based on analyzing the computational geometry and topology of the ALS point clouds; and 4) 
Plot-level regression analysis using average CBH observations of the plots for model fitting. The 
results showed that all of the methods predicted CBH with an accuracy of 1–1.5 m. The plot-level 
regression model was the most accurate alternative, although alternatives producing tree-level 
information may be more interesting for inventories aiming at forest management planning. For 
this purpose, k-nn approach is promising and it only requires that field measurements of CBH is 
added to the tree lists used as reference data. Alternatively, the LME-approach produced good 
results especially in the case of dominant trees.
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1 Introduction

The size of a tree crown is an indicator of tree health, vigor, and growth and yield potential (Smith 
1986; Salminen et al. 2005). The crown size is usually defined in terms of crown length, crown 
ratio, i.e., crown length divided by the total height of a tree, crown surface area or crown volume. 
Of those measures, crown length and crown ratio can be obtained most simply, because tree height 
is typically measured in forest inventories and only crown base height (CBH) needs to be measured 
in addition. The usability of CBH is not limited to crown size calculation: tree-level CBHs have 
been used to determine the quality classes and value of sawn logs (Uusitalo 1995; Verkasalo et al. 
2004), and stand-level mean CBH can also be used to indicate on wood quality (Wall et al. 2004). 
CBH has also been used as a tree level predictor variable in tree growth (Salminen et al. 1995) 
and biomass component models (Repola 2009) and stand level predictor variable in fire behavior 
models (Andersen et al. 2005). CBH varies considerably between tree species being usually at a 
higher relative height for dominant species, such as Scots pine (Pinus sylvestris L.), and lower for 
shade tolerant species, such as Norway spruce (Picea abies [L.] H. Karst.). CBH is also related to 
silvicultural history, age and social status of a tree in a stand.

Information obtained by airborne laser scanning (ALS) is strongly related to some forest 
inventory attributes, such as tree height, different plot-level mean height characteristics, canopy 
cover and canopy gaps, and these attributes can be derived almost directly from the data (Naes-
set 2002; Thomas et al. 2008; Vepakomma et al. 2008; Korhonen et al. 2010). On the other hand, 
characteristics such as tree diameter distribution cannot be directly observed with ALS data and 
statistical relationships must be utilized to predict those (Gobakken and Naesset 2004).

Based on ALS data, the upmost surface of the tree crowns is typically described most accu-
rately, since the first ALS echoes mainly reflect back from the top of the canopy. The description 
becomes less accurate towards the lower end of canopy, i.e., around the height of the crown base, 
because most of the first echoes have already reflected back and the subsequent echoes may suffer 
from transmission losses due to penetrating upper canopy. The challenges related to predicting 
CBH by ALS are further reviewed by Maguya (2015; Chapter 5) and at least three different pre-
diction approaches can be distinguished based on earlier literature: First, some researchers have 
attempted to derive the CBH directly from the data, applying polygon, alpha shape or voxel based 
crown or canopy approximations (Pyysalo and Hyyppä 2002; Holmgren et al. 2008; Popescu and 
Zhao 2008; Vauhkonen 2010; Maltamo et al. 2010). Second, it may be possible to predict CBH 
according to descriptive statistics of ALS-based height value distribution without any statistical 
model (Solberg et al. 2006; Dean et al. 2009; Maltamo et al. 2010), especially when combined 
with expert opinion or calibration field data to indicate what statistics are relevant for the CBH. 
Third, using field data more integrally for model fitting, the relationships between ALS features 
and crown base height can be estimated using regression analysis or corresponding techniques 
(Naesset and Okland 2001; Andersen et al. 2005; Maltamo et al. 2006, 2010).

In Finland, ALS-based approaches have been established for the data acquisition of opera-
tional forest management inventories (Maltamo and Packalen 2014). Due to the requirements of the 
planning system, the inventory system must produce data at the tree-level, but practical accuracy 
and cost reasons prohibit the use of individual tree detection approaches. Instead, the practical 
forest inventories in Finland use area-based ALS data and k-nearest neighbor (k-NN) imputation to 
produce stand attributes such as mean diameter, dominant height, basal area and volume (for details, 
see Maltamo and Packalen 2014). Although the stand description is predicted at an area-level, the 
use of tree size distribution models transforms the description back to the tree-level, meaning that 
information of both tree and stand levels is available for the subsequent management or wood 
procurement planning. As reviewed above, it would benefit the aforementioned purposes, if also 
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CBH predictions were available either at the tree or stand level. However, even though earlier 
studies have confirmed that such predictions are feasible based on available ALS data, there are 
no studies that would recommend on how this information should be linked to multivariate forest 
inventories, such as those described by Maltamo and Packalen (2014).

The aim of this study is to examine the possibilities to include crown base height predic-
tion into multivariate forest inventory information using ALS. The study compares four different 
methods to predict the CBH, which can all be implemented with sparse ALS data and area-based 
metrics. The methods require different levels of field reference data and produce either tree or plot-
level predictions. However, all methods are cross-validated at the plot-level, which corresponds 
to a scale where the aforementioned inventory systems are operated.

2 Material and methods

2.1	 Study	area	and	field	data

The study area was located in Kuhmo, eastern Finland, and it was a combination of two separate 
laser scanning areas (Fig. 1). The Kuhmo region is very homogenous in terms of species, being 
strongly dominated by Scots pine. Also Norway spruces and deciduous trees, mainly birches (Betula 
spp.) and aspen (Populus tremula L.), are typically found, but especially the deciduous species 
usually form only minor proportions of suppressed trees.

In this study, 265 field sample plots with co-located ALS and field data were available. The 
plots had been placed in L-shaped clusters of 5 plots according to old inventory data on develop-
ment stages of forests in the area. The distance between plots in a cluster was 150 m. Every tree 
with a diameter at breast height (DBH) greater than 5 cm had been measured from the circular 
sample plots with a radius of 9 meters. The measured attributes were DBH, CBH, and species. 
Species-specific median trees of each plot, selected according to tree basal area, were measured 
for height. Tree-level basal areas were first calculated by formula π × (DBH/2)2 and the plot basal 
area (G) was summed from these measurements. The missing tree heights were predicted using 
Näslund’s (1936) height curve: On each plot, these curves were first calibrated using the height 

Fig. 1. The location of field sample plot clusters.
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and DBH of the species-specific median trees (Siipilehto 1999). Tree stem volumes were estimated 
using Laasasenaho’s models (1982), which include the DBH, height and tree species as predictors. 
Pine and spruce had their own separate models and the model for birch was used in the case of 
all deciduous trees. The most essential characteristics of the studied plots are shown in Table 1.

The final study material consisted of 6527 trees, of which 3245 were Scots pines, 1661 
Norway spruces and 1621 deciduous trees, the latter treated as a combined species group in this 
study. The pine proportion of stem number was therefore 49.7% and on average, pines were on 
dominant position in the stands and considerably larger than other tree species (Table 1).

Categorical forest characteristics measured from the plots included soil type, site type, 
development stage and dominant species (Table 2). According to this information, the plots repre-
sented widely different types of forests. Most of the plots had a mean DBH between 8 and 16 cm 
and could therefore by categorized as young stands, for which reason the mean CBHs were fairly 
low in the entire data (Table 1).

Table 1. The main attributes of the 265 studied field plots. Min = minimum, Max = maximum, Sd = Standard 
deviation.

Attribute Population Mean Min1 Max Sd

Volume (m3 ha–1) Total 124.2 1.42 403.3 78.3
Scots pine 88.8 0.45 294.2 61.7
Norway spruce 39.2 0.19 400.6 55.8
Deciduous trees 17.6 0.25 167.5 23.8

Basal area (m2 ha–1) Total 16.8 0.43 44.6 7.9
Scots pine 11.5 0.14 33.1 6.6
Norway spruce 5.6 0.08 39.2 6.7
Deciduous trees 2.8 0.08 18.7 3.2

Mean diameter (cm) Total 14.3 6.6 33.6 4.4
Scots pine 17.6 6.1 41.6 6.9
Norway spruce 12.1 5.0 27.9 4.8
Deciduous trees 10.8 5.1 44.6 5.4

Mean height (cm) Total 12.0 2.7 23.9 3.4
Scots pine 13.9 5.0 28.3 4.8
Norway spruce 9.6 3.5 21.9 3.7
Deciduous trees 10.6 2.7 23.6 4.0

Number of stems (ha–1) Total 1014 196 2790 507
Scots pine 538 39 1965 362
Norway spruce 365 39 2476 401
Deciduous trees 307 39 2397 308

Mean crown base  
height (dm)

Total 48.9 8.7 129.6 21.0
Scots pine 67.3 8.8 189.3 34.1
Norway spruce 20.1 3.0 62.6 13.5
Deciduous trees 42.5 7.0 137.0 23.7

Basal-area-weighted mean 
crown base height (dm) 

Total 58.9 8.8 155.5 25.9
Scots pine 70.9 8.9 188.5 34.4
Norway spruce 22.9 3.0 64.2 15.6
Deciduous trees 46.4 7.0 142.4 26.9

1 The Min-values present the smallest observations > 0, because all factually observed species-specific min-values would 
have been zeroes due to the absence of species in many plots (Scots pine was met on 246 plots, Norway spruce on 185 
plots and deciduous trees on 218 plots).
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2.2 ALS data

The study area was laser scanned from the air between 4th and 7th of September, 2011, when the 
deciduous trees still had their leaves on. The scanning was performed with Leica ALS50-II sensor 
from a flying altitude of 2000 m using a scanning angle of 30 degrees, scanning rate of 52 Hz and 
pulse frequency of 58.9 Hz. These parameters yielded a nominal data density of 0.52 pulses m–2. 
The data were acquired and pre-processed, including height normalization, by Arbonaut, Ltd. 
Height-normalized first echoes (”single” or “first-of-many”) of each pulse were extracted from the 
region of each plot. The ground threshold of 2 m was employed when computing the ALS features. 
Altogether 33 different plot-level ALS features were computed from the point data, including, i.e., 
percentiles and densities at relative heights 0.05; 0.1; 0.2,…, 0.9, 0.95 and central statistics of both 
the height and intensity values (Table 3).

Table 2. The distribution of plots according to categorical stand characteristics. DBH is the arithme-
tic mean of the DBH at the plot-level. The dominant species was determined as the species with the 
largest proportion from the sum of tree stem volumes in a plot.

Characteristic Sub class N %

Soil type Mineral soil 201 75.8
 Peat soil 64 24.2
Site type Fertile / Oxalis-Myrtillus type (OMT) 2 0.8

Moderate / Vaccinium Myrtillus type (MT) 181 68.3
 Poor / Vaccinium vitis-idaea type (VT) 82 30.9
Development class T2 (DBH < 8 cm) 8 3.0

02 (8 cm ≤ DBH < 16 cm) 184 69.4
03 (16 cm ≤ DBH < 24 cm) 65 24.5

 04 (DBH ≥ 24 cm) 8 3.0
Dominant species Scots pine 208 78.5

Norway spruce 42 15.8
 Deciduous trees 15 5.7

Table 3. The ALS metrics used in this study. Suffices single and first refer to using only 
single or first-of-many echoes, respectively; otherwise, the metrics were computed using 
pooled single and first-of-many echoes.

ALS metric Definition

CBHas CBH prediction based on alpha shapes (see Section 2.3.3)
Hmax Maximum height
Hmean Mean height
Hstd Standard deviation of height
Vegeratio Ratio of the number of echoes above 2 m to the total number of echoes
H05…H95 ith percentile of height
D05…D95 Relative density at height i
Imean Mean intensity
Imeansingle Mean intensity (single echoes)
Imeanfirst Mean intensity (first-of-many echoes)
Istd Standard deviation of intensity
Istdsingle Standard deviation of intensity (single echoes)
Istdfirst Standard deviation of intensity (first-of-many echoes)
Prop_first Proportion of first-of-many echoes 
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2.3 Methods to predict crown base height

This study compared altogether four different methods that can be implemented with sparse, area-
based ALS data. The methods however require different degrees of reference data in order to be run 
and therefore result to CBH predictions of different levels (tree or plot). The compared methods 
can be summarized according to the reference data requirements as follows:

1. Tree-level imputation requires that full field-measured tree lists including CBH observations are 
available for reference data.

2. Tree-level mixed-effects modelling approach requires similar reference data as alternative 1 for 
model fitting.

3. Plot-level prediction based on alpha shapes examines the properties of the point clouds for predic-
tion and it can be applied without field information.

4. Plot-level regression analysis requires plot-level CBH observations for model fitting.

2.3.1 Tree-level imputation

The tree list imputation based on k-NN is fundamentally similar to Packalen and Maltamo (2008) 
and therefore referred to as PMk-NN. The idea is to search for k most similar plots in terms of chosen 
independent variables and to predict tree lists as weighted unions of trees measured from those plots, 
using the selected distance metric as the weights. The predicted tree lists, therefore, include all tree 
attributes available for each tree, being the species, DBH, height, and CBH in our case. The use of 
an imputation method requires choices on dependent and independent variables, distance metric, 
and a value of k within available training plot data (Maltamo et al. 2009), each of which affect the 
predictions (Latifi et al. 2010). These factors can be optimized with respect to desired accuracies in 
the training data (Packalen et al. 2012). As we focused on CBH, our PMk-NN was trimmed for these 
predictions, as explained below and further discussed in the Discussion section.

PMk-NN is based on the most similar neighbor (MSN) method, which employs canonical 
correlation analysis to produce a weighting matrix for selecting the NNs from the training data. 
Both the variable selection for the correlation analysis and the NN search were carried out in a 
leave-out-one-plot fashion using the yaImpute package (Crookston and Finley 2008) of the R sta-
tistical computing environment. The dependent (Y) and independent (X) variables were selected 
according to the Root Mean Squared Error (RMSE) of basal area weighted CBH with both k = 1 
and k = 5, testing different variable combinations in two steps. First, the plot volume, basal area, 
the mean, minimum and maximum diameter and height, and 10th, 20th, ..., 90th percentiles of 
diameter and height distributions were tested one by one as the Y-variable, using all available ALS-
features to form the vector of X-variables. The Y-variable that minimized the RMSEs was retained 
and new Y-variables were appended until the RMSE accuracy could not be improved. Then, the 
vector of Y-variables was fixed to that obtained above and the selection was repeated similarly for 
the X-variables. The sensitivity of both variable combinations was finally tested by replacing each 
selected X and Y variable with all possible non-selected candidates.

When predicting, the k parameter was set to be 5, meaning that the predicted tree-list of each 
plot was composed of the trees from 5 most similar plots. The CBH prediction of each plot was 
computed as the distance weighted mean of the CBHs measurements of the 5 plots. The relative 
weight w of individual plot i was calculated as:

w
D

D
i

i

i
n

i

�
�

�

�

�
��

( )

( )
( )

1

1
1

1

1
1

where Di is the distance between the target and the plot i and n is the number of plots, in this case 5.
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2.3.2	Tree-level	mixed-effects	model

In the tree-level modelling, the linear mixed-effects model (LME) was developed for predicting 
CBH of pine using tree DBH and height as the main predictors. In ALS-based forest inventory 
applications, the DBH and height are not known but they must first be predicted. Therefore, the 
constructed model was applied to the tree-lists produced by the PMk-NN method described above. 
Only the plots with pine as the dominant species were used as modeling data since mainly the domi-
nant trees affect the plot-level ALS-metrics and our inventory area is strongly dominated by pine. 
The model included both the tree-level variables measured in the field and ALS-derived plot-level 
variables. The different ALS-derived variables such height percentiles (H05, H10, H20,…, H95), 
the densities value of each quantiles (D05, D10, D20,…, D95), ALS-based mean height and crown 
height were tested as plot-level independent variables (Table 3). To account for hierarchical data 
structure and obtain unbiased tests for variables at each level, the model was formulated as a linear 
mixed model (Searle 1987) with both fixed and random effects as follows:

CBH TREE PLOTij ij i i ija u e� � � � � � �0 2a b ( )

where CBH is the response variable, a0 is the intercept, a and b are vectors of fixed regression 
coefficients, TREE is a vector of field measured tree characteristics for tree j in plot i, PLOT is a 
vector of ALS-based stand characteristics in plot i, ui is the random effect of plot i and eij is the 
residual error for tree j in plot i.

2.3.3 Plot-level prediction based on alpha shapes

 The implementation of the alpha shape method (α-shape) corresponds precisely with the “Pre-
diction alternative A” of Maltamo et al. (2010). It is based on examining geometrical and topo-
logical properties of the 3D point data to detect vertical gaps that distinguish canopy from the 
terrain and possible understorey shrubs. If such gaps exist and appear larger than within-canopy 
gaps in the ALS data, this method can detect the CBH directly from the point data and without 
any field work. According to the experiences of Maltamo et al. (2010), however, these predic-
tions can be expected to include 20–40% more error compared to best ones obtained with field 
calibration data.

To implement this method, the plot-level ALS point clouds were intersected by a vector 
grid with a cell size of 4 × 4 m (Maltamo et al. 2010) to derive three-dimensional Delaunay 
triangulation and alpha shape (Edelsbrunner and Mücke 1994) based on the point data of each 
cell. CBHs were first predicted separately for each cell by filtering the alpha shapes according to 
parameter alpha, which can be considered as a size-criterion to determine the level of detail in 
the obtained triangulation (Vauhkonen 2010). The filtering started from such an alpha value that 
delimited the point cloud into one connected component representing canopy. The alpha values 
were traversed in descending order until a new component was split. The vertical position of 
each split component was examined relative to the initial component. The traversal of the alpha 
values was continued until new components located completely below the highest (canopy) 
component and above the ground threshold of 1 m could not be extracted. Cell-specific CBHs 
were defined as the heights of the lowest vertices in the filtered alpha shapes and plot-level 
predictions were obtained as their weighted averages, using the joint areas of the plot and cells 
as the weights.
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2.3.4 Plot-level regression analysis

Linear regression (LR) analysis was used to construct a plot-level model separately for the arith-
metic mean CBH and basal-area-weighted mean CBH. All the ALS variables available were used 
as candidate predictors in the model. The correlation between different predictors was tested with 
VIF-test (Variance Inflation Factor).

2.4 Validation

Plot-level validation was done separately for the whole data and for subsets of plots with the 
proportions of tree species groups ≥ 50% of the total volume. Altogether 201, 38 and 15 plots 
were dominated by Scots pine, Norway spruce and deciduous tree species, respectively. The 
remaining 11 plots without a clear dominant species were classified as mixed stands. We wanted 
to evaluate the predictions of these plots separately, because it is known that the CBH is a tree 
species dependent attribute. We considered both arithmetic mean CBH and basal-area-weighted 
mean CBH (cf. Eqs. 3–4): using PMk-NN and LME methods, also the predicted plot-level CBH 
was either an arithmetic mean or weighted by the basal area obtained from the tree lists. When 
validating the predictions, a leave-one-plot-out cross-validation (LOOCV) was applied to all pre-
dictions except those produced by alpha shapes, which did not require model fitting or calibration. 
The validation was based on the root mean squared error (RMSE, Eq. 3) and mean difference 
(BIAS, Eq. 4)

RMSE �
��� ( )

( )
y x

n
i
n 2
1 3

and

BIAS �
��� ( )

( )
y x

n
i
n
1 4

where y is the observed plot-level arithmetic or basal-area-weighted mean CBH, x is the predicted 
plot-level mean CBH and n is the number of plots. Using PMk-NN, LME and LR, also the pre-
dicted CBH was either arithmetic mean or the basal-area-weighted mean. The Relative RMSEs 
and biases were calculated by multiplying the absolute values with factor 100/y, where y is the 
average CBH in the population studied.

3 Results

3.1 Constructed models

3.1.1 Tree-level imputation

Altogether three X- and three Y-variables were used for the PMk-NN imputation (Table 4). In 
the first step of the feature selection, the RMSE of both k = 1 and k = 5 was improved by includ-
ing the minimum and 70th percentile of tree heights and the 80th percentile of tree diameters as 
Y-variables. Two candidate Y-variables would still have improved the result with k = 1, but less than 
1% in terms of the RMSE-improvement compared to using three Y-variables. All these candidates 
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also increased the RMSE with k = 5, for which reason the first step of the feature selection was 
terminated. In the second step, Hmean, D90, and H10 were selected as X-variables. With k = 5, 
altogether 12 additional X-variables would have provided similar decimal-level improvements 
to the RMSE and one of the candidate X-variables as much as 5%, compared to the last variable 
added. All of these variables however increased the RMSE with k = 1, for which reason the second 
step of the feature selection was terminated. Adding or removing Y-features did not improve the 
RMSE compared to the combination presented in Table 4.

3.1.2	Tree	level	mixed-effects	model

The constructed mixed-effect model for CBH was based on field-measured tree diameter at breast 
height (DBH) and tree height (h), and ALS-derived variables such 5th and 80th percentiles of 
height (H05, H80) and the relative density at the relative height of 0.05 (D05). In addition to the 
main effect of these variables, DBH was used also as interaction term with h, D05 and H80. All 
the independent variables were highly significant i.e. the p-value was < 0.0001, except ln(DBH) 
with p-value of 0.0011. The final mixed-effect model was specified as follows:

CBH DBH ln(DBH h
D

h
BH� � � � � � � � � �2 2953 0 6506 1 2899 0 5116 0 6568. . . ) . .

��
�
�

�
�
�

� � � � � � � �

2

2

5

0 4078 05 0 00875 80 1 1435 05 0 02162

( )

. . . .H H DBH D �� �DBH H80

The error variance was 0.843 m between plots and 1.328 m between trees, meaning that 
from the unexplained residual variance, a greater part occurred between trees then between plots 
– furthermore meaning that the model was actually more accurate predicting plot-level mean CBH 
than the CBH of a single tree.

3.1.3 Plot level linear regression model

The significance (p-value) of each predictor was examined and the least significant candidate was 
removed from the model. This procedure was repeated until the p-value of each predictor was 
smaller than 0.001. The final combination of predictors was manually chosen from this group by 
minimizing the RMSE. Additionally, to avoid multicollinearity, VIF-value greater than 5 between 
two predictors was not allowed. Different transformations were also tested but they did not improve 
neither the model accuracy nor the plotted residuals.

The final form of the linear regression model for predicting the arithmetic mean crown base 
height (CBHARI) was the following (Eq. 6):

Table 4. Features selected for the tree list imputations. The RMSEs refers to those of basal-area weighted plot-level 
mean CBHs and the Impr. columns give the improvement in RMSE (%) compared to the previous step.

RMSE RMSE
Step X-feature(s) Y-feature(s) k = 1 Impr. k = 5 Impr.

1 All Heightmin 3.11 - 2.77 -
All Heightmin + Height70 1.59 49.04 1.42 48.58

 All Heightmin + Height70 + Diameter80 1.54 2.59 1.36 4.24
2 Hmean Heightmin + Height70 + Diameter80 1.47 4.95 1.34 1.49

Hmean + D90 Heightmin + Height70 + Diameter80 1.30 11.19 1.23 7.97
 Hmean + D90 + H10 Heightmin + Height70 + Diameter80 1.30 0.57 1.23 0.38
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CBH Hstd H DARI � � � � � � � � �. . . . .83 4155 6 6042 9 406 10 163 8875 50 0 79522� Imean_all (6)

where Hstd is the standard deviation of the height, H10 is the 10th percentile of height, D50 is 
the relative density at the relative height 0.5 and Imean_all is the mean of intensities. The error 
variance and adjusted R-square of the model were 1.1 m and 0.72, respectively, in the entire data. 
However, using the LOOCV approach in the validation calculations changed the variance and 
coefficient values above between the iterations.

Correspondingly, the final form of the linear regression model for predicting the basal-area- 
weighted crown base height (CBHBAW) was the following (Eq. 7):

CBH H D Imean_all (7BAW � � � � � � � �21 6489 9 0748 10 124 1565 20 0 4765. . . . ))

where D20 is the relative density at the relative height 0.2. The error variance and adjusted R-square 
were 1.2 m and 0.78, respectively, in the entire data.

3.2	 Plot-level	reliability	figures

The RMSEs and biases observed for the different methods are shown in the Table 5 for the whole 
study data. The relative RMSEs were always lower for the basal-area-weighted mean crown base 
height (CBHBAW ) than for the arithmetic mean crown base height (CBHARI) , where the improve-
ment is because of the increase in the reference CBH value due to the basal-area weighting.

The linear regression model was the most accurate alternative for both CBHARI and CBHBAW. 
It is not surprising, since it modelled the plot-level mean CBH using straightforward regression 
analysis. In that case, predictions matching closely with the reference values could be obtained 
without bias. The RMSEs were 0.11–0.12 m.

The PMk-NN method showed the second best accuracy figures. The imputation of tree-level 
CBH values also turned out to be more accurate than applying the LME-model to the PMk-NN-
produced tree lists. The LME-model in particular led to considerably high overestimates.

The alpha shape method was the least accurate alternative to predict CBH in the case of the 
arithmetic mean, although it did not perform remarkably poorly compared to the other methods. 
In the case of the basal-area-weighted mean CBH, the accuracy of the alpha shape method was 
better than that of the LME-model and almost as good as for the PMk-NN-method. The alpha shape 

Table 5. The RMSEs and biases obtained with different methods when predicting 
the plot-level arithmetic mean crown base height (CBHARI) or basal-area-weighted 
mean crown base height (CBHBAW) for the whole study data.

CBHARI PMk-NN LME-model α-shape LR-model

RMSE (dm) 12.65 15.61 16.42 11.29
%-RMSE 25.89 31.95 33.59 23.10
BIAS (dm) –0.64 –8.43 –9.67 –0.01
%-BIAS –1.30 –17.25 –19.79 –0.02
CBHBAW

RMSE (dm) 14.47 17.42 15.16 12.29
%-RMSE 24.59 29.60 25.76 20.89
BIAS (dm) 1.05 –8.91 0.31 0.02
%-BIAS 1.78 –15.13 0.53 0.03
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method also overestimated the CBH even more than the LME-model in the case of the arithmetic 
mean, but was almost unbiased toward the basal-area-weighted values.

The reliability figures of both the arithmetic and basal-area-weighted CBH are additionally 
shown for plots dominated by the different species (Tables 6 and 7). The reliability figures were 
in general better in the pine-dominated plots and especially for the LME-model. Also the bias 
values were lower. This is an obvious result, since the LME-model was originally constructed at 
the tree-level using observations of pine plots only. In the case of basal-area-weighted mean CBH, 
the LME-model was even more accurate than the PMk-NN approach in pine plots (Table 7). As 
above, the reliability figures of the alpha shape method were better for basal-area-weighted mean 
CBH values. The alpha shape method was interestingly more accurate than PMk-NN in the spruce 
plots. Additionally in the plots dominated by spruce, the reliability figures varied depending on the 
method and whether the evaluation was done with respect to the arithmetic or basal-area-weighted 
mean CBH. Only for deciduous plots, the CBH predictions were always poor (considerable over-
estimates), which may be due to the fact that the reference CBH values were generally lower for 
these plots.

Finally, the residuals of predicting the arithmetic mean CBH and basal-area-weighted mean 
CBH using the compared methods are shown in Figs. 2 and 3, respectively. In general, the residuals 
were evenly distributed. However, especially the LME-model and alpha shape method generally 
overestimated the CBH values of the plots not dominated by pine. Figs. 2 and 3 also provide more 
background for the biased reliability figures of those methods.

Table 6. The RMSEs and biases obtained with different methods when predicting 
the plot-level arithmetic mean CBH for the plots dominated by different species or 
mixed plots.

Scots pine (n = 201) PMk-NN LME-model α-shape LR-model

RMSE (dm) 12.71 14.00 15.55 11.14
%-RMSE 24.68 27.19 30.21 21.63
BIAS (dm) 1.10 –6.25 –8.50 0.79
%-BIAS 2.14 –12.14 –16.52 1.53
Norway spruce (n = 38)

RMSE (dm) 9.32 17.48 14.11 7.97
%-RMSE 20.86 39.12 31.57 17.83
BIAS (dm) –2.71 –13.93 –9.66 0.19
%-BIAS –6.07 –31.17 –21.62 0.42
Deciduous species (n = 15)

RMSE (dm) 18.93 27.63 29.21 16.88
%-RMSE 55.66 81.24 85.90 49.64
BIAS (dm) –13.68 –20.46 –22.46 –8.34
%-BIAS –40.23 –60.15 –66.03 –24.55
Mixed (n = 11)

RMSE (dm) 10.88 13.98 14.81 7.60
%-RMSE 30.50 39.19 41.51 21.29
BIAS (dm) –7.41 –12.76 –13.58 –3.67
%-BIAS –20.78 –35.75 –38.08 –10.30
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Table 7. The RMSEs and biases obtained with different methods when predicting 
the plot-level basal-area-weighted mean CBH for the plots dominated by different 
species or mixed plots .

Scots pine (n = 201) PMk-NN LME-model α-shape LR-model

RMSE (dm) 13.88 12.81 14.72 11.54
%-RMSE 22.31 20.58 23.66 18.54
BIAS (dm) 4.34 –4.58 2.24 2.20
%-BIAS 6.97 –7.36 3.60 3.53
Norway spruce (n = 38)

RMSE (dm) 14.04 26.33 13.38 11.63
%-RMSE 26.04 48.84 24.82 21.57
BIAS (dm) –6.80 –22.86 –0.45 –5.94
%-BIAS –12.61 –42.39 –0.83 –11.02
Deciduous species (n = 15)

RMSE (dm) 21.28 33.07 24.12 21.04
%-RMSE 55.80 86.74 63.26 55.19
BIAS (dm) –14.95 –24.82 –18.34 –9.66
%-BIAS –39.20 –65.11 –48.12 –25.33
Mixed (n = 11)

RMSE (dm) 14.99 20.67 12.73 11.72
%-RMSE 35.27 48.67 29.98 27.59
BIAS (dm) –10.15 –18.07 –6.79 –5.95
%-BIAS –23.89 –42.54 –15.98 –14.02

Fig. 2. Residuals of the different methods in the prediction of arithmetic mean CBH.
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4 Discussion

This study considered the prediction of CBH using sparse density ALS data. The plot-level vali-
dation showed that CBH can be predicted in most cases at an accuracy of about 1–1.5 meters for 
plots dominated by different species. Only for plots with deciduous trees, the error values were 
considerably higher. The results above can be regarded as promising in that all of the tested methods 
can be feasibly applied in ALS based large scale forest inventory. The observed relative RMSEs 
were between 21% and 34% in the whole data and between 18% and 30% in the pine dominated 
plots (i.e., the most frequent and the most important species of the inventory area). These values 
are somewhat high compared to RMSEs reported earlier (Maltamo et al. 2010). However, the 
reason may be related to generally low reference CBH values, when even a minor absolute error 
may result to high relative figures. Another reason for the low relative accuracy may be the afore-
mentioned wide distribution of development classes from saplings to mature stands on the plots 
studied (Table 2). For comparison, Maltamo et al. (2010) focused on mature Norway spruce stands 
and reported RMSEs of approximately 13–20% on independent validation plots.

The use of PMk-NN based trees list is an appropriate alternative for generating tree-level 
CBHs in ALS based forest inventory. Tree level estimates can be directly used in different models 
(biomass, tree growth) and these estimates can be flexible aggregated to desired units such as 
stands. The reliability of this approach was almost always better than that of the LME alternative 
and the estimates were also almost unbiased in the whole data and pine dominated plots. Since 
k-nn is already used in ALS based forest inventories (Hudak et al. 2008; Maltamo and Packalen 
2014) the inclusion of crown base height as a target variable only requires that it is measured from 

Fig. 3. Residuals of the different methods in the prediction of basal-area-weighted mean CBH.
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field plots in each inventory project similar to DBH and tree height are currently measured. The 
development of field measurement devices, especially different altimeters, may allow taking meas-
urements for CBH together with those for the tree heights. However, the feasibility of measuring 
tree-level CBHs in the field depends, on one hand, on the costs related to the measurements and, 
on the other hand, on the benefits of including this attribute in the description of the tree stock.

It should be noted that the current tree lists of the PMk-NN method were produced using 
independent and dependent variables selected to predict CBH values as well as possible. Many 
other possibilities for training the nearest neighbor search exist and different combinations of fea-
tures representing both the tree- and plot-levels could be used (Packalen et al. 2012; Vauhkonen 
et al. 2014). The tree lists used in our study may therefore represent best-case accuracies for CBH 
predictions. However, it should be noted that also earlier studies optimized the composition of 
the tree lists specifically for the variables used in evaluation. Additionally, in k-nn analyses the 
weighting of different tree attributes must be re-solved if new attributes are added as dependent 
variables. In practice, however, we acknowledge that less accurate CBH predictions are possibly 
obtained based on tree lists optimized for other purposes such as predicting tree diameter and 
height distributions accurately.

The use of the mixed-effects model with both the tree and stand level predictors led to almost 
as good RMSE values as the PMk-NN imputation in the whole data. However, the estimates were 
biased at the plot-level. There are two possible sources for the bias. First, the DBH and height 
used with the mixed-effects model were those obtained from the PMk-NN tree lists. Since this 
approach was optimized for predicting CBH, the other tree attribute estimates might not be as 
accurate as possible (see above discussion). We examined the accuracy and precision of the LME 
approach in more detail from this point of view by examining the residuals of the CBHs against 
the mean DBH and height predicted for the plots (detailed results not shown). The trend between 
the residuals of these attributes was, indeed, stronger in the case of the LME model predictions 
than those obtained from the PMk-NN tree lists. However, although the plots with high residual 
errors based on the PMk-NN method had inaccurate DBH and height, the LME model was not 
found to magnify the CBH errors in these plots.

More importantly, the LME-model was constructed by using only pine-dominated plots but 
applied to plots including all species. This choice is reflected from the better plot-level reliability 
figures for the pine-dominated plots, but poorer estimates for the plots dominated by the other 
species. Using the models fundamentally assumes that the predictions are always made for target 
stands having pine trees in the dominant canopy layer, which was reasoned in the present case due 
to the strong dominance of Scots pine in the inventory area. If applied in another study area with 
different species composition, the plots dominated by different species should be distinguished 
from each other based on the ALS data. Even though certain plot-level intensity metrics derived 
from sparse ALS point clouds were found to differ between dominant species in another study 
area dominated by Scots pine (Vauhkonen et al. 2014), the use of similar metrics to distinguish 
between dominant species was only moderately successful in the presently available data (Räty et 
al. 2016). As discussed in more detail by Räty et al. (2016), the reason could be related to the fact 
that the intensity recordings were not range-corrected and no flying trajectory data to perform the 
calibration were available. We cannot thus rule out the possibility that if range-corrected, some 
intensity metrics could possibly have been selected more often also to the presently formulated 
models. Yet, it would be difficult to envisage considerable accuracy improvements due to such a 
calibration. We also experimented a model version which included all trees but the model reliability 
was worse due to the high number of suppressed trees (the bias increased 0.1 m in the modelling 
data). Overall, our mixed-effects model is more useful for predicting tree-level CBHs as an indica-
tor of stand-level saw log quality than producing tree crown information for the whole tree stock.
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Direct plot-level estimates of canopy base height were also included. Although the accuracy 
of these alpha shape estimates was the worst among the compared methods in the case of arithme-
tic mean CBH values, it should be noted that this estimate can be obtained directly from the ALS 
point cloud without field data. On the other hand, these predictions were almost unbiased for the 
whole study area and pine and spruce plots, when evaluated against the basal-area-weighted mean 
values, indicating a better quantification of the properties related to the largest trees of the stands. 
On the other hand, the considerable overestimation of the arithmetic CBH could also indicate on 
either that the direct detection of vertical gaps is overly sensitive for within-canopy gaps in the 
upper canopy, or that the ALS point cloud is not sufficiently dense from the lower parts (Korhonen 
et al. 2013). Notably, the approach cannot even theoretically produce the lowest reference CBHs 
because of the ground threshold applied. In the studied data, there were two plots with mean CBH 
below this threshold (1 m). Interestingly, the alpha shape approach showed better accuracies for 
spruce-dominated plots and the approach overall performed better in the spruce-dominated study 
area of Maltamo et al. (2010), which may jointly imply a need for a data-specific calibration. 
Finally, the alpha shape estimate was never included in the models or PMk-NN neighbor search, 
even if being available as a candidate predictor.

The plot-level regression estimate was the most accurate alternative also showing the best-
case accuracy that can be obtained for plot-level mean CBH predictions in this data set using ALS. 
On the other hand, a separate model must be constructed each time for different reference values, 
as in this study when using either the arithmetic or basal-area weighted mean CBH. Including the 
plot-level estimates of CBH in multivariate forest inventories may improve the possibilities to 
calibrate the estimates using similar techniques as in Kotivuori et al. (2018). On the other hand, 
it is also possible to transfer mixed-effect models effectively by means of local calibration using 
a low number of measurements either within an inventory area (Maltamo et al. 2012) or between 
inventory areas, even at the national scale (Kotivuori et al. 2016).

In this study the prediction of CBH was examined at the plot-level. However, if CBH 
estimation is included to ALS based multivariate forest inventory the interest and benefit of the 
approach is especially in species-specific-estimates. Since our study area was strongly dominated 
by one species, the number of plots (n = 265) was rather low for multivariate forest inventory and 
we only had ALS data, which are not feasible conditions for species-level analyses. The results 
presented here for pine dominated plots, however, show that for the dominant species, this metric 
can be predicted adequately. Therefore, further work is proposed to examine the reliability of spe-
cies level CBH estimates.

5 Conclusions

The study showed that tree-level crown base height prediction can be included with an accuracy of 
1–1.5 m to forest management inventory applications based on sparse ALS data. The most obvious 
alternative is to add tree-level CBH information to training data of k-nn imputation in addition to 
typically used species, DBH and height. As a result, wall-to-wall estimates of these attributes can 
be obtained. This study showed that k-nn approach is the most accurate tree-level alternative for 
CBH modelling and it can be preferred also due to the potential to provide tree-level predictions, 
the quality of which should however be further verified. Alternatively, mixed-effects models can 
be applied to predict CBH using tree attributes and plot-level ALS metrics. The benefit of the 
mixed-effects modeling approach is that once the model is formulated, it can be applied in other 
areas without new training data. Additionally, it can also be calibrated with rather low number of 
local measurements.
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