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Highlights
• Tree level-positioned harvester data were successfully used as plot-level training data for 

k-nearest neighbor stem diameter distribution modelling applying airborne laser scanning 
information as predictor variables.

• Stand-level validation showed that merchantable volume of total tree stock could be estimated 
with RMSE value of about 9%.

• The fit of the stem diameter distribution assessed by a variant of Reynold’s error index showed 
values smaller than 0.2.

• The most accurate results were obtained for the training plot sizes of 200 m2 and 400 m2.

Abstract
Accurately positioned single-tree data obtained from a cut-to-length harvester were used as training 
harvester plot data for k-nearest neighbor (k-nn) stem diameter distribution modelling applying 
airborne laser scanning (ALS) information as predictor variables. Part of the same harvester data 
were also used for stand-level validation where the validation units were stands including all the 
harvester plots on a systematic grid located within each individual stand. In the validation all 
harvester plots within a stand and also the neighboring stands located closer than 200 m were 
excluded from the training data when predicting for plots of a particular stand. We further com-
pared different training harvester plot sizes, namely 200 m2, 400 m2, 900 m2 and 1600 m2. Due 
to this setup the number of considered stands and the areas within the stands varied between the 
different harvester plot sizes. Our data were from final fellings in Akershus County in Norway 
and consisted of altogether 47 stands dominated by Norway spruce. We also had ALS data from 
the area. We concentrated on estimating characteristics of Norway spruce but due to the k-nn 
approach, species-wise estimates and stand totals as a sum over species were considered as well. 
The results showed that in the most accurate cases stand-level merchantable total volume could 
be estimated with RMSE values smaller than 9% of the mean. This value can be considered as 
highly accurate. Also the fit of the stem diameter distribution assessed by a variant of Reynold’s 
error index showed values smaller than 0.2 which are superior to those found in the previous 
studies. The differences between harvester plot sizes were generally small, showing most accurate 
results for the training harvester plot sizes 200 m2 and 400 m2.
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1 Introduction

The use of airborne laser scanning (ALS) for forest inventories has been growing over the past 
15 years (Næsset 2014; White et al. 2013). This is due to the high level of accuracy of estimated 
forest attributes and continuously reduced acquisition costs of the remotely sensed data caused by 
the rapid development of the laser scanner technology. In forestry, laser scanning applications are 
usually related to forest management inventories where rather large inventory areas are covered 
wall-to-wall by ALS data and then subsequently divided into management units (Næsset 2014; 
Maltamo and Packalen 2014). Alternatively, ALS data have also been used as a sample of aux-
iliary data in large-area inventories where the ALS survey is designed according to probabilistic 
principles (Ståhl et al. 2011). The use of field training data is inevitable in all types of ALS-based 
forest inventories to construct models relating stand attributes to remote sensing metrics. Usually 
the data acquisition costs of field data represent a substantial part of the overall inventory costs 
due to laborious field work. Numerous efforts have been made to reduce costs of field data acqui-
sition. These include, for example, use of existing plots from previous inventories (Kotivuori et 
al. 2018) and more effective use of the field plot data by applying properties of the ALS data as 
prior information when selecting locations of the field plots to be measured in field (Hawbaker et 
al. 2009), which is a topic related to model-based sampling.

Another option to reduce field data acquisition costs is to utilize field data acquired primarily 
for other purposes. Some studies have examined the usability of national forest inventory (NFI) 
plots as training data (Maltamo et al. 2009b; Tuominen et al. 2014; Nilsson et al. 2017) for man-
agement inventories. In general, the results are promising and for example Nilsson et al. (2017) 
have constructed nationwide forest attribute maps for Sweden using ALS and NFI plots. However, 
lack of precise plot positioning, inhomogeneous plot types and sizes and small sampling intensity 
have limited the usability of NFI plots in management inventories.

Data collected for other purposes than forest inventory may also be a viable alternative to 
establish training data. It has, for example, been proposed to use tree level cut-to-length harvester 
data collected in forest operations (Bollandsås et al. 2011). Harvester data are collected during 
harvesting from each stem to be cut. The data include a large number of diameter measurements 
along the stem and usually cover all merchantable timber in clear-cut stands, except retention trees.

In earlier studies, harvester data have been used as for example a stem data bank when plan-
ning future forest operations (Malinen et al. 2001), for mapping forest yield (Olivera and Visser 
2016) or to generate field data for logged stands (Rasinmäki and Melkas 2005). Harvesters are 
equipped with an autonomous global navigation satellite system (GNSS) receiver which registers 
the location of the harvester body. Such positional data offer only low accuracy for single-tree loca-
tions. According to Lindroos et al. (2015) the error is typically in the range of 10–20 m. Harvester 
data have nevertheless been related to ALS data to predict or validate estimates of forest attributes. 
Bollandsås et al. (2011) demonstrated such a methodology for relatively large estimation units 
(0.25 ha) and Peuhkurinen et al. (2008) and Siipilehto et al. (2017) validated ALS-based predic-
tions using a stem data bank at stand level. Some other studies have used manually positioned 
tree-level field data in combination with ALS and harvester data (Holmgren et al. 2012; Barth and 
Holmgren 2013).

Recently, Hauglin et al. (2017, 2018) showed that tree-level positioned harvester data with a 
mean positional error of < 1 m are obtainable using GNSS and real time kinematic (RTK) position-
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ing. Hauglin et al. (2018) applied four different statistical modelling methods to compare predictions 
of plot-level volume when the ALS-based models were calibrated either by accurately positioned 
harvester data or using manually measured field plot data. The results showed that comparable 
accuracies were obtained with the two methods.

Stem diameter distribution is one of the main attributes to characterize the forest resources 
in many countries. The distribution is needed for the calculation of stand timber assortments and 
it also reflects the silvicultural state and allows simulation of the future development of a forest 
stand using single-tree growth models. Estimation of stem diameter distribution has been a research 
topic using both cut-to-length harvester data (Malinen et al. 2001) and for ALS data (Gobakken and 
Næsset 2004; Shang et al. 2017). The relationship between the stem diameter distribution and the 
ALS metrics typically computed from ALS point clouds have been found to be strong (Maltamo 
et al. 2018) but the small sizes of inventory plots may have a negative influence the accuracy of 
stem diameter distributions estimated from ALS. The accuracy is also lower for species-specific 
estimates, especially for minor tree species (Packalén and Maltamo 2008). When considering 
species-specific estimates of stem diameter distributions, the use of non-parametric techniques such 
as nearest neighbor imputation have been attractive because of the ability to provide simultaneous 
prediction of all attributes of interest (Packalén and Maltamo 2008; Räty al. 2018).

Effects of plot size have been assessed in previous studies (e.g. Gobakken and Næsset 2008). 
In mature forests, effects of plot sizes of 200 and 400 m2 have been compared. When construct-
ing stand attribute (mean height, basal area and volume) regression models fitted to ALS-derived 
metrics, it was revealed that the model error in most cases was smaller for larger plots while the 
coefficient of correlation tended to be larger (Gobakken and Næsset 2008). Additionally, Næsset et 
al. (2011) applied design-based, model-assisted estimators with ALS data to estimate the biomass 
in a forest inventory and compared different plot sizes and found larger plots to result in smaller 
standard errors of estimates. These findings indicate that larger field plots may be favorable in 
forest inventories assisted by ALS.

Another issue related to field sample plots is the sampling intensity within each stand. While 
modelling usually has been done with smaller plots due to the large field measurement costs of 
larger plots, the validation of the models has been performed with larger plots or with stands for 
which reference estimates have been based on many plots sampled within each stand (Holmgren 
2004; Næsset 2007; Packalén and Maltamo 2008). Use of larger validation units has improved the 
validation accuracy but still the area of the plots/stands used for validation is rather small compared 
to operational stand sizes. For example in Finland, the average stand size is around two hectares 
and the minimum 0.5 hectares (Koivuniemi and Korhonen 2006).

The overall aim of the current study was to examine the accuracy of stand stem diameter 
distributions estimated by utilizing accurately positioned single-tree data from a harvester and ALS 
metrics as predictor variables by nearest neighbor imputation. We focused on the dominant tree 
species, Norway spruce, but due to the flexible properties of the applied estimation methods, all 
species and stand totals were considered as well. We also evaluated effects of different plot sizes 
ranging from 200 m2 to 1600 m2 and validated the estimates at stand level which consisted of all 
plots located within a stand. Validated stand attributes included stand total basal area, number of 
stems, and merchantable volumes by species and in total. In addition, mean diameter, merchantable 
volume of saw-log sized trees and diameter percentiles of Norway spruce were considered. All 
the analyzed attributes can be calculated from tree lists. The study data is the same as in Hauglin 
et al. (2018).



4

Silva Fennica vol. 53 no. 3 article id 10075 · Maltamo et al. · Estimating stand level stem diameter distribution…

2 Materials and methods

The study area was located in the Romerike region in Akershus County, Norway (60°25´N, 11°04´E, 
200–600 m above sea level, Fig. 1). The forests in Romerike are boreal and dominated by Norway 
spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.). Birch (Betula pubescens 
Ehrh.) is also common.

2.1 Harvester data

Harvester data from 47 stands (Fig. 1) were collected in the period January – October 2017 during 
operational logging with a John Deere 1270E harvester. The harvester was equipped with an inte-
grated positioning system, which enabled accurate positioning of the boom tip of the harvester. 
This system was used to record and store an accurate position for every individual harvested tree. 
Two GNSS antennas were mounted at the back of the body of the harvester and seven sensors 
were mounted on the boom and on the harvester body. It was based on a modified and extended 
version of the DigPilot positioning system developed by the Norwegian company Gundersen & 
Løken AS, and is described in more detail by Hauglin et al. (2017, 2018). Control measurements 
throughout the period of data collection showed a mean positional error of 0.75 m on the single-
tree measurements from the harvester (Hauglin et al. 2018).

The information recorded automatically for each tree during the felling operation also 
included diameter at breast height (DBH), diameter measurements for every 10-cm position along 
the stem and the length of each log. Using this information, the harvester calculated the volume 
of all logs and the sum of the log volume was used as an estimate of the merchantable volume 
of the tree. The harvester operator also recorded manually the tree species and the quality assort-
ment class for each log. All information was recorded and stored in the database in the onboard 
computer and exported using the StanForD 2010 XML format (Arlinger et al. 2012). The recorded 

Fig. 1. Location of the study area (left), the distribution of the harvested stands within the study area (middle) and 
layout of grid cells (harvester plots) within the clear-cut polygon (right). Each harvested stand (middle) or tree (right) 
is marked with a black dot.
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tree positions along with tree sizes and with the three-dimensional point cloud of ALS data for a 
single stand is illustrated in Fig. 2.

The areas covered with harvester data were tessellated into regular grid cells of sizes 200, 
400, 900 and 1600 m2 to test different plot sizes. The tessellation process is outlined in the following 
paragraph. The positioned harvested trees were first used to define polygons of the clear-cut areas. 
These areas were derived by creating a two-dimensional α-shape from the tree positions using the 
alphahull package in the R programming software (Pateiro-Lopez and Rodriguez-Casal 2015; 
R Core Team 2015). A value of 10 m was used for the α parameter. Grids with cell sizes of 200, 
400, 900 and 1600 m2 were separately overlaid the harvester data, and grid cells fully within the 
clear cut polygons were selected for further analysis (Fig. 1). All trees within each of the selected 
cells were allocated to that cell and used to calculate ground reference data. In the following, we 
will use the term “harvester plot” to mean one such individual cell. Correspondingly, a stand is 
defined to be a collection of several spatially contiguous harvester plots. The harvester plots may 
take the sizes of 200, 400, 900 and 1600 m2 and there are different number of stands associated 
with the different plot sizes (Table 1).

For each harvester plot size, total number of stems (NTotal) and basal area (GTotal ) were cal-
culated, as well as merchantable volumes by species (VSpruce, VPine, VDeciduous ) and totals (VTotal) 
(Table 1) . Since Norway spruce is the dominant tree species in the data, additional attributes were 
calculated for spruce. The stem diameter distribution of spruce was the only one considered. The 
additional attributes include mean diameter (DmeanSpruce), merchantable volume of the sawn timber 
part of the stem diameter distribution (VsawSpruce) and cumulative diameter percentiles of 5%, 
20%, 30%, 40%, 50%, 60%, 70%, 80% and 95% (D05, …, D95) of the total number of trees in 
each plot. These percentiles describe the different parts of the distribution. All considered attributes 
were based on the stem diameter distribution and can be calculated using tree diameters. Corre-
sponding calculations were also made at stand level which consisted of all harvester plots within 
the respective stands. These calculations were repeated for each plot size (Table 1). In validation 
only parts of the data were used and mean values of these data sets are shown in Supplementary 
files S1 and S2, available at https://doi.org/10.14214/sf.10075.

Fig. 2. Example of recorded tree positions along with tree sizes as measured by the harvester 
and with the three-dimensional point cloud of ALS data for a single stand. The blue and brown 
colors for the tree stems represent sawn wood and pulpwood, respectively.

https://doi.org/10.14214/sf.10075
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2.2 ALS data

ALS data were acquired during July 2013 using a fixed-wing aircraft carrying a Leica ALS70 
instrument. The pulse repetition frequency was 104.6 kHz and the average flying altitude was 
3000 m above ground. The resulting average point density on the ground was 0.7 points m–2. The 
Terrascan software (Soininen 2016) was used to classify the echoes into ground and above-ground 
echoes following the methodology described by Axelsson (1999). The above-ground height for all 
non-ground echoes was calculated as the vertical distance from a triangulated irregular network 
created from the ground echoes.

The ALS instrument was able to record multiple echoes for each pulse and two datasets 
were extracted, i.e., 1) a set of first return echoes and 2) a set of last return echoes. Echoes from 
pulses with only a single echo were included in both datasets. Based on echoes from these two 
ALS datasets numerical metrics were calculated for each harvester plot. The calculated metrics 
are described in Table 2.

2.3 Predicting plot level stem diameter distribution and related attributes using ALS 
data

The stem diameter distributions were predicted separately using harvester plots of sizes 200, 400, 
900 and 1600 m2. The modelling of the stem diameter distributions was carried out by applying a 
non-parametric approach. Tree lists were predicted using the nearest neighbor (k-nn) imputation 
and canonical correlation analysis to produce a weighting matrix to select the training harvester 
plots which were most similar to the target harvester plot in terms of the predictor variables. The 
k-nn method follows the description by Moeur and Stage (1995), except that the predictions were 

Table 1. Mean values (standard deviations in brackets) of the considered attributes at harvester plot and stand level 
using different harvester plot sizes.

Plot size  
(m2)

n VTotal, 
m3 ha–1

VSpruce, 
m3 ha–1

VPine, 
m3 ha–1

VDeciduous, 
m3 ha–1

GTotal, 
m2 ha–1

NTotal, 
ha–1

VSawSpruce, 
m3 ha–1

DmeanSpruce, 
cm

Harvester plot 

200 2306 299.0 
(138.2)

260.9 
(138.7)

21.2
(57.5)

17.0
(38.9)

27.5
(13.0)

781  
(349.1)

235.4 
(135.6)

21.9
(4.0)

400 949 275.1 
(115.1)

242.4 
(117.3)

18.1  
(46.9)

14.7
(30.1)

25.4
(11.0)

711
(294.4)

219.2 
(113.7)

21.9
(3.5)

900 285 290.8 
(90.4)

258.9 
(96.9)

17.5
(42.9)

14.5
(27.2)

27.1
(9.0)

742.7 
(230.3)

235.0  
(94.3)

21.9
(2.8)

1600 99 300.0 
(66.3)

272.8 
(77.2)

13.3  
(35.5)

13.9
(21.7)

28.5
(7.5)

753.3 
(185.9)

249.3  
(75.3)

22.1
(2.3)

Stand

200 47 298.3
(97.7)

259.3 
(103.1)

17.3  
(37.0)

21.8
(30.8)

27.6
(8.7)

808  
(222.0)

232.7 
(105.5)

21.3
(2.8)

400 38 245.3 
(80.8)

213.6
(84.1)

19.1
(39.3)

12.6
(16.1)

22.6  
(7.4)

660  
(211.5)

190.1  
(83.0)

21.2
(2.9)

900 24 266.5 
(64.9)

231.4 
(67.3)

24.1  
(39.4)

11.0  
(13.1) 

24.6  
(6.0)

733
(148.4)

203.4  
(72.8)

20.7
(2.6)

1600 15 281.2 
(53.8)

241.0
(66.1)

29.8
(48.7)

10.4
(14.4)

24.7
(6.4)

699
(141.5)

217.1  
(63.9)

21.1
(2.0)

VTotal is total merchantable volume and VSpruce, VPine and VDeciduous are merchantable volumes for species Norway spruce, Scots pine 
and deciduous species, respectively. GTotal and NTotal are basal area and number of stems of the whole living tree stock, respectively. 
VsawSpruce and DmeanSpruce  are merchantable volume of the sawn timber part of the stem diameter distribution and mean diameter of 
the Norway spruce, respectively.
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calculated as weighted averages of the k nearest observations employing weights (W) from the 
inverse of the canonical correlation analysis-based distance. This approach was chosen according 
to earlier experiences of multivariate prediction (Packalén and Maltamo 2008; Breidenbach et al. 
2010; Maltamo et al. 2018). In the current study, the dependent variables in the canonical correla-
tion analysis were the merchantable volumes by tree species, merchantable volume of saw-log 
sized trees of spruce and diameters of the 5th, 30th, 50th, 70th and 95th percentiles of the stem 
diameter distribution of spruce. The value of k was set to 5 based on iterations varying k from 1 to 
10 to minimize the error of the predicted diameter percentiles. The number of ALS metrics used 
in the iterative variable selection (Gill et al. 1981) was 15. This k-nn configuration was used for 
all harvester plot sizes. The k-nn was implemented using the yaImpute package in R (Crookston 
and Finley 2008).

As a result of the k-nn analysis the predicted stem diameter distributions consisted of trees 
observed in the chosen training harvester plots. When constructing a stem diameter distribution 
for the target harvester plot, the stem frequency represented by each tree of the training harvester 
plots is required. The harvester plot level weight Wuj of the training harvester plot u and the target 
harvester plot j was used for this purpose. The harvester plot level weights of k neighbours sum 
to one.

Let Tuj denote a set of trees t that are predicted from the training harvester plot u for the 
target harvester plot j, and let n denote the number of trees in u:

T t t tuj uj uj n uju� � �1 2 1, , ... , ( )

Then the eventual set of trees predicted from the k nearest training harvester plots for the target 
harvester plot is:

T W T W T W Tj j j j j kj kj� � �1 1 2 2 2, , ... , ( )

(Packalén and Maltamo 2008).
From the imputed tree lists all stand attribute predictions of interest were calculated. Those 

include merchantable volume, basal area and number of stems for the total tree stock calculated 
from tree list predictions of total stock. Additionally, species-specific merchantable volumes were 
calculated according to species-specific tree lists. For spruce, also mean diameter, merchantable 

Table 2. Description of the metrics derived from the height distribution of the ALS data for individual harvester plots. 
The metrics were calculated separately for the two respective sets of first return and last return echoes. All metrics 
where calculated using only the canopy echoes (height > 2 m), with the exception of the density metrics where the total 
number of echoes also included echoes with height < 2 m. 

Metric Description

Hmean Mean canopy echo height. 
Hsd Standard deviation of the canopy echo height distribution.
Hcv Coefficient of variance for the canopy echo height distribution.
Hkurt Kurtosis of the canopy echo height distribution.
Hskewness Skewness of the canopy echo height distribution.
H10,, ..., H90 The 10th, 20th, ..., 90th percentile of the of the canopy echo heights.
d0, d1, …, d10 Density metrics: The height range between the lowest canopy echo and the 95% percentile was 

divided into 10 fractions of equal length and metrics were computed as the number of echoes 
above each fraction divided by the total number of echoes (including echoes with height < 2 m). 
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volume of the sawn timber part of the stem diameter distribution and diameter percentiles at 20%, 
40%, 60% and 80% (those percentiles that were not used as dependent variables in the canonical 
correlation analysis) were predicted. All the above mentioned attributes were validated at stand level.

2.4 Model assessment and estimation accuracy

Accuracy assessment was carried out through a cross validation procedure in which all harvester 
plots within a stand were excluded from the training data when predicting for harvester plots of 
this particular stand (leave-one-stand-out cross validation). Hauglin et al. (2018) presented a vari-
ogram showing that the merchantable volumes were spatially correlated within a range of about 200 m 
in the current dataset. Therefore, we also excluded all harvester plots of neighboring stands for which 
the distance was smaller than 200 m to the particular stand subject to estimation in the cross validation 
routine. Thus, 0–4 neigboring stands were excluded in the cross validation. The estimates at stand 
level were obtained as the mean values over all harvester plots within a stand.

Stand-level comparison was carried out in two ways. First, only stands larger than 0.5 hec-
tares were taken into account. This was done in order to get an area corresponding to the typical 
size of a forest stand. There were also smaller stands that were either originally small (<0.5 ha) or 
contained only a couple or just a single harvester plot due to the irregular shape. It is worth noting 
that there are then 19, 18, 4 and 8 stands for the harvester plot sizes 200, 400, 900 and 1600 m2, 
respectively. Caution should therefore be exercised when comparing the reported results across 
stand sizes to 1600 m2. Second, all stands large enough to contain harvester plots of 1600 m2 were 
compared. This comparison was based on 15 stands and included also stands smaller than 0.5 ha. 
This was done to compare the effect of harvester plot size for the very same stands across all plot 
sizes. The mean characteristics of both validation cases are shown in Supplementary files 1 and 2. 
The accuracy of these estimates was first evaluated in terms of root mean squared error:

RMSE �
�� ��� X X

n

i
n ˆ

( )

2

1
3

where n is the number of stands, X is the observed value for stand i, and X̂ is the estimated value 
for stand i. Subsequently, the RMSE% was calculated by dividing the RMSE by the estimated 
mean of the attribute in question.

Secondly, a validation was performed for the stem diameter distribution (1-cm classes) 
of Norway spruce by applying the variant of error index by Reynolds et al. (1988) presented by 
Packalén and Maltamo (2008) which is determined as follows:

1

ˆ
Error Index 0.5 (4)

ˆ
i il

i
f f

N N 

where fi and f̂i   refer to the number of observed and estimated trees in the classes of the stem 
diameter distribution, l is the number of classes in the stem diameter distribution, and N and N̂  
represent the number of observations in the observed and estimated distributions, respectively. 
Also here stand-level observed stem diameter distributions and stand-level averaged estimated 
tree lists were compared.
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3 Results

The results of the validation of the k-nn predictions of the different stand attributes at stand level 
for stands larger than 0.5 hectares using different harvester plot sizes are shown in Table 3. The 
estimation errors of total merchantable volume were smaller than 10% for the 200 m2 and 400 m2 
harvester plot sizes, whereas for merchantable volume of spruce the errors were smaller than 20% 
with the exception of the harvester plot size of 900 m2. The errors were a little bit larger for the 
saw-log part of the distribution. The RMSE of the most accurate total merchantable volume pre-
diction was about 25 m3 ha–1. For minor tree species, the errors were considerably larger and they 
differed between harvester plot sizes. Scatterplots showing merchantable volume estimations for 
different plot sizes are displayed in Fig. 3. These scatterplots show linear relationships, except in 
the case of 1600 m2 where the estimations are considerably averaged and four of these estimates 
are almost on a horizontal line.

The estimation errors of the diameter percentiles were usually smallest for the 50th percentile 
(i.e. median diameter) and for the largest considered percentile (80th). Most of the percentile fig-
ures were fairly accurate showing 10–15% error. The error index values for the different harvester 
plot sizes were close to each other and smaller than 0.2. Finally, the RMSE values of the number 
of stems were smaller the larger the plot size and in the case of basal area they were close to cor-
responding values of merchantable volume.

Fig. 3. Merchantable volume estimation validation at stand level using different plot sizes.



10

Silva Fennica vol. 53 no. 3 article id 10075 · Maltamo et al. · Estimating stand level stem diameter distribution…

The results for the same 15 validation stands for all plot sizes are shown in Fig. 4. Also results 
from the previous validation using stands larger than 0.5 hectares (Table 3) are shown in Fig. 4 for 
comparison. Only total and spruce merchantable volumes are shown. The results from the analysis 
of the same stands across all plot sizes were mostly in line with the validation already presented 
(Table 3). Only in the case of a harvester plot size of 1600 m2 the reliability figures somewhat dif-
fered between the two considered validation approaches. For harvester plot sizes 200 and 400 m2 
the errors were smaller than 10% and 20% for total merchantable volume and spruce merchantable 
volume, respectively. For the harvester plot size of 1600 m2 the errors were considerably larger in 
the analysis based on the same stands across all plot sizes.

Fig. 4. Estimation errors of total merchantable volume and spruce merchantable volume when the same stands (n = 15) 
were used in the validation across all harvester plot sizes. Also results from the validation using stands larger than 0.5 
hectares are shown for comparison.

Table 3. Estimation errors indicated by RMSE% (RMSE values in brackets) of different total and species-specific stand 
attributes with different harvester plot sizes.

 Plot size 200 m2 Plot size 400 m2 Plot size 900 m2 Plot size 1600 m2

Number of stands 19 18 14 8
VTotal , m3 ha–1 8.4 (25.5) 9.5 (26.0) 11.6 (32.9) 11.9 (35.2)
NTotal, ha–1 19.3 (144.9) 17.8 (123.0) 16.3 (116.2) 14.3 (104.6)
GTotal, m2 ha–1 9.1 (2.9) 9.8 (2.8) 12.5 (3.7) 13.0 (4.0)
VSpruce, m3 ha–1 18.9 (47.7) 18.96 (46.0) 22.5 (57.6) 19.1 (52.2)
VPine, m3 ha–1 140.1 (33.5) 169.2 (33.1) 237.4 (41.1) 193.1 (21.8)
VDeciduous, m3 ha–1 85.4 (12.4) 96.7 (12.5) 140.8 (15.1) 136.4 (16.9)
VsawSpruce, m3 ha–1 20.3 (49.0) 22.0 (48.5) 26.2 (61.1) 22.3 (55.9)
DmeanSpruce, cm 10.6 (2.3) 11.0 (2.4) 12.0 (2.6) 9.7 (2.2)
D20, cm 14.0 (2.0) 15.2 (2.2) 18.3 (2.7) 16.8 (2.5)
D40, cm 12.7 (2.4) 13.2 (2.5) 15.7 (3.0) 12.8 (2.5)
D60, cm 11.3 (2.6) 11.5 (2.7) 12.7 (3.0) 10.4 (2.5)
D80, cm 10.3 (2.8) 10.3 (2.9) 10.0 (2.8) 8.8 (2.5)
Error Index (mean value) 0.15 0.17 0.18 0.18

D20, D40, D60 and D80 are cumulative diameter percentiles of 20%, 40%, 60% and 80% of the number of stems, respectively. For 
other abbreviations, see Table 1.
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Examples of the estimated stand-level spruce stem diameter distributions for a single valida-
tion stand are shown in Fig. 5 for different harvester plot sizes using 2 cm classes. The estimated 
values of the error indices for this stand were 0.14, 0.18, 0.16 and 0.21 for harvester plot sizes 
of 200, 400, 900 and 1600 m2, respectively. Correspondingly, for those harvester plot sizes, the 
considered areas of the given stand were 0.7, 0.6, 0.375 and 0.32 hectares. Thus, also the field 
values of the frequency distributions changed due to the rather small size of the stand. It can be 
seen from the figures though that the fit was good for all harvester plot sizes. In the case of the 
smallest harvester plot size (200 m2) the only notable deviations were for diameter classes 18 cm 
and –20 cm. Among the larger harvester plot sizes, the k-nn based estimates resulted in consid-
erable over-estimation of the frequency of trees in diameter classes 10–14 cm for harvester plot 
sizes 400 m2 and 900 m2 and in diameter classes 28–38 cm for the harvester plot size of 1600 m2.

Fig. 5. Example of stand-level stem diameter distributions based on harvester measurements and k-nn based estimation 
using different harvester plot sizes.



12

Silva Fennica vol. 53 no. 3 article id 10075 · Maltamo et al. · Estimating stand level stem diameter distribution…

Finally, examples of stem diameter distributions for the plot size 200 m2 of the smallest and 
largest obtained error index values are shown in Figs. 6 and 7. For the smallest error index value 
(0.05) the estimate of the stem diameter distribution is very close to the field value (Fig. 6) whereas 
in the case of the largest error index value (0.22) there is a considerable overestimation, especially 
in the smaller diameter classes (Fig. 7).

Fig. 6. Stem-level diameter distribution estimate of the smallest error index value (0.05) in the 
case of plot size 200 m2.

Fig. 7. Stem-level diameter distribution estimate of the largest error index value (0.22) in the 
case of plot size 200 m2.
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4 Discussion

This study examined the use of harvester data in the estimation of stand-level stem diameter 
distributions and related stand attributes. We also compared different harvester plot sizes in the 
estimation. Our material consisted of stands formed by aggregating multiple adjacent squared 
plots. In the stand-level validation, we used the area of all the located harvester plots within a 
stand. Thus, we were able to perform an evaluation of stand units of considerably larger sizes 
than in the existing literature. However, there were also stands in the material consisting of just 
a few harvester plots. All harvester plots were used in the plot level prediction but the validation 
part of the analysis was carried out by using a lower threshold for inclusion in the analysis of 0.5 
hectares. We also compared a sub-set of stands large enough to contain harvester plots of 1600 m2, 
which allowed comparison for the same stands across all harvester plot sizes. Since this type of 
field data is collected during a final harvest, only mature stands were included, whereas ALS-based 
forest inventories typically comprise forests with greater diversity in terms of development stages 
and stand ages. We also restricted the analysis of volume attributes to merchantable volume, i.e., 
treetops were excluded, whereas in traditional forest inventories the volume of the entire stem is 
usually estimated. These aspects must be taken into account when comparing the results of this 
study to earlier studies reported in the literature.

The stand-level error of merchantable volume was in the most accurate cases smaller than 
9% in the current study. This can be considered small and shows the strong relationship between 
ALS data and ground reference volume. Similar levels of errors have been reported in some pre-
vious studies though, like the work by Suvanto et al. (2005) where the validation units in mature 
forest stands were of size 1000–2000 m2. Furthermore, among a fairly large number of Nordic 
studies conducted in the period 1995–2010 (Næsset 2014; Maltamo and Packalen 2014), a few 
have reported stand level volume error of slightly more than 10%, for example Næsset (2007) 
who used 1000 m2 validation plots in mature stands and Holmgren (2004) who validated the esti-
mates on 0.64 hectare units within stands. The Nordic studies were mainly conducted under boreal 
forest conditions. Under different growing conditions with more homogeneous stand structures 
(eucalyptus plantations) Packalén et al. (2011) reported volume errors smaller than 9% using a 
plot size of approximately 500 m2. When comparing our results to the earlier studies it should 
be remembered that our study stands are from a small geographical area. However, we excluded 
neighboring stands closer than 200 m to avoid training data to be used for prediction purposes in 
the immediate proximity. The 200-m threshold was guided by previous observations of spatial 
correlation of volume. Some other earlier studies, such as that of Suvanto et al. (2005), were also 
conducted in rather small geographical area.

One way to analyze our results is to use mean value of field measured stands as a predictor 
for all stands. In this case the RMSE% values of merchantable volume were 18.4, 21.7, 18.2 and 
15.5 for plot sizes 200, 400, 900 and 1600 m2, respectively. Here the difference between k-nn pre-
diction and mean value-based prediction shows the improvement due to the use of the ALS data. 
For example, in the case of 200 and 400 m2 plot sizes the improvement is about ten percentage 
units but only negligible for the 1600 m2 plot size showing the averaging effect of larger plot size.

The accuracy levels of the current study are comparable to earlier results but not exception-
ally better, even though the area of the validation units was considerably larger. Usually prediction 
errors decrease when averaging the predictions over a larger area. However, under typical boreal 
forest conditions there seems to be an asymptotic tendency of the averaging effect on the accuracy 
around, say, 1000–2000 m2. That was also the justification for exploring and choosing validation 
plot sizes of around 1000–4000 m2 in the early Nordic studies (Næsset 2002, 2004a, b). It should 
be remembered though, that here we consider merchantable volume and there are additional error 
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sources in the presented approach to use harvester data, such as for example various types of 
mismatch between the ALS data and harvester data. As mentioned by Hauglin et al. (2018), the 
retention trees that are measured during an ALS campaign and consequently are reflected in the 
ALS metrics but which are not cut by harvester, will have an effect on the accuracy of volume 
predictions. Secondly, errors in tree positions will cause a mismatch between ALS and harvester 
data. A harvested tree may be assigned to different harvester plots in the harvester data than in 
the ALS data. This positional error can typically be up to around 2 m (Hauglin et al. 2017). In 
the current data, there was also a time lag of 4 yrs between the harvester data and the ALS data.

The possible mismatch between ALS data and harvester plots is also evident in the harvester 
plot-level errors of the k-nn predictions. In this study, we have only reported stand-level validation 
results. However, for the harvester plot sizes of 200, 400, 900 and 1600 m2, the obtained RMSE% 
values for merchantable volume were 33.3, 31.9, 22.9, and 18.9, respectively. In the case of har-
vester plot sizes of 200 and 400 m2 these values are rather large when compared to typical values of 
ALS-based forest inventory, but nevertheless comparable to the results for harvester data reported 
by Hauglin et al. (2018). It is worth noting that for the largest harvester plot sizes the improvement 
in RMSE% from harvester plot to stand level was rather small. If different harvester plot sizes are 
compared to each other it can be seen that at harvester plot level the accuracy was highest for the 
largest harvester plot size. However, also the variability of the considered attributes were smaller 
for larger harvester plot sizes (Table 1). At stand level the situation was opposite; the largest har-
vester plot size had usually the largest RMSE% values. In the case of the 1600 m2 plot size the 
small size of the training data may have affected the stand level cross validation for some stands. 
For example, Maltamo et al. (2009a) showed that the accuracy of k-nn based predictions of stem 
diameter distribution decreased when the number of observations in the training dataset was less 
than 100. There were some exceptions though, such as for estimates of number of stems and mean 
diameter where the accuracy of the largest harvester plot size at stand level was comparable to 
the other plot sizes. It must be remembered that when tessellating the stands into differently sized 
harvester plots the covered area will differ and those stands used in the assessment will also partly 
differ between plot sizes. We wanted to avoid the latter effect and, therefore, also conducted an 
alternative analysis comparing only those stands that were present across all plot sizes. The effect 
of harvester plot size was however more or less the same in both analyses. For smaller harvester 
plot sizes, i.e., 200, 400 and 900 m2, the stand-level differences between accuracies were usually 
smaller.

The applied nearest neighbor approach imputed tree lists of all species simultaneously 
and stand totals were estimated as a sum of them. We were primarily interested in stem diameter 
distribution of Norway spruce for mature stands since this species is the dominant one and also 
the economically most important in the study area. Even though our suite of predictor variables 
did not include for example spectral information or leaf-off or multispectral ALS data which have 
been found useful to separate species (Packalén and Maltamo 2007; Villikka et al. 2012; Budei et 
al. 2018), the accuracy for spruce seemed to be very good at stand level. Also here we conducted 
an analysis with mean value of field measured stands as a predictor for all stands. In this case the 
RMSE% values of merchantable spruce volume were 18.8, 22.7, 20.6 and 20.5 for plot sizes 200, 
400, 900 and 1600 m2, respectively. These results show that the effect of ALS data-based species 
specific prediction is negligible. Thus, the good accuracy level is due to both the averaging effect 
for larger areas and especially the great dominance of spruce in the study area.

When considering different attributes related to stem diameter distribution it can be seen that, 
for example, the error levels of the diameter percentile predictions were rather low. Correspond-
ingly, the average error index values were less than 0.2, a level which is much lower than obtained 
in validations in earlier studies. For example, Packalén and Maltamo (2008) obtained error index 
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values between 0.2 and 0.3 while Maltamo et al. (2009a) obtained values >0.3. In addition, the 
visual inspection of the estimated distributions showed a high level of similarity (Figs. 5–7). The 
averaging effect from plot to stand can be seen also here. When using for example the harvester 
plot size of 200 m2 the error index at harvester plot level was 0.66 and at stand level 0.15. This 
further indicates a close relationship between ALS-based stem diameter distribution estimates and 
field measurements at stand level. The stand-level attributes estimated from the stem diameter dis-
tributions for Norway spruce also showed smaller errors for harvester plot sizes of 200 and 400 m2 
than for larger harvester plot sizes. Another benefit of smaller harvester plot sizes is the possibility 
to locate the harvester plots in smaller stands and thereby obtain a larger number of training data 
observations as well as having more stands represented in the sample.

In our case we wanted to use all the information available for different harvester plot sizes 
and, therefore, compared partly different stands and stand areas. Another possibility would have 
been to examine the effect of harvester plot sizes using exactly the same areas within a stand and 
even the same number of training harvester plots for k-nn analysis. This could be a subject for 
future investigations.

The approach of utilizing tree-level positioned harvester data in construction of harvester 
plots showed good performance in estimating attributes that may be computed from a stem diam-
eter distribution. Peuhkurinen et al. (2008) used harvester data for imputing saw-log recoveries. 
The k-nn analysis was performed at stand level and, thus, the training data were restricted to a 
rather small sample size; 35 stands in total. In contrast, the tree-level positioning that we adopted 
in the current study, offered as many as 2306 harvester plots in 47 stands as training data when a 
plot size of 200 m2 was chosen. The choice of a harvester plot size for a given application is also 
flexible when tree-level positioning is applied. Tree-level positioned harvester data can be utilized 
in many different contexts. Maybe one of the most obvious ones is in pre-harvest inventory for a 
given mature stand where an existing stem data bank of the same dominating tree species is used 
as training data. Results of this study show that the accuracy of the estimated stem diameter dis-
tribution may be appropriate for planning of the bucking.

5 Conclusions

We studied the estimation of stand-level stem diameter distribution and related attributes using 
tree-level positioned harvester plots and ALS data. The results show a close relationship between 
ALS and harvester data, indicating the suitability of harvester data to estimate stand attributes of 
mature spruce-dominated stands. The approach can be utilized especially in a pre-harvest inven-
tory context. We also compared different harvester plot sizes and conclude that smaller plot size, 
say, 200–400 m2 is optimal for stand level estimation when applying plot level non-parametric 
prediction. Thus, the current practice of adopting a plot radius between 8 and 12 m seems to be 
appropriate. The utilization of tree-level positioned harvester data is a flexible approach to use 
those plot sizes that are optimal for any particular application.
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