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Highlights
• The permanent sample plots of Chinese plantation trees have not been designed for producing 

data for growth modeling.
• We used various methods to deal with the inadequacies of sample plot data.
• Optimization was used to fit diameter increment and survival models using data with varying 

measurement intervals and tree identification errors.
• Quantile regression was used to model self-thinning limit.

Abstract
Korean pine (Pinus koraiensis Siebold & Zucc.) is economically the most important tree species 
in northeast China. Korean pine plantations are established and managed for the production of 
timber and seeds. Despite the importance of the species, few models have been developed for 
the comparison of alternative management schedules. Model development is affected by the fact 
that permanent sample plots and thinning experiments have not been designed and managed for 
modeling purposes. The permanent sample plots include few non-thinned plots, and weak trees 
are removed in thinning treatments, leading to low mortality rate. Moreover, the measurement 
interval is irregular. This study used optimization-based modeling approach in tree-level diameter 
increment and survival modeling to deal with the above problems. Models for self-thinning limit 
were developed to alleviate the problem of underestimated mortality arising from the features 
of the data. In addition, improved site index and individual-tree height models were developed. 
The model of Lundqvist and Korf was used as the site index model and the model proposed by 
Schumacher as the height model. Quantile regression was used to model the maximum stand 
basal area and maximum number of trees as a function of mean tree diameter and site index. Tree 
diameter, stand basal area, basal area in larger trees and site index were used as the predictors of 
diameter increment and tree survival. The models developed in this study constitute a model set 
that is suitable for simulation and optimization studies. The models produced simulation results 
that correspond to measured stand development.
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1 Introduction

Korean pine (Pinus koraiensis Siebold & Zucc.) is an important tree species in China, Korea, Japan 
and Russia (Zheng and Fu 2008). It is the most important species in the northeastern provinces of 
China (Heilongjiang, Jilin, and Liaoning) where it occurs both in natural forests and plantations. 
The area of Korean pine plantation in the northeastern provinces is 272 400 ha, of which 172 400 ha 
are in Heilongjiang province (State Forestry Administration 2014).

Korean pine plantations are established for both wood and cone production. Korean pine 
seeds are edible, having high protein content and positive health effects (Meng et al. 2008). Oil 
extracted from the seeds is composed of approximately 11.5% of pinolenic acid. It is unsaturated 
fatty acid, which is used for instance to suppress hunger and help with weight loss (Shen 2003).

Management of Korean pine plantations requires information on the growth rate and survival 
of trees, and on the cone production of trees during different stages of stand development. Growth 
models for tree stands may be stand-level models, diameter distribution models, or individual 
tree models (Avery and Burkhart 1994). Individual-tree models are either distance-dependent or 
distance-independent. In northeast China, the recent trend has been to develop distance-independent 
individual-tree models (Jin et al. 2016, 2017; Peng et al. 2018).

Some growth models for Chinese Korean pine plantations have already been developed 
(Jin et al. 2017) but earlier models suffer from a few weaknesses. For example, the diameter 
increment model of Jin et al. (2017) does not include site variables as predictors, which limits its 
use to a narrow range of site class. The site index model of Jin et al. (2017) is based on the guide 
curve method (Clutter 1963), which may result in biased predictions if the site distribution of the 
modeling data is different in young and older stands. Moreover, the model is based on average tree 
height instead of dominant height.

There is a reasonable amount of repeated measurements available on Korean pine plots in the 
Heilongjiang province. However, the permanent sample plots of Korean pine and other plantation 
species have not been established for modeling purposes. There are very few unthinned ‘control 
plots’ and few plots in which the planting density deviates from normal densities. Weak trees are 
often removed in thinning treatments, i.e., shortly before they would die. Therefore, mortality is 
very low in the empirical datasets, which may lead to models that underestimate mortality, espe-
cially when predictions are made for high stand densities, old stands and large trees. The authors 
and users of previous models have recognized these problems and restricted their calculations to 
normal stand densities and rotation ages (Jin et al. 2017; Peng et al. 2018). The previous models 
cannot be used to analyze the optimal management schedules for carbon sequestration, for example.

The problem of unreliable survivor functions can be alleviated by using self-thinning models 
to prevent the stand density from becoming unrealistically high in simulations (White 1981). There 
is much overall knowledge on the relationship between mean tree size and the maximum possible 
number of trees in even-aged stands (e.g., Yoda et al. 1963; White 1981). Self-thinning limit can 
be modeled based on temporary sample plot measurements, which are often available and cover 
larger ranges of variation in stand state, compared to permanent sample plot data.

Another typical feature of the permanent plot data for Korean pine and other plantation spe-
cies of northeast China is the unequal measurement interval. This complicates modeling because it 
cannot be assumed that the trees grow or survive with a constant rate for the whole time between 
two consecutive measurements. The study of Juma et al. (2014) suggests that using the measure-
ment interval as model predictor is a too simplistic way to deal with varying measurement inter-
val. Therefore, periodical measurements cannot be easily converted to unbiased estimates of for 
instance five-year increment and five-year survival rate (Cao 2000; Nord-Larsen 2006; Pukkala 
et al. 2011; de-Miguel et al. 2014).
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Optimization-based modeling (Juma et al. 2014) and other methods (Cao 2000; Nord-Larsen 
2006) have been proposed as solutions to the problem of unequal measurement interval. The idea 
of the optimization-based method is to optimize the parameters of the growth and survival models 
when they are used in a software that simulates the stand development in 1-year steps between 
two measurement occasions. This optimization minimizes a loss function, which measures the 
deviation of the simulated diameter distribution from the measured distribution at the end of the 
measurement interval. The optimization-based approach also eliminates problems arising from 
the misidentification of trees, i.e., when a certain ID number has been given to different trees is 
successive measurements (de-Miguel et al. 2014).

The aim of this study was to develop an improved set of models for site index, tree height, 
diameter increment and survival rate of Korean pine plantations so that the above mentioned 
problems are addressed. These models enhance the possibilities to optimize the management and 
develop management instructions for Korean pine plantations. The site index and tree height models 
described in this article are nonlinear fixed- or mixed-effect models. Optimization approach was 
used to simultaneously fit the diameter increment and survival models. This method (Pukkala et 
al. 2011) was employed due to the properties of the modeling data, where the interval between 
successive measurements varied from 1 to 7 years, and the data included many instance where 
a certain ID number was used for different trees in successive measurements. The optimization-
based approach eliminated the adverse effect of these data properties on the outcome of modeling.

2 Methods

2.1 Data

Permanent sample plots measured in the Maoer Mountains and Mengjiagang forest farms in 
Heilongjiang province were used for modeling. The dataset of Maoer Mountains included one 
silvicultural experiment while two experiments were available in Mengjiagang.

The dataset of Maoer Mountains consisted of seven plots measured two times, the measure-
ment interval being 4 years except one plot where the interval was 7 years. In the first Mengjiagang 
dataset (henceforth referred to as Mengjiagang 1) there were 19 plots with 3 measurements per 
plot, their interval being 2–4 years. The other dataset (Mengjiagang 2) consisted of 21 plots with 5 
measurements with an interval ranging from 1 to 6 years. The total number of tree level measure-
ment intervals (two consecutive measurements from the same tree) was 19 576 (Table 1). The size 
of the sample plot ranged from 0.04 to 0.16 ha and the measurement year ranged from 1998 to 2018.

Table 1. Descriptive statistics of modeling data. The number of diameter increment measurements was 19 567 (two 
consecutive diameter measurements from the same tree), and the number of tree height measurements was 16 407. The 
number of plot level measurement intervals (two consecutive measurements of the same plot) was 129 and the number 
of plots was 47.

Variables N Mean Sdev Minimum Maximum

Diameter (cm) 19 576 17.7 5.4 1.1 37.3
Height (m) 16 407 12.0 2.1 2.6 23.4
Dominant height (m) 129 11.7 2.3 7.2 19.4
Age (year) 129 37.7 9.0 17.0 50.0
Stand basal area (m2 ha–1) 129 22.9 8.3 5.4 48.5
Number of trees per ha 129 1175 910 231 3920
Site index (m) 129 12.8 2.3 10.3 17.2

Sdev = standard deviation.
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All trees taller than 1.3 m were measured for diameter at breast height and survival, and 
most trees also for height. To calculate the dominant height of the plot, a plot- and measurement-
specific diameter/height curve was fitted, using the function of Näslund (1937). Dominant height 
was calculated as the mean height of 100 thickest trees in breast height diameter per hectare.

2.2 Dominant height and site index modeling

Altogether 129 pairs of stand age (age since planting) and dominant height were available for 
dominant height and site index modeling. Dominant height at the latter measurement was predicted 
from dominant height at the previous measurement and stand age in the two measurements. The 
following nine algebraic difference models (ADA models) were fitted to the data: McDill-Amateis 
(1992), two ADA variants of the model of Schumacher (1939), Lundqvist-Korf (Korf 1939), three 
ADA versions of Chapman-Richards model (Richards 1959), Sloboda (1971) and Hossfeld (Peschel 
1938). Alternative models (Supplementary file S1, available at https://doi.org/10.14214/sf.10217) 
were evaluated in terms of fitting statistics (square root of the mean of squared errors (RMSE) and 
Bayesian information criterion (BIC)). The site index curves were plotted for different site indices 
to evaluate the credibility of the models both within and outside the modeling data. Both fixed- and 
mixed-effects models with random plot factors were fitted. The formulas for RMSE and BIC were:

RMSE �
�� ��� y y

n

i ii
n ˆ

( )
2

1 1

BIC � � �2 2ln( ) ln( ) ( )L k n

where y is measured value, ŷ  is model prediction, n is number of observations, k is number of 
parameters and L is likelihood function.

2.3 Modeling height-diameter relationship

The number of height observations available for individual tree height model was 16 407. Many 
height measurements were available from each plot. In the case of height modeling, mixed-effects 
models led to better fitting statistics than fixed-effect models. The best combination of random 
plot factors was obtained by testing all possible combinations and selecting the one that led to the 
smallest BIC statistic.

Based on the study of Mehtätalo et al. (2015), the following models were tested: Näslund 
(1937), Curtis (1967) and Schumacher (1939). These two-parameter models were mostly the best 
ones among the 28 datasets and 3717 sample plots used in Mehtätalo et al. (2015). The best three-
parameter models were either marginally better than or equally good as the best two-parameter 
models. In our modeling, the two parameters of each candidate model were assumed to depend on 
the dominant height of the stand. The following Schumacher model, including random plot effects 
for three parameters had the best fitting statistics:
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where hij and dij are the height and diameter at breast height of tree i of plot j, respectively, Hj is 
the dominant height of plot j, α0, α1, β0 and β1 are fixed parameters, and a0j, a1j and β1j are random 
plot-specific parameters having trivariate normal distribution. The errors εij are independent, with 
mean equal to 0 and constant variance.

https://doi.org/10.14214/sf.10217
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2.4 Diameter increment and survival modeling

The modeling data were characterized by variable measurement intervals, ranging from 1 to 7 years. 
Another feature was the existence of tree identification errors, especially in the Maoer Mountains 
and Mengjiagang 1 datasets. These errors were due to the fact that a certain ID number was given 
to different trees in two successive measurements. This led to either negative or unrealistically high 
positive growths for some trees, when growth was calculated as the difference in the diameter of 
the same ID number in two successive measurements (Fig. 1).

Since linear growth rate or constant survival rate for the whole interval cannot be assumed 
(Cao 2000; Nord-Larsen 2006), the optimization approach suggested by Pukkala et al. (2011) and 
later used by de-Miguel et al. (2014) and Juma et al. (2014) was used to fit the diameter increment 
and survival models. The aim of the method is to find such parameters for the diameter increment 
and survival models that minimize the difference between the measured and simulated diameter 
distributions of the plots at the end of the measurement interval when the simulation begins from 
the diameters of trees at the beginning of the interval. Diameter increment and survival were 
simulated in 1-year time steps.

As the first step in modeling, predictors and model forms were selected based on previous 
literature, preliminary regression analyses and preliminary optimizations. In preliminary regres-
sion analysis, periodical diameter increments were converted into one-year increment by assuming 
a linear increase in breast height diameter between two successive measurement occasions. The 
following model forms were selected:

Diameter increment model:

i d
d

Gd � � � � � �
�
�

�
�
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�
�
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Survival model:
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Fig. 1. Examples of unrealistically low or high diameter increments as a 
consequence of mistakes in tree numbering (dots within green ellipses).
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where id is diameter increment (cm/year), s is annual survival rate, d diameter at breast height (cm), 
G is stand basal area (m2 ha–1), BAL is basal area in larger trees (m2 ha–1), SI is site index (m) and 
α0–α5, β0–β4 are regression coefficients.

The two models were fitted simultaneously by using the simulation-optimization-based 
approach (Pukkala et al. 2011). In this approach, several values of the parameters of diameter 
increment and survival models are evaluated via simulation. The trees of the first measurement 
occasion form an initial stand, the development of which is simulated for the length of the meas-
urement interval. Then, the cumulative diameter distributions of stand basal area and number of 
trees per hectare are compared to those obtained from trees measured in the second occasion. When 
evaluating a certain set of model parameters, all measurement intervals of all plots were simulated 
and the minimized objective function was calculated over all plots and intervals.

The minimized loss function was as follows:

argmin
�

�� � � � � ��
�

�
� � � � � ��G d G d F d F djk

m
ijk jk

s
ijk jk

m
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s,
2

410 iijki
I

i
I

j
J

k
K jjk , ( )�� ��

�
�
�� ����� ����
2

1111 6

where ϴ is the set of coefficients (α0–α5, β0–β4), K is the number of plots, Jk is the number of 
measurement intervals of plot k, Ij is the number of 3-cm diameter classes in measurement interval 
j of plot k, Gjkm(dijk) and Gjks(dijk) are, respectively, measured and simulated cumulative basal area 
(m2 ha–1) at diameter dijk (upper limit of diameter class i) at the end of measurement interval j of 
plot k, and Fjkm(dijk) and Fjks(dijk) are, respectively, measured and simulated cumulative number 
of trees per hectare at diameter dijk at the end of measurement interval j of plot k (see e.g. Pukkala 
et al. 2011 for details).

The optimization produces simultaneously the coefficients for a 1-year diameter increment 
model and a 1-year survival model. Three different optimization methods were tested, namely 
the method of Nelder and Mead (1965), evolution strategy optimization (Storn and Price 1997; 
Pukkala 2009) and particle swarm optimization (Kennedy and Eberhart 1995). Although earlier 
research suggests that particle swarm optimization should perform better than the Nelder and Mead 
method or evolution strategy optimization, we found out that in our modeling problem Nelder 
and Mead turned out to be the best. It was therefore used to develop the diameter increment and 
survival models.

Optimization (model fitting) was repeated 100 times. Then, 10 additional optimizations 
were conducted in such a way that the best solution (best set of model parameters) found so far 
was included in the initial population of solutions used in a new optimization (Pukkala et al. 2011).

Since ordinary fitting statistics could not be calculated for the diameter increment and sur-
vival models, bootstrapping was used to evaluate the significance of the parameters. Bootstrapping 
consisted of taking random samples with replacement from the modeling data and fitting the model 
for every dataset. In our analysis, bootstrapping consisted of 30 or 60 samples and optimization 
processes. Two different numbers of repeated samplings and model fittings were used to see the 
sensitivity of Bootstrapping results to the number of model fittings. The size of each sample was 
equal to the number of plot-level measurement intervals (number of pairs of plot measurement). 
Each of the 30 or 60 optimization processes was conducted exactly in the same way as in model 
fitting. The results of bootstrap optimizations gave information on the means and standard devia-
tions of parameter estimates.
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2.5 Modeling self-thinning limit

Due to the low number of dense and unthinned plots and the fact that weak trees are often harvested 
in thinning treatments, there was very little mortality in the data. Therefore, self-thinning limit 
was also modeled to alleviate the problem of underestimated mortality when the models are used 
in simulations. Additional data for self-thinning limit were obtained from Naozhi (37 plots) and 
Sanpeng (33 plots) forest farms in JiLin province and 40 permanent plots located in Heilongjiang 
province. The dataset for modeling self-thinning limit consisted of 237 observations, the range of 
variation being 6.2–37.3 cm for mean diameter, 0.6–56.3 m2 ha–1 for basal area, and 80–3920 for 
the number of trees per ha.

A self-thinning limit was fitted for both number of trees per hectare and stand basal area. To 
avoid subjective selection of plots that might be on the self-thinning boundary, quantile regression 
was used to fit models for the 95% quantile of the relationship between mean tree size and stand 
density. Based on earlier research (Bi 2001, 2004), the following model forms were used:

ln ln ln ( )N D� � � � �� � � �1 2 3 7SI

ln ln ln ( )G D� � � � �� � � �1 2 3 8SI

where lnNτ and lnGτ is the τth quantile of logarithmic number of trees and stand basal area, respec-
tively, D is quadratic mean diameter of trees (cm) and SI is site index (m). In quantile regression, 
the τth quantile of the conditional probability distribution of a response variable Y with a given 
vector of predictor variables, can be estimated for any value of τ (0 > τ > 1) (Koenker 2017). The 
estimator of proposed by Koenker and Basset (1978) minimizes the following loss function:

argmin
b Y YY Y

Y Y b Y Y b� �� � � � �� � � � ��
�
�

�
�
���

�� ˆ ˆ ( )
ˆˆ
1 9

which gives weight τ for positive residuals and weight 1-τ for negative residuals. The R package 
quantreg was used to fit the quantile regression models (Koeneker 2018).

3 Results

3.1 Site index model

The fixed-effects version of the Lundqvist and Korf equation (Korf 1939) was selected as the site 
index model because its behavior was evaluated to be the most logical outside the age and domi-
nant height ranges of modeling data, and its RMSE was the second best after McDill and Amateis 
(1992) (Suppl. file S1). The model is as follows:

ˆ .
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where T1 and T2 is stand age in the first and second measurement, respectively, and H1 and H2 
are dominant heights in the two measurement occasions. The RMSE was 1.104 m. According to 
the model (Fig. 2), dominant height differences between site indices increase for 35 first years of 
stand development, after which they no longer increase. The shape of the dominant height curve 
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was somewhat different from that of the previous model (Jin et al. 2017). Mixed-effects modeling 
did not result in more plausible models or better fitting statistics than the fixed-effects version of 
the selected model, most probably because the number of observations from the same plot was 
small (1–4).

3.2 Height model

The height model of Schumacher (1939) turned out to have better fit than the models of Näslund 
(1937) and Curtis (1967). The model included three random plot effects (Eq. 1, Table 2). The RMSE 
of the full model was 1.136 m and that of the fixed part was 1.307 m. When the model was fitted 
as a fixed-effect model, its RMSE was 1.241 m. As can be seen from Fig. 3, the diameter-height 
curve climbs up when the stand develops. Compared to the model of Jin et al. (2017), our new 
model predicts more within-stand variation in tree height. The residuals were normally distribution 
with a constant variance at different diameters (Fig. 4).

Fig. 2. Site index curves for site indices 10, 14 and 18 m and examples 
of measured sequences of age and dominant height (short lines). The 
dotted thin line is the guide curve of Jin et al. (2017).

Table 2. Parameter estimates of the mixed-effects height model (Eq. 3).

Fixed parameter Estimate t value

α0 9.645 11.556
α1 0.475 7.103
β0 9.110 10.995
β1 –0.199 –2.678
Random parameter Sdev Correlations

α0j 3.460 α0j α1j

α1j 0.264 –0.885
β1j 0.173 0.008 0.382

Sdev = standard deviation.



9

Silva Fennica vol. 53 no. 4 article id 10217 · Jin et al. · Developing growth models for tree plantations using …

Fig. 3. Dependence of tree height on breast height diameter at different 
dominant heights. The thin dotted line is the model of Jin et al. (2017) 
for dominant height 10 m.

Fig. 4. Residuals of the fixed-effects (left) and mixed-effects (right) height model.



10

Silva Fennica vol. 53 no. 4 article id 10217 · Jin et al. · Developing growth models for tree plantations using …

3.3 Diameter increment and survival models

The diameter increment model obtained from the optimization was as follows:

ˆ exp . . ln . . ln . lni d
d

Gd � � � � � �
�
�

�
�
� � � � �0 563 0 528 0 020

10
0 923 0 230

2
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�

�
�
�

1 0 060 11. ( )

When a Korean pine plantation develops, the model predicts that diameter increment is fast-
est when the trees are 7–10 cm thick in breast height diameter (Fig. 5 A). However, in a certain 
stand, large trees grow faster than the more suppressed small trees (Fig. 5 B). The “shape” of the 
diameter increment model is very similar to that of the earlier model (Jin et al. 2016) in the sense 
that breast height diameter, stand basal area and BAL affect diameter increment in the same way 
in both models. However, our new model seems to predict better growth rates for certain diameter, 
stand basal area and BAL, although exact comparison is difficult because the model of Jin et al. 
(2017) does not have site index as a predictor.

The survival model was as follows:

ˆ
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The model predicts very high annual survival rates (about 0.999) for the typical growing 
densities and tree diameters of Korean pine plantations. This is logical since the modeling data 
included few dead trees due to the practice of removing weak trees in thinning treatments. How-
ever, the signs of all predictors are logical. According to the model, small trees of a dense stand 
have the highest probability of mortality. Opposite to the model of Jin et al. (2017), the new model 
predicts increasing mortality also towards large tree diameters.

3.4 Self-thinning model

The self-thinning models were as follows:

ln . . ln . ln.N D0 95 10 628 1 417 0 303 � � � SI (13)

ln . . ln . ln.G D0 95 0 975 0 527 0 429 � � � SI (14)

Fig. 5. Diameter increment model. On the left, stand basal area increases from 6 to 30 m2 ha–1 when diameter increases 
from 3 to 5 cm (BAL = 0.3×G). On the right, basal area is constant (25 m2 ha–1), and BAL decreases from 25 to 
6 m2 ha–1 when diameter increases from 3 to 50 cm.
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The models predict that a better site can sustain higher stand densities (Fig. 6). It may be 
concluded that the 95% quantile is a good estimator of the self-thinning limit since there are very 
few plots beyond the self-thinning limit predicted for good sites (SI 20 m). The shapes of the self-
thinning lines are logical and the slope coefficient of the model for maximum number of trees per 
ha (–1.4169) is close to the theoretically derived value of –1.5 (Yoda et al. 1963).

3.5 Validity of the models

Bootstrapping, which consisted of 30 or 60 model fittings with different samples from the modeling 
data, indicated that different fittings produced fairly similar parameter estimates (Table 3). The 
mean of the 30 or 60 parameter estimates divided by their standard deviation was higher than 2 for 
all parameters except the intercept of the survival model. The conclusions about the significance 
of the parameters were the same with both numbers of repeated optimizations, suggesting that 60 
model fittings are enough to draw conclusions about the significance of the parameters.

Fig. 6. Data points used to model the 95% quantile of number of trees per hectare (left) and stand basal area (right). The 
thin continuous lines are model predictions for two site indices and the thicker lines are simulations made for two plots 
using the models developed in this study. The plot shown with blue line (SI 11.3) is the only non-thinned permanent 
plot in the modeling data of this study.

Table 3. Bootstrapping results for diameter increment and survival modeling. The results are based on 60 optimization-
based model fittings but the ratio between mean value of the coefficient and its standard deviation is also shown for 30 
model fittings (30 MF). The dataset in each fitting was a random sample of the data. Random sampling with replace-
ment was used.

Variable Diameter increment model Survival model
Min Max Mean Mean/Sdev Min Max Mean Mean/Sdev

60 MF 30 MF 60 MF 30 MF

Constant 0.498 1.099 0.627 5.452 4.915 –0.645 1.689 0.525 1.036 0.859
ln(d) 0.446 0.531 0.498 29.092 26.872 2.010 3.608 2.935 9.685 8.874
(d/10)2 –0.020 –0.011 –0.015 –6.101 –6.210 –0.498 –0.137 –0.365 –4.525 –4.435
ln(G) –0.938 –0.876 –0.909 –77.286 –75.768 - - - - -
ln(BAL+1) –0.249 –0.228 –0.235 –43.483 –38.963 –0.920 –0.200 –0.594 –3.268 –3.285
SI 0.040 0.062 0.057 12.907 11.857 0.011 0.118 0.062 2.565 2.765

d is diameter at the breast (cm); G is stand basal area (m2 ha–1); BAL is basal area in large trees (m2 ha–1); SI is site index (m); Sdev 
is standard deviation. 
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Fig. 7. Measured and simulated cumulative stand basal area (left) and number of trees per hectare (right) in a 48-year-
old (top) and 24-year-old (bottom) plantation when the measurement interval is 6 or 7 years.

Fig. 8. Measured and simulated mean annual basal area increment of 
the study plots (the difference of the basal area in the beginning and 
at the end of the measurement interval divided by the length of the 
interval).

When the growth and survival of trees were simulated from the start to the end of the meas-
urement interval, the ending cumulative diameter distribution was very close to the measured one. 
Logically, deviations were greatest for the longest measurement intervals (Fig. 7).

As expected, simulated basal area growth varied less than the measured (Fig. 8). The aver-
age mean annual basal area increment was 10% lower, as compared to the measured growth. The 
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few plots with very high measured basal area increments did not draw the simulated growth up, 
due to the fact that the optimization-based approach minimized a different objective function than 
regression analysis.

All models developed in this study were used in a simulation where the starting point was 
the first measurement of the only non-thinned sample plot. When the calculated self-thinning 
limit (either for number of trees or basal area) was exceed, the predictions of the individual-tree 
survival model were adjusted so that the stand density was exactly at the self-thinning limit. The 
adjustment was done as follows: If the number of trees or stand basal area was, after simulating 
diameter increment (Eq. 11) and survival (Eq. 12) for one year, higher than the self-thinning limit, 
two correction factors were calculated as Nmax/N and Gmax/G (Nmax and Gmax represent self-thinning 
limits and N and G are simulated values) and the smaller one of the two correction factors was 
selected. Then, the survival rates of trees were calculated again with Eq. 12, and each of them was 
multiplied with the correction factor. This led to the outcome where most trees died from those 
diameter classes where the tree-level survival probability was lowest. Since the individual-tree 
survival model was used also below the self-thinning limit, some mortality was simulated before 
the self-thinning limit was reached.

The simulations (Fig. 9) do not indicate any marked deviations from the measured stand 
development, which shows some irregularities due for instance to measurement errors. The simula-
tions for two plots shown in Fig. 6 also suggest logical behavior of the models.

Fig. 9. Measured (red line) and simulated (black dotted line) development of four stand attributes in a non-thinned plot.
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4 Discussion

The article used optimization for diameter increment and survival modeling to deal with varying 
measurement intervals and tree identification errors. Model biases and simulation errors caused 
by the lack of trees growing under intense competition was dealt with by fitting a model for self-
thinning limit, using quantile regression analysis. In simulations, the self-thinning model was used 
simultaneously with the individual-tree survival model. Bootstrapping, simulations and subjective 
assessments were used to evaluate the adequacy of the models, in addition to statistical criteria. For 
example, the dominant height model of McDill and Amateis (1992) had the best fitting statistics, but 
it sometimes predicted unrealistically high dominant height increments outside modeling data (for 
young stands on very good sites and for old stands on very poor sites). Therefore, when the modeling 
data is scanty and do not cover the whole ranges of variation in site, stand and tree characteristics, 
it is necessary to assess the models subjectively with the help of simulations and visualizations.

The new growth models developed for Korean pine differ from the previous models (Jin et 
al. 2017) in a few respects. First, the ADA approach was used in site index modeling instead of 
the guide curve modeling (Clutter 1963) of Jin et al. (2017). ADA is less prone to bias caused by 
unequal site fertility distributions in different age classes of the modeling data. Second, site index 
was used as a predictor in diameter increment and survival models, which is a significant improve-
ment since the application range of the new models is wider than that of the previous models. Third, 
self-thinning limit was modeled as a function of mean diameter and site index, which prevents 
the model set from predicting unrealistically high growing stock volumes for non-thinned stands.

With a certain diameter, stand basal area and competition (BAL), the new models appear to 
give higher diameter increments for sites corresponding to the same site productivity class as the 
guide curve model of Jin et al. (2017). A partial reason for this discrepancy might be the different 
origins of the modeling data in these two studies. The current dataset was four times larger than 
that of Jin et al. (2017). Although there were some obvious errors in tree numbering, tree diam-
eters were measured carefully, using a 1.3-m stick to measure breast height. In one of the three 
experiments, the measurement height was marked on the tree stem with paint. Therefore, we are 
confident that the growth level predicted by our new models corresponds to the growth rate of the 
current Korean pine plantations.

The survival model indicated very high survival rate, which is explained by the fact that weak 
trees are removed in thinning treatments, and very few trees are left to die. From the modeling point 
of view, it would be better to leave more plots unthinned, to improve the validity of the model in 
management that goes beyond normal management practices. In the new model, mortality started 
to increase again at very large tree diameters (see Eq. 12). This is also an improvement compared 
to Jin et al. (2017) who had to devise an additional senescence model to have mortality among 
very old and large trees. Despite the fact that mortality rate increased toward large diameters, the 
models still underestimate mortality if stand development is simulated for long time periods without 
thinning treatments. The self-thinning models effectively prevent this kind of outcome. However, 
it is likely that mortality starts to increase already before the self-thinning limit, due to decreased 
vigor of trees under intense competition. This phenomenon could be modeled with the function of 
Vanclay and Sands (2009). However, our data did not allow us to fit this model. Decreased vigor 
also decreases diameter increment, which may lead to biased diameter increment predictions at high 
stand densities if weak trees are systematically removed from plots that are used as modeling data.

We developed models for both maximum basal area and maximum number of trees per 
hectare. Both models can be used simultaneously in simulation so that self-thinning is simulated 
if either of the two self-thinning limits is exceeded. The individual-tree survival model can be used 
to allocate the mortality to different diameter classes.
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The fitting statistics calculated for the individual-tree height model (Eq. 3) may be too opti-
mistic since trees that were used as observations in height modeling were also used to calculate the 
dominant height of the stand, which was a predictor in the height model. However, another height 
model, where site and stand age were used as predictors instead of dominant height, resulted in 
lower RMSE than obtained for Eq. 3 (see Suppl. file S2), which suggests that the bias in fitting 
statistics is not large.

Seeds are equally important products of Korean pine plantations as timber. Although pre-
liminary models for seed production have been suggested (e.g., Jin et al. 2017; Nguyen et al. 
2017), there is room for improvement since the previous models are either unsuitable for simula-
tion (Nguyen et al. 2017) or are based on small datasets and partly on expert knowledge (Jin et al. 
2017). Better models for seed production would enhance possibilities to optimize the management 
of Korean pine plantations in multifunctional forestry. In addition to timber and seed yields, carbon 
sequestration is also an important function of Chinese forests (Zhang et al. 2018). Calculation of 
the carbon stock requires models for the biomass of different parts of the trees, including roots. 
Such models have already been developed (Dong et al. 2016). In addition, there are measurements 
of the carbon content of different part of Korean pine trees (Yang et al. 2017).

The new models developed in this study could be combined with existing biomass and taper 
models (Dong et al. 2016; Jin et al. 2017), timber assortment specifications and economic data to 
optimize the management of Korean pine plantations in timber productions. The models for stem 
taper and biomass may be regarded more reliable than the previous model for dominant height, 
diameter increment, survival and tree height. Therefore, reliable simulations and optimizations 
can be conducted using the models developed in this study together with the taper and biomass 
models developed earlier.
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