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Highlights
• Models were developed to describe ingrowth in national forest inventory data.
• The data were more dispersed than Poisson data and included many zeros.
• Fixed-effects models had larger zero-inflation probability and overdispersion parameter than 

mixed-effect models.
• Mixed-effects models had larger likelihood than fixed-effects models but provided biased 

predictions.
• Prediction of right-censored ingrowth may be useful owing to large overdispersion.

Abstract
Ingrowth is an important element of stand dynamics in several silvicultural systems, especially in 
continuous cover forestry. Earlier predictive models for ingrowth in Finnish forests are few and 
not based on up-to-date statistical methods. Ingrowth is here defined as the number of trees over 
1.3 m entering a plot. This study developed new ingrowth models for Scots pine (Pinus sylves-
tris L.), Norway spruce (Picea abies (L.) H. Karst.) and birch (Betula pendula Roth and B. pube-
scens Ehrh.) using data from the permanent sample plots of the Finnish national forest inventory. 
The data were over-dispersed compared to a Poisson process and had many zeros. Therefore, a 
zero-inflated negative binomial model was used. The total and species-specific stand basal areas, 
temperature sum and fertility class were used as predictors in the ingrowth models. Both fixed-
effects and mixed-effects models were fitted. The mixed-effects model versions included random 
plot effects. The mixed-effects models had larger likelihoods but provided biased predictions. Also 
censored prediction was considered where only a certain maximum number of ingrowth trees were 
accepted for a plot. The models predicted most pine ingrowth in pine-dominated stands on sub-
xeric and xeric sites where stand basal area was low. The predicted amount of spruce ingrowth was 
maximized when the basal area of spruce was 13 m2 ha–1. Increasing temperature sum increased 
spruce ingrowth. Predicted birch ingrowth decreased with increasing stand basal area and towards 
low fertility classes. An admixture of pine increased the predicted amount of spruce ingrowth.
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1 Introduction

The basic models required for simulating the stand dynamics on an individual tree basis are the 
diameter increment model, survival model, and ingrowth model (Vanclay 1994). Ingrowth is here 
defined as the number of trees over 1.3 m in height entering a plot. Most of the model sets devel-
oped in Finland include diameter increment and survival models (Hynynen et al. 2002; Miina and 
Pukkala 2000). Lack of ingrowth models is related to the prevailing silvicultural practice, which 
is even-aged rotation forest management. However, continuous cover management is gradually 
gaining popularity in Finnish forestry. Gradual regeneration is of critical importance for the long-
term sustainability of the method. Natural advance regeneration is significant also in even-aged 
management. In cases where regeneration is plentiful, a new tree generation can be obtained by 
releasing the naturally born understory.

Lack of ingrowth models restricts the possibilities to compare alternative management 
schedules, irrespective of the silvicultural system. For example, Pukkala et al. (2014) found that 
the optimal way to manage even-aged pine plantations on mesic sites would be to gradually cut 
the pines and make space for natural advance regeneration of spruce. After removing the last 
pines, management is continued by conducting repeated high thinning (thinning from above) in 
the spruce stand. Spruce often appears as undergrowth also in birch stands, which can be managed 
in the same was as described above.

The example above shows that the lack of models may lead to non-optimal treatment pre-
scriptions in management planning that is based on simulation and optimization. This is because 
a part of potential treatment schedules must be ruled out due to a lack of reliable models for simu-
lating ingrowth. As a reaction to the inadequacy of the forestry models and simulators, Pukkala 
et al. (2009, 2013) developed models for simulating stand dynamics in management that differs 
from even-aged plantation forestry. Ingrowth was modeled by fitting a model for the proportion 
of plots that had ingrowth during five years. Then, the number of ingrowth trees was modeled as 
a function of stand basal area, using only those plots that had ingrowth.

This paper continues the study of Pukkala et al. (2013) by re-estimating the ingrowth model 
using more up-to-date statistical methods. In their paper, the ingrowth was modeled by first estimat-
ing the probability of ingrowth using a logistic model. Their modeling did not take into account that 
different data sets had different plot sizes, and with a larger plot size, the probability of ingrowth is 
larger. The amount of ingrowth in plots having ingrowth was modeled by regressing the logarithm 
of the number of ingrowth trees per hectare on the square root of the basal area using weighted 
least squares regression. The plot area was used as the weight.

In this study, the ingrowth is modeled in the framework of generalized linear mixed models 
(Stroup 2013; Zuur et al. 2012; Mehtätalo and Lappi 2020). More specifically, the ingrowth is 
modeled using a zero-inflated negative binomial mixed model. In a zero-inflated model for tree 
ingrowth, zeros in the data are assumed to be generated by two different processes. Part of the zeros 
are generated by the same spatial process which generates the non-zero counts. This corresponds 
to the assumption that there are ingrowth trees in the stand with a given average density, but a plot 
does not contain any trees owing to within-stand spatial variation. Another part of the zero counts 
are assumed to be “extra zeros” or structural zeros, which are assumed to be zeros because there 
are no ingrowth trees in the whole stand.

The Poisson model is the basic reference model for describing the spatial distribution of 
trees. In the Poisson model, the variance of counts in a plot is equal to the expected value. In a 
clumped spatial distribution, the variance is greater than the expected value. The negative binomial 
distribution is a basic reference model in which variance is greater than the expected value.
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In a zero-inflated generalized linear model for tree counts, the logarithm of the expected 
value of counts, which are not extra zeros, is predicted with a set of predictors, and the logit of 
the extra-zero probability is predicted with another set of predictors. In a mixed model, the linear 
predictor for counts includes also a random plot effect. A similar model has been used in forestry 
by Nikula et al. (2019), among others.

The goal of this study is to obtain a better understanding of the stochastic processes in the 
ingrowth to help forest management, especially in continuous cover forestry. Because there is 
much random variation, it is not sufficient to get unbiased models for the expected value of the 
ingrowth. If there are too few ingrowth trees in one place it cannot be compensated for by having 
extra trees in another place.

2 Data

The three datasets of Pukkala et al. (2013) were available for modeling. It became soon evident 
that the datasets were so different that they could not be described with the same parameters in the 
current modeling framework. Therefore, only the national forest inventory (NFI) dataset was used. 
The data were collected from the permanent sample plots of the Finnish national forest inventory. 
There are more observations in the NFI dataset, and the dataset has better geographical coverage, 
compared to the other two datasets. Measurements in 1985, 1990 and 1995 were available. Only 
plots having a basal-area-weighted mean diameter larger than 10 cm in the first measurement were 
used for ingrowth modeling. Pukkala et al. (2013) restricted the data similarly. Newly regenerated 
young seedling and coppice stands were therefore excluded from the data. In the remaining data, 
there were 408 plots measured in all three years providing two ingrowth observations, and 439 
plots measured only twice (1985 and 1990, or 1990 and 1995) providing one ingrowth observation. 
Thus there were 847 plots and 1255 observations used in the modeling.

The data were used in two different ways. First, the analysis was based on all 5-year ingrowth 
periods. Then, it was tested whether the ingrowth is proportional to the exposure time using the 
data set that contained one observation for each plot. In that dataset, 408 plots contained 10 years. 
The remaining 439 plots had 5 years’ exposure.

The temperature sum of the plot locations ranged from 820 to 1360 degree days. The dis-
tribution of fertility classes was: herb-rich and mesotrophic 19%, mesic 47%, sub-xeric 27%, and 
xeric or poorer 7%. In the Finnish classification system, these forest types are called OMT (Oxalis-
Myrtillus type), MT (Myrtillus type), VT (Vaccinium type) and CT (Calluna type), respectively. 
The average stand basal area was 20.5 m2 ha–1, ranging from 1.5 to 52.2 m2 ha–1. The average 
proportions of different species of total stand basal area were Scots pine (Pinus sylvestris L.) 45%, 
Norway spruce (Picea abies (L.) H. Karst.) 41%, birch (silver birch, Betula pendula Roth and 
downy birch, B. pubescens Ehrh.) 11% and other broadleaf species 4%. The size of the sub-plot 
within which ingrowth was obtained was 100 m2. The number of ingrowth trees was not directly 
measured, but it was obtained similarly as in Pukkala et al. (2013) as ending number of trees – initial 
number of trees + predicted mortality. Then the ingrowth was rounded to the nearest nonnegative 
integer. The average number of ingrowth trees that appeared to the plot during 5 years was 0.90 
pines (range 0–68, standard deviation (sd) 4.1), 2.61 spruces (range 0–47, sd 5.3) and 5.45 birches 
(range 0–120, sd 12.8). The proportion of plots without any ingrowth was 0.85 for pine, 0.53 for 
spruce and 0.51 for birch.
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3 Methods

In the ingrowth model, it is assumed that the number of ingrowth trees is distributed according to 
zero-inflated negative binomial distribution. Negative binomial distribution gave better results than 
Poisson distribution because the counts had a larger variance than implied by Poisson distribution. 
The zero-inflated negative binomial distribution is a discrete distribution having density function f
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where k is the number of counts, g is the negative binomial density function, p is the probability of 
extra zeros, µ is the mean of distribution g and α is the dispersion parameter so that the variance of 
g is μ + αμ2. The extra-zero probability p is needed if there are more zeros in the data than implied 
by the distribution g. It cannot be determined for an individual zero whether it an extra-zero or 
an “ordinary” zero. The probability that a zero is an extra zero is p f 0; .� ��� �  When α = 0, the 
distribution is the Poisson distribution, which has the variance µ. Often the dispersion parameter 
is defined as � ��1 .  We prefer α as it increases when dispersion increases.
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The mean and variance of f are (Zuur et al. 2012):

E Y p� � � �( ) ( )1 3�
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Note that the mean does not depend on α. The variance can be derived using the formula  
var var var ;y E y z E y z� � � � � � � � now the conditioning variable is the random indicator variable 
telling whether the observation is an extra zero.

For the ingrowth of period j in stand i, µ is related to a linear predictor via log-link:

log ( )�ij ij ib� � � � �x a 5

where xij is the vector of independent variables, a is a fixed parameter vector and b Ni  0 2,�� �  
is a random effect. According to (5), µij is a lognormally distributed random variable. However, 
in Eqs. 3 and 4, µ needs to be interpreted as the conditional mean given the random effect. The 
model for counts that are not extra zeros is called the count model. The first variable in xij is 1, 
i.e., a1 is the intercept. Also, such models will be considered where the random effect is missing. 
Such models proved to be more useful.

Eq. 5 means that

�ij ij ib� �� ��exp ( )x a 6

When using Eq. 6 to predict a typical count, the random effect bi is taken to be zero, and 
the predictor of y is
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y pij ij ij� �� � � ��1 7exp ( )x a

The same predictor is also used in the fixed-effects model where the random effect b is miss-
ing. The expected value of yij is another possible predictor. Recall that for a lognormally distributed 
variable X E X n nn, exp ,� � � � �� �� �1

2

2 2 where μ' and σ are the mean and standard deviation of log(X), 
respectively. Thus E X� � � � �� �exp ,� �1

2
2 and var exp ' exp .X� � � �� � � � �� �2 12 2� � �  As µ is a lognormally 

distributed variable, we get an unbiased predictor for yij using its expected value:

The variance of yij is obtained using again the formula var var var ,y E y z E y z� � � � � � � �  
where

E y b p pij i ij ij ij ijvar exp exp� � � �� � � �� � � �� � � �� ��1 2 21
2

2 2x a x a� � � �� ( )9

is obtained from Eq. 4, and

var exp exp ( )E y b pij i ij ij� � � �� � � �� � � � �� �1 2 1 10
2 2 2x a � �

is obtained from Eq. 3. Var yij� � is used to compute Pearson residuals.
Two predictor variables are of special interest: the time interval over which the ingrowth 

trees are appearing and the plot size. In the literature, these variables are called exposure variables 
(Baetschmann and Winkelmann 2012; Mehtätalo and Lappi 2020). A natural assumption is that 
the expected number of ingrowth counts is proportional to both exposure time and the plot size. 
We assume that the expected number of counts is always proportional to the plot size in a given 
stand. Concerning the exposure time, the proportionality assumption is more questionable. The 
proportionality assumption was studied by merging consecutive observations in the same plot.

The assumption that the expected counts are proportional to both exposure time and plot 
size can be made using the exposure time Tij, and the plot size Aij as offset variables, i.e., we can 
estimate the model

log log log ( )�ij ij ij ij iT A b� � � � � � � � � � �x a 11

Note that Eq. 11 can be used also in prediction for other exposure times and plot sizes. In 
the merged data set with two exposure times, we add log(Tij) among the predictor variables and 
thus we estimated model

log log log ( )� �ij ij ij ij iT A b� � � � � � � � � � �x a 12

using only log(A) as the offset. Note that according to Eq. 12, μ is proportional to Tγ. The estimate 
of γ is compared to one.

The probability that yij is an extra zero is modeled via logit-link:
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p
pij
ij

ij
ij� � �

�

�

�
��

�

�
�� � �

1
13z c

Again, it is assumed that the first variable in zij is 1, i.e., c1 is the intercept. It is assumed 
that the model for extra zeros does not depend on the exposure time or plot size. This assumption 

         2ˆ 1 1 exp 0.5 (8)ij ij ij ij ij ijy E y p E p      x a



6

Silva Fennica vol. 54 no. 4 article id 10370 · Lappi et al. · Analyzing ingrowth using zero-inflated negative …

guarantees that the expected number of counts is proportional to the exposure time and plot size, 
if they are proportional in the count model.

After estimating the parameter vector c of model (13), we can predict the extra-zero prob-
ability pij using the logistic function, i.e.

Thereafter, the expected number of ingrowth trees yij is estimated using (7) or (8), and the 
variance is estimated using (4) or (9) + (10). Using these estimates we computed Pearson residu-
als defined as the difference between observed count and predicted count divided by the standard 
deviation.

We are interested in ingrowth in the connection of continuous cover forestry where suffi-
cient gradual regeneration is necessary for the sustainability of the method. However, an excessive 
number of ingrowth trees is not a benefit as only a limited number of new trees have sufficient 
growing space and can be grown to merchantable tree sizes. Thus, we analyze also the right-
censored ingrowth variable y(K) = min(y,K). K was taken as 5 (500 trees per hectare in five years).

For the ingrowth of period j in plot i, let us denote the probability that yij = k by fijk. For the 
fixed effects model, fijk can be computed using (1). When there is a random plot effect in the model, 
the probabilities fijk can be computed as follows:

f f b h b dbijk ijk i i i� � � � �
��

�

� ( )15

where h is the normal density with mean 0 and variance σ2. We did the integration by simulating 
10 000 observations from the normal distribution (R function “integrate” could be also used). When 
the above equations are applied using the estimated parameters, the equalities are only approximate, 
e.g., Eq. 8 is only approximately unbiased.

The probability that yij(K) = K is denoted by fij(K) and computed as 1
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where Ok is the number of observations having yij = k, O(K) is the number of observations having 
yij ≥ K, Ek is the expected number of observations having yij = k, i.e. E fk ijkj
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The Pearson residuals of yij(K) were computed using Eqs. 17–19.
Models without random effects were estimated using the zeroinfl function in R package pscl 

(Jackman 2017). Models with random effects were estimated using the glmmTMB function in R 
package glmmTMB (Brooks et al. 2017). In these packages the dispersion parameter is θ = 1/α.

As potential predictor variables, we used species group-specific variables or variables 
computed using all trees. We used the basal area, logarithm of basal area augmented by a small 
constant (0.01) and square root of basal area. In addition, site type dummies and temperature sum 
were used as potential predictors. Some nonsignificant predictors were kept in the models if they 
make the models more logical. Models with these predictors can be compared with the models of 
Pukkala et al. (2013). Also, basal-area-weighted mean diameter and its square, the standard devia-
tion of the diameter distribution and the skewness of the diameter distribution would be significant 
predictors, but models with them would be more problematic in practical predictions and could 
not be compared with the earlier models.

4 Results

We developed the count models both without (Tables 1–3) and with (Tables 5–7) random plot 
effects. The right-censoring limit K was given value 5 when analyzing 5 years’ growth periods, 
corresponding to 500 trees per hectare in 5 years. Table 4 presents prediction statistics when fixed-
effects models are used. Table 8 presents the statistics for the mixed-effects models.

In the dataset where observations within the same plot were merged, we estimated models 
where log(T) was used either as a predictor or as an offset. The likelihood ratio test indicated that 
the coefficient of log(T) did not differ from one neither in models with random effects nor in models 
without random effects. Therefore, we do not present any further results for the merged data set.

Table 1. The fixed-effects ingrowth model for Scots pine estimated 
with the zeroinfl function in R package pscl. The function estimates 
the dispersion parameter in form log(1/α). G is the stand basal area, 
VT and CT are the indicator variables for sub-xeric and xeric or poorer 
forest types. Log(T) and log(A) are used as offsets, where A = 100 m2 
is the area of plot and T = 5 yrs is the length of the growth period.

Predictor Estimate Std. Error Pr(>|z|)
Count model (negative binomial with log link)

log(T) 1
log(A) 1
Intercept –6.82 0.41 <2e–16
Gpine –0.131 0.112 0.023

0.783 0.308 0.011
VT 0.633 0.250 0.011
CT 1.64 0.34 1.2e–06
ln(1/α) –1.16 0.209

Zero-inflation model coefficients (binomial with logit link)

Intercept –13.6 3.5 0.0001
ln(Gpine + 0.01) –0.307 0.083 0.00021
√G 6.1 1.5 5.9E–05
G –0.58 0.16 0.0003
VT –1.21 0.36 0.00075

α = 3.19; Log-likelihood –905.2 on 11 degrees of freedom.

Gpine
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Table 2. The fixed-effects ingrowth model for Norway spruce. OMT is an 
indicator variable for herb-rich or better site. TS is the temperature sum. The 
other symbols are as in Table 1.

Predictor Estimate Std. Error Pr(>|z|)
Count model (negative binomial with log link)

log(T) 1
log(A) 1
Intercept –6.61 0.54 <2e–16
log(Gspruce + 0.01) 0.148 0.029 2.9e–07
max(Gspruce – 13.0) –0.0207 0.0109 0.056
TS 0.00126 0.00048 0.0082
log(1/α) –0.83 0.11

Zero-inflation model coefficients (binomial with logit link)

Intercept –1.75 0.46 8.6e–05
log(Gspruce + 0.01) –0.359 0.073 9.0e–07
OMT 1.12 0.43 0.0085
CT 1.10 0.48 0.021

α = 2.28; Log-likelihood –22987 on 9 degrees of freedom.

Table 3. The fixed-effects ingrowth model for birch (combined ingrowth 
of silver and downy birch). The symbols are as in Table 1.

Predictor Estimate Std. Error Pr(>|z|)
Count model (negative binomial with log link)

log(T) 1
log(A) 1
Intercept –3.15 0.18 <2e–16
Gpine 0.0923 0.0090 <2e–16
Gbirch –0.109 0.045 0.016
√Gbirch 0.349 0.150 0.020
G –0.113 0.0091 <2e–16
VT –0.50 0.16 0.0016
CT –0.87 0.29 0.0032
log(1/α) –1.013 0.092

Zero-inflation model (binomial with logit link)

Intercept –6.40 1.57 0.000044
log(Gbirch + 0.01) –0.565 0.17 0.00078
G 0.142 0.033 0.000014
VT 0.822 0.51 0.11
CT 2.41 0.75 0.0014

α = 2.57; Log-likelihood –2700 on 13 degrees of freedom.

According to Table 4, the models fitted without random effects had very small biases 
(–0.0016 for pine, 0.010 for spruce and 0.12 for birch). However, the coefficients of determina-
tion were rather modest: 0.086 for pine, 0.052 for spruce and 0.154 for birch. The distributions of 
the residuals were very skew: the proportions of positive residuals were 0.11, 0.27 and 0.25 for 
pine, spruce and birch, respectively. The means of Pearson residuals were close to zero and the 
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standard deviations were close to one. The overdispersion parameter α was large for all species 
(between 2.28 and 3.19) indicating large overdistribution. The right-censored variable yij(K) was 
predicted without bias. The coefficient of determination was 0.17 for pine, 0.11 for spruce and 
0.18 for birch. The prediction variance was well estimated using Eq. 19 as can be seen from the 
fact that the Pearson residuals had standard deviations close to one.

The probability that yij is an extra zero was negatively correlated with the expected value of 
yij given that it is not an extra zero. The correlation between the linear predictor (5) (where bi was 
taken to be zero) of the count model and the linear predictor of the zero-inflation model was –0.68, 
–0.82 and –0.29 for pine, spruce and birch, respectively. The average probability of extra zeros was 
0.68, 0.22 and 0.21, for pine, spruce and birch, respectively. The average expected counts were 
0.90 (pine), 2.60 (spruce) and 5.33 (birch), thus also showing the negative association between 
the number of extra zeros and the expected number of ingrowth trees.

Table 4. Statistics for the fixed-effects ingrowth models. Row “P(Residual > 0)” gives the pro-
portion of positive residuals.

Variable Minimum Maximum Mean sd
Scots pine

Ingrowth 0 68 0.90 4.07
Censored ingrowth 0 5 0.457 1.26
Probability of extra zeroes (p) 0.0009 0.97 0.68 0.28
Prediction 0.018 8.10 0.890 1.38
Residual –8.10 64.34 –0.0016 3.89
P(Residual > 0) 0.11
Pearson residual –0.55 28.79 –0.0020 1.13
Censored prediction 0.017 2.39 0.47 0.52
Censored residual –2.37 4.90 –0.001 1.15
Censored Pearson residual –1.05 9.91 –0.007 0.93

Norway spruce

Ingrowth 0 47 2.61 5.3
Censored ingrowth 0 5 1.47 1.95
Probability of extra zeroes (p) 0.04 0.74 0.22 0.20
Prediction 0.27 5.0 2.60 1.29
Residual –4.84 43.6 0.010 5.16
P(Residual > 0) 0.27
Pearson residual –0.61 12.97 0.0010 1.08
Censored prediction 0.24 2.27 1.49 0.59
Censored residual –2.25 4.71 –0.022 1.84
Censored Pearson residual –1.04 4.97 –0.014 0.98

Birch (silver birch and downy birch)

Ingrowth 0 120 5.45 12.8
Censored ingrowth 0 5 1.77 2.14
Probability of extra zeroes (p) 0.0015 0.940 0.17 0.21
Prediction 0.035 23.4 5.33 4.29
Residual –19.4 102.7 0.12 11.7
P(Residual > 0) 0.25
Pearson residual –0.60 11.4 –0.0023 1.02
Censored prediction 0.035 3.31 1.75 0.80
Censored residual –3.19 4.48 0.023 1.95
Censored Pearson residual –1.47 6.03 0.0098 1.00
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The model for pine predicts that pine ingrowth is the most abundant with stand basal area of 
5–7 m2 ha–1 (Fig. 1). Ingrowth is the most plentiful on xeric sites. Admixtures of spruce and birch 
decrease the ingrowth of pine. In the model for spruce, the temperature sum has a strong effect 
on the prediction, ingrowth decreasing toward northern latitudes where the temperature sum is 
lower. The model predicts that maximum ingrowth is obtained for stand basal area 13 m2 ha–1. The 
decrease of ingrowth for high basal areas is implied by the predictor max(Gspruce–13.0), which is 

Fig. 1. Five-year predictions calculated with the fixed-effects model 
shown in Tables 1–3. log(10000) and log(5) were used as offsets to ob-
tain per-hectare values for five years. In the diagram for pine, “Mix” 
refers to a stand where 50% of the basal area is pine and 50% is other 
species. In the diagram for birch, “Mix” is a stand where 50% of the 
basal area is birch and 50% is pine. 
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Table 5. The mixed-effects ingrowth model for Scots pine. VT is 
the sub-xeric type, and CT is the xeric type.

Predictor Estimate Std. Error Pr(>|z|)
Conditional model

log(T) 1
log(A) 1
Intercept –6.47 0.56 <2e–16
ln(Gpine + 0.01) 0.323 0.074 1.4E–05
√G –1.04 0.13 6.4E–15
VT 0.73 0.23 0.0018
CT 1.23 0.37 0.00082

Zero-inflation model

Intercept –5.40 0.88 8.6e–10

α = 0.135; σ = 3.06; Log-likelihood = –820.6 on 7 Df.

Table 6. The mixed-effects ingrowth model for Norway spruce. TS 
is the temperature sum and CT is the xeric type.

Predictor Estimate Std. Error Pr(>|z|)
Count model

log(T) 1
log(A) 1
Intercept  –7.58 0.69 <2e–16
ln(Gspruce + 0.01) 0.287 0.032 <2e–16
max(Gspruce – 13.0) –0.0532 0.0126 2.4e–05
LS 0.000716 0.00060 0.235

Zero-inflation model

Intercept –3.74 0.27 <2e–16
ln(Gspruce + 0.01) –0.32 0.12 0.0096
CT 1.31 1.02 0.20

α = 0.0071; σ = 1.79; Log-likelihood = –2156.2.

Table 7. The mixed-effects ingrowth model for birch.

Predictor Estimate Std. Error Pr(>|z|)
Conditional model

log(T) 1
log(A) 1
Intercept –4.27 0.20 <2e–16
G –0.127 0.010 <2e–16
log(Gbirch + 0.01) 0.221 0.030 1.6e–13
Gpine 0.0815 0.0107 2.7e–14 
CT –0.21 0.19 0.26

Zero-inflation model

Intercept –5.03 0.86 4.2e–09 
G 0.0929 0.033 0.004

α = 0.101; σ = 2.056; Log-likelihood = –2615.2.
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kept in the model even if its p-value is slightly greater than 0.05 to obtain a more logical model. 
The amount of ingrowth does not depend on the presence of other tree species in the stand. Birch 
ingrowth decreases with increasing stand balsa area and towards lower fertility classes. The pres-
ence of pine increases birch ingrowth.

We then estimated models having random plot effects in the count models (Tables 5–7). 
When there were random effects in the count model, the best zero-inflation model contained fewer 
significant predictors (pine only intercept) and the average extra-zero probabilities were smaller. 
Without random effects, the average extra-zero probabilities were 0.68 (pine), 0.22 (spruce) and 

Table 8. Statistics for the mixed-effects ingrowth models. Notations (11) and (12) refer to 
Eqs. 11 and 12, respectively.

Variable min max mean sd
Scots pine

Probability of extra zeroes (p) 0.0045 0.0045 0.0045 0
Prediction 0.0001 0.767 0.039 0.072
Prediction 0.010 82.91 4.21 7.84
Residual (11) –0.6668 67.87 0.8567 4.05
P(Residual (11) > 0) 0.16
Residual (12) –72.12 54.48 –3.318 7.60
P(Residual(12) > 0) 0.055
Pearson residual (11) –8.01E–05 0.260 0.002 0.012
Pearson residual (12) –0.0087 0.252 –0.007 0.012
Censored prediction 0.0075 1.86 0.390 0.335
Censored residual –1.80 4.83 0.068 1.17
Censored Pearson residual –0.84 6.80 0.019 0.94

Norway spruce

Probability of extra zeroes (p) 0.0068 0.277 0.042 0.060
Prediction 0.090 1.37 0.695 0.382
Prediction 0.45 6.83 3.47 1.90
Residual (11) –1.30 46.27 1.91 5.25
P(Residual(11) > 0) 0.43
Residual (12) –6.47 43.37 –0.86 5.20
P(Residual(12) > 0) 0.24
Pearson residual (11) –0.040 6.560 0.12 0.39
Pearson residual (12) –0.20 6.41 –0.038 0.39
Censored prediction 0.33 2.07 1.34 0.54
Censored residual –2.02 4.64 0.13 1.85
Censored Pearson residual –0.99 4.81 0.070 1.07

Birch (silver birch and downy birch)

Probability of extra zeroes (p) 0.0074 0.45 0.055 0.050
Prediction (11) 0.0070 5.50 1.18 1.09
Prediction (12) 0.058 45.5 9.79 9.00
Residual (11) –5.23 117.2 4.27 12.4
P(Residual(11) > 0) 0.43
Residual (12) –43.3 96.7 –4.35 12.9
P(Residual(12) > 0) 0.18
Pearson residual (11) –0.014 2.30 0.057 0.17
Pearson residual (12) –0.12 2.20 –0.041 0.17
Censored prediction 0.052 3.27 1.63 0.75
Censored residual –3.22 4.57 0.142 1.98
Censored Pearson residual –1.55 4.81 0.080 1.07
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0.21 (birch) while in the models with random effects the average probabilities were 0.0045 (pine), 
0.042 (spruce) and 0.055 (birch) (Table 8). With random effects, the dispersion parameter α was 
smaller. For the spruce, the dispersion parameter was so small that the estimated model is practi-
cally equivalent to a zero-inflated Poisson model. The random effects describe overdistribution, 
which otherwise is described with large α.

We also estimated such models where the random effects varied from measurement to meas-
urement. Note that models with observation level random effects can be estimated using general-
ized linear mixed models contrary to ordinary linear mixed-effects models (p. 279 in Mehtätalo 

Fig. 2. Number of plots with 0, 1, 2, 3, 4 or ≥5 ingrowth trees based on 
observed and predictedingrowth. The marginal distribution of the pre-
dicted ingrowth is computed using Eq. 1. The frequency of extra zeros 
is shown with the red horizontal line.
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and Lappi 2020). These models were clearly worse than the models where the same random effect 
applies to all remeasurements of the same plot.

The log-likelihoods indicated that the models with random effects would be always better. 
However, the models with random effects are problematic in the prediction. The predictor of the 
typical value produces underestimates of yij, as it should do, but predictor (8), which should provide 
approximately unbiased predictions, is producing clearly too large predictions. The proportions of 
the positive residuals are closer to 0.5 using predictor (7) than using the same predictor in fixed-
effects models. Using predictor (8) the proportions of positive residuals are smaller than in the 
fixed-effects models. The variances obtained from Eqs. 9 and 10 are clearly too large so that the 
standard deviations of the Pearson residuals are small. However, the censored predictions are not 
so biased, and the standard deviations of the Pearson residuals are close to 1.

The empirical and theoretical distributions (Fig. 2) were compared with χ2 statistic (Eq. 16). 
For the fixed-effects model of pine, χ2 was 2.99 (df = 6, p = 0.81). For the mixed-effects model, 
the value was χ2 = 15.80 (p = 0.015). In the model for spruce, χ2 was 4.02 (p = 0.67) for the fixed-
effects model, and for the mixed effect model χ2 was 21.7 (p = 0.0014). For birch, the values were; 
χ2 = 3.71 (p = 0.71) for fixed-effects model and χ2 = 39.3 (p < 0.0001) for mixed-effects model. Thus 
the observed marginal distributions agree perfectly with the predicted distributions for fixed-effects 
models, but the agreement is poor for the mixed-effects models.

5 Discussion

The zero-inflated negative binomial (ZINB) distribution is commonly used to model count data, 
which is overdispersed compared to the Poisson model and which has more zeros than implied by 
the negative binomial model. There is software available for fitting ZINB models in the framework 
of generalized linear (mixed) models. We used ZINB models to describe ingrowth in the perma-
nent sample plots of the Finnish national forest inventory. Ingrowth models are important in most 
silvicultural systems but especially when analyzing the possibilities of continuous cover forestry.

The predictions of the fixed-effects models of this study are unbiased while predictions of 
models developed with a different method (Pukkala et al. 2013) are clearly biased. The average 
ingrowth in the data was 90, 261 and 545 trees/ha in 5 years for pine, spruce and birch, respec-
tively. The average predictions of our models were 90, 260 and 533 trees/ha in 5 years for the 
fixed-effects model. The average predictions using the models of Pukkala et al. (2013) were 12, 
62 and 276 trees/ha in 5 years. When considering the prediction of ingrowth using the models of 
this study in practice, it may be reasonable to use the estimator of E yij

K( )� �  instead of estimator 
of E yij� �.  Using the fixed-effects estimator of E yij

( )
,

5� �  the unbiased average predictions were 
47, 149 and 175 trees/ha in 5 years.

Pukkala et al. (2013) estimated their models using data that contained two additional data 
sets that were not used in this study. The additional data sets had plot areas 300 m2 and 1600 m2. 
When they estimated the models for the probability of ingrowth, they ignored the differences in 
plot areas. When they estimated the amount of ingrowth in plots having ingrowth, they converted 
the ingrowth numbers to per hectare values. They used logarithmic regression for the amount of 
ingrowth in the plots having ingrowth. When transforming logarithmic predictions back to the 
arithmetic scale they corrected the back-transformation bias by adding half of the logarithmic 
residual variance to the logarithmic prediction before applying the exp-function. However, the 
residual variance is dependent both on the plot area and on the expected stand density. Because 
the exponential function is convex, the use of the average residual variance leads on average to 
too small predictions.
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In addition, the ingrowth was lower in the two additional datasets used in Pukkala et al. 
(2013) than in the NFI data set used in this study. The influence of the additional data sets was 
increased by the fact that they used weighted regression in the ingrowth model, the weight being 
proportional to the plot area. Using their models, the proportions of the positive residuals were 
0.23, 0.46 and 0.35 for pine, spruce and birch, respectively. These figures are closer to 0.5 than 
using the models of this study in all cases except when predictor (7) is used in the mixed model 
for birch. Thus, their models can be justified from the viewpoint of predicting median ingrowth 
instead of the mean. The shapes of the prediction functions can be compared between these two 
studies. Compared to the earlier model, the predictions of our new fixed-effects model for pine 
resemble those of the earlier model and the number of ingrowth trees on the major growing site 
of pine (sub-xeric) is similar with both models when the stand basal area is 5–15 m2 ha–1. The 
earlier model predicts maximum ingrowth for stand basal area of about 3 m2 ha–1 whereas our new 
model gives the highest predictions for 5–7 m2 ha–1. Both models predict clearly lower ingrowth 
for mesic (MT) or herb-rich (OMT), compared to sub-xeric site (VT), which have smaller ingrowth 
than xeric sites (CT).

The fixed-effects model for spruce predicts maximal ingrowth when the basal area of spruce 
is 13 m2 ha–1 whereas the earlier model predicts maximal ingrowths at 5 m2 ha–1, after which 
ingrowth decreases slowly with increasing stand basal area. Plotting the ingrowth and basal area 
of spruce shows much irregularity in the middle range of the basal area. Furthermore, there are 
two observations with large basal area and large ingrowth. Opposite to the previous model, our 
model does not predict increasing spruce ingrowth with increasing admixture of pine. Increasing 
temperature sum increase ingrowth prediction, which is logical since the interval between prolific 
seed years increases towards the north, and the growth rate of seedlings is slower in the north.

The difference between the predictions of the old model and our new fixed-effects model was 
the smallest for birch ingrowth. The average predicted ingrowth was still almost twice as large as 
in the old model. The overall effect of the basal area is the same in both models, and the presence 
of pine increases ingrowth in both models.

The expected number of ingrowth trees in a plot during a specific period is evidently depend-
ent on the plot area and the length of the period. A natural assumption is that the expected number 
of ingrowth trees is proportional to the plot area. This assumption can be described in a ZINB 
model by using the logarithm of the plot area as an offset in the logarithmic model as expressed in 
Eqs. 11 and 12. Concerning the exposure time, the proportionality assumption is more question-
able. We tested this assumption in the dataset where two consecutive 5 years’ growth periods were 
merged whenever possible. It was found that the coefficient of log(T) did not deviate significantly 
from one in Eq. 12. However, it is not logical to assume that the same model having log(T) as an 
offset would be valid for much longer periods than 10 years because there are dynamic predictors 
in Eq. 11 which change over time.

When the species-specific basal-area-weighted mean diameter and its square were added 
as predictors to the count models, they were statistically significant. The models indicated large 
ingrowth for small mean diameters, especially for spruce and birch. These models are not presented, 
because they are problematic in predictions: they imply that ingrowth is large if the ingrowth is 
large. Also, the standard deviation and skewness of the diameter distribution of all trees would be 
statistically significant predictors especially in interaction with mean diameter.

The expected number of ingrowth trees is not the only, and perhaps not the most important, 
variable of interest concerning regeneration in continuous cover forestry. Also, the spatial pattern 
of ingrowth trees affects the regeneration result. If there are locally more trees than needed for 
sufficient regeneration, the extra trees cannot completely compensate for the gaps. Thus we also 
analyzed how the models predicted a right-censored variable min(y,5). The analysis of the right-
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censored variable cannot be directly generalized for other plot sizes. For instance, the expected 
value of min(y,5) is not proportional to the plot area. The prediction of min(y,5) was based on the 
assumption that 500 ingrowth trees/ha is sufficient regeneration for a plot size of 100 m2. Of course, 
having 500 ingrowth trees/ha in 5 years overall in the forest is more than sufficient, but extra trees 
in a 100 m2 plot may be needed to compensate for neighboring gaps. Having two ingrowth trees 
in a plot of 40 m2 implies also 500 trees/ha, but min(y,2) in a 40 m2 plot has a smaller expected 
value computed per ha than min(y,5) in a 100 m2 plot. The density 500 trees/ha is obtained in a plot 
with A m2, if there are A

20  trees in the plot. The dependency of the expected value of min ,y AA
20� �  

on A is shown in Fig. 3 when using models without random effects (Tables 1–3). When the plot 
area increases, the number of accepted trees per ha increases, but only very slightly. The slight 
increase is related to the fact that when the plot area increases, the variance increases even more 
(see Eq. 4). The average probability of censoring also increases with increasing plot area when 
the acceptable limit for ingrowth is 500 trees/ha in 5 years (Fig. 3 right). This surprising result is 
related to the implied spatial distribution. If the distribution of the number of ingrowth trees would 
have the same mean function and the same probability of extra zeros but α would be zero, i.e. the 
distribution would be Poisson, then the probability of censoring would still increase for birch, but 
for spruce, the probability would decrease after a short increase. For pine, the probability would 
be practically constant.

When the number of acceptable trees increases in a 100 m2 plot, the average number of 
acceptable trees per hectare also increases (Fig. 4, left) and the probability of censoring decreases 
(Fig. 4, right).

We used logit-link in the zero-inflation part of the model, i.e., in Eq. 13 , as is usually done. 
However, Baetschmann and Winkelmann (2012) give theoretical reasons for using a complementary 
log-log link. In this study logit link gave slightly better results.

The results of this study indicated that the models estimated without random plot effects 
were quite unbiased for the prediction of the ingrowth. The predictions had very small biases in 
terms of ordinary and Pearson residuals, and the standard deviations of Pearson residuals were 
close to one. The marginal distribution of counts agreed very well with the theoretical distributions.

Fig. 3. The average number of accepted ingrowth trees per ha when the censoring limit is 500 trees per ha, i.e., the 
censored variable is min(y,

A
20

) (left) and the average probablity that some ingrowth trees within a plot are censored 
when 500 trees/ha are accepted (right).
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The most problematic feature of the current analysis is that models with random plot effects 
seemed to fit the data better, in terms of the likelihood, than the models without random effects. 
However, the implied theoretically unbiased predictions were clearly biased. Also, the implied 
marginal distribution of the predicted counts did not fit the data. Without the random effects, the 
theoretical and empirical marginal distributions agreed almost perfectly (Fig. 2). There are two pos-
sible reasons for the problems with the mixed-effects models. First, the distribution of the random 
effect in the linear predictor (11) may be far from the normal distribution. Second, the assumed 
negative binomial distribution may not be valid. Recall that the censored predictions were quite 
unbiased and their estimated variances produced Pearson residuals having standard deviations close 
to one. Thus the problems are related to the large values of random effects. It may be that modeling 
without random effects is more robust concerning model misspecification. Note that both models, 
with and without random effects, implied very large overdispersion compared to the fixed-effect 
Poisson model. It should also be kept in mind that ingrowth values in the data were not exact 
measurements but were obtained using initial counts and final counts and the mortality models.

The large variability of ingrowth is both a theoretical and practical problem in continuous 
cover forestry. In practice, the managers should be able to react properly, when the ingrowth is 
not sufficient. In theoretical calculations providing management rules and comparisons with even-
aged forestry, deterministic simulations using expected values of ingrowth are highly misleading. 
The expected values of censored ingrowth, provided by the models of this study, provide a better, 
but not yet sufficiently good basis. Stochastic simulations using the distributions obtained from 
the estimated models are, however much more demanding than deterministic simulations. One 
problem in stochastic simulations is for what plot size the simulations should be done, or should a 
stand be constructed from several plots. When generalizing our models to other plot sizes, it sounds 
reasonable to assume that the expected number of counts is proportional to the plot area. However, 
it is possible that different overdispersion parameters α give optimal description for the ingrowth, 
in terms of the negative binomial distribution, for different plot sizes. If mixed-effect models are 
used, it is not clear whether random plot effects can be interpreted as random stand effects.

The probability of extra zero is according to our model the proportion of stands having 
zero ingrowth whatever is the plot size and exposure time. As it is estimated from 100 m2 plots 

Fig. 4. Average number of acceptable ingrowth trees/ha in 5 years (left) and the probability that some trees are censored 
in a 100 m2 plot (right) as a function of the maximum number of acceptable trees in a 100 m2 plot. As a reference, note 
that without censoring there are 90, 259 and 524 trees/ha for pine, spruce and birch, respectively (see the “Prediction” 
rows of Table 4).
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and 5 years exposure times, it should not be interpreted too literally but anyhow it describes the 
proportion of stands with very small ingrowth. In mixed models, the extra zero probabilities are 
very small, and stands with very small ingrowth are obtained having small random effects in the 
count model, if random effects are interpreted as stand effects.

Planning of continuous cover forestry methods cannot be based directly on the ingrowth 
models of this study. For instance, seed production, which is a prerequisite of ingrowth, requires 
the presence of rather large trees in the stand or its surroundings (Nygren et al 2017). The size 
distribution of trees was not taken into account in our modeling. An admixture of pine and birch 
in a spruce stand often enhances the regeneration and ingrowth of spruce (Pukkala et al. 2013), 
but this effect was not included in our models. Soil type may also have a strong influence on 
regeneration and ingrowth.
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