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Highlights
• Mechanical scarification of clearcut sites in two climatic regions maintained high growth 

rates of regenerating black spruce 18 years after treatment.
• In both regions, scarification reduced soil moisture and increased water use efficiency.
• In the cooler-humid region, scarification improved soil nitrogen mineralization.

Abstract
Scarification is a mechanical site preparation technique designed to create microsites that will favor 
the growth of planted tree seedlings after clearcutting. However, the positive growth response of 
black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) to scarification varies across dif-
ferent sites. We hypothesized that this was due to different forms of physiological stress induced by 
different climates or by the severity of competition from ericaceous shrubs. We thus compared the 
effects of scarification on black spruce needle gas exchange and other foliar properties, as well as 
on indices of soil water and nitrogen availability, in relatively warm-dry (Abitibi) vs. cool-humid 
(Côte-Nord) climates in the province of Québec (Canada). We found a similar positive effect of 
scarification on tree height in Abitibi and Côte-Nord. Scarification reduced soil moisture in both 
climatic regions, but increased soil N mineralization in Côte-Nord only. Accordingly, scarification 
increased the instantaneous water use efficiency in both climate regions, but decreased photo-
synthetic N use efficiency in Côte-Nord only. In both regions, we found a positive relationship 
between foliar δ18O and δ13C on scarified plots, providing further evidence that increased growth 
due to scarification depends on a decrease in stomatal conductance. We conclude that scarification 
increases total evapotranspiration of trees evenly across the east-to-west moisture gradient in the 
province of Québec, but also improves long-term soil nutritional quality in a cooler-humid climate.
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1 Introduction

Scarification is a mechanical site preparation technique used by foresters after clearcutting in 
order to create microsites that will favor the growth of planted tree seedlings. Scarifiers consist 
of motorized disks with multiple blades that rip and lift surface organic layers, thus exposing the 
mineral soil along trenches in which tree seedlings are planted. Positive effects of scarification on 
tree seedling growth have been ascribed to decreased competition from vegetation (Hébert et al. 
2014), increased soil temperature (Thiffault and Jobidon 2006; Sikström et al. 2020), improved 
light availability for seedlings (Willis et al. 2015), improved soil drainage (Rappe George et al. 
2017) and increased soil nutrient mineralization (Johansson 1994). In the province of Québec 
(Canada), scarification is commonly used to improve the regeneration of planted black spruce (Picea 
mariana (Mill.) Britton, Sterns & Poggenb.) stands, the province’s most economically important 
boreal tree species. While the growth response of black spruce to scarification is generally posi-
tive, its effectiveness varies across sites. For example, Hébert et al. (2014) found that scarification 
had a greater positive effect on seedling growth in black spruce–feather moss forest sites that had 
been clearcut compared to patches of unmanaged open lichen woodland. Understanding how such 
site-specific characteristics affect the physiology of black spruce could help us predict the relative 
growth response to mechanical scarification in different regions.

In Québec, black spruce has a wide geographic distribution spanning several bioclimatic 
zones, resulting in different stand structures and understory plant communities (Nicault et al. 
2015). For example, the Abitibi region located in western Québec is characterized by a relatively 
warm-dry summer climate compared to the Côte-Nord region located on the northeast coast of 
the St-Lawrence River. Regenerating black spruce cutovers in the Abitibi region benefit from 
more degree-days during the growing season and appear to have less competing vegetation than 
those in the Côte-Nord region. That is because the relatively cool-humid climate of the Côte-Nord 
region often results in a dense cover of ericaceous shrubs such as Kalmia angustifolia L. and Rho-
dodendron groenlandicum (Oeder) Kron & Judd. While these shrub species are also found in the 
Abitibi region, they are more prone to dominate on clearcuts in the Côte-Nord region resulting in 
the growth check of regenerating black spruce seedlings (Reicis et al. 2020). Thus, releasing black 
spruce seedlings from the competing vegetation through mechanical scarification may be more 
beneficial in Côte-Nord than in Abitibi.

We posit that scarification in Abitibi and Côte-Nord exacerbates or alleviates different forms 
of physiological stress induced by climate or by competing vegetation. For example, soil water 
is a common limiting resource for many boreal tree species, including black spruce (Walker et 
al. 2015). In the relatively warm-dry Abitibi region, faster growth rates on scarified plots should 
increase total evapotranspiration of the regenerating stand and increase the needle-air vapor pres-
sure deficit (VPD), thereby depleting soil moisture. If an increase in water-stress occurs on scari-
fied plots, then black spruce would need to reduce stomatal conductance to limit water loss and 
increase water use efficiency (WUE) in order to maintain growth rates (Flanagan and Farquhar 
2014). We should observe, therefore, an increase in WUE following scarification in the Abitibi 
region. Such moisture deficits on scarified plots are less likely to occur in the Côte-Nord region 
because of higher annual precipitation and lower potential evapotranspiration.

Another way by which scarification could have different effects on black spruce physiol-
ogy in Abitibi and Côte-Nord is by having different effects on soil fertility. The dense ericaceous 
shrub cover that characterizes cool-moist climates (e.g. Côte-Nord) can result in low soil N fertility 
(Bradley et al. 1997). This is generally ascribed to the high concentrations of condensed tannins 
in ericaceous leaf litter, which prevents soil N from mineralizing (Joanisse et al. 2009). In such 
N-limited environments, black spruce seedlings need to increase their rates of photosynthesis per 
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unit of foliar N (i.e. photosynthetic N use efficiency (PNUE)) in order to maintain growth rates. If 
scarification increases tree growth in the Côte-Nord region, then we expect that this will improve 
soil N fertility in two ways: (1) by reducing ericaceous tannin concentrations due to shading 
(Hofland-Zijlstra and Berendse 2009); (2) by adding proportionately more conifer needle litter 
relative to ericaceous litter to the forest floor (Joanisse et al. 2007). We should observe, therefore, 
a decrease in PNUE following scarification in the Côte-Nord region.

We report on a study where we measured needle gas exchange and other foliar properties, as 
well as indices of soil water and N availability, in regenerating black spruce plots in the Abitibi and 
Côte-Nord regions. The plots had been clearcut and scarified approximately 18 years prior to our 
study. At four dates throughout the growing season, we calculated instantaneous water use efficiency 
(iWUE) and PNUE using leaf level gas exchange measurements. At the end of the growing season, 
we used leaf oxygen and carbon isotopic ratios to calculate seasonal water use efficiency (sWUE). 
Based on the rationale presented above, we predicted that: (1) scarification would have a relatively 
larger positive effect on black spruce growth in Côte-Nord compared to Abitibi; (2) scarification 
in Abitibi would increase moisture stress and WUE relative to non-scarified plots; (3) scarifica-
tion in Côte-Nord would increase soil N fertility and reduce PNUE relative to non-scarified plots.

2 Methods

2.1 Study sites

The two experimental sites are located 573 km apart, at opposite limits of a west-to-east gradient of 
increasing precipitation and decreasing summer temperature in the province of Québec. The Abitibi 
site (48°30´N, 76°56´W, altitude of 396 m a.s.l.) is located in the balsam fir (Abies balsamea (L.) 
Mill.) – paper birch (Betula papyrifera Marshall) bioclimatic domain (Saucier et al. 2009) and is 
characterized by a 30-year mean annual temperature of 2.5 °C and an annual precipitation range 
of 800–900 mm, 30% falling as snow (Blouin and Berger 2002). The region has 1443 degree (°C) 
days per year and a 30-year mean temperature of 16 °C during the three warmest months of the year 
(June to August). The growing season in Abitibi lasts approximately 150–160 days (Environment 
Canada 2018). The Côte-Nord site (49°47´N, 69°17´W, altitude of 472 m a.s.l.) is located in the 
black spruce–feather moss bioclimatic domain and is characterized by a mean annual temperature 
of –1.0 °C and an annual precipitation range of 1100–1300 mm, with 34–40% falling as snow 
(Morneau and Landry 2007). The region has 1179 degree (°C) days per year and a 30-year mean 
temperature of 14.2 °C during the three warmest months of the year. The growing season in Côte-
Nord lasts approximately 140 days (Environment Canada 2018).

Soils on both sites are classified as haplohumod spodosols (Soil Survey Staff 2006) developed 
on well-drained glacial till, with clay contents ≤ 4%. Mean forest floor thickness is 8 cm in Abitibi 
and 18 cm in Côte-Nord. In Abitibi, the understory shrub layer is relatively sparse and includes 
K. angustifolia and Vaccinium spp., with Cladina spp. lichen as the ground cover. In Côte-Nord, 
the understory shrub layer is relatively dense and consists mainly of K. angustifolia and R. groen-
landicum, with feather moss (Pleurozium schreberi (Willd. ex Brid.) Mitt.) as the ground cover.

The Abitibi and Côte-Nord sites had been clearcut harvested in 1999 and 1993 respectively. 
On each site, single-pass scarified and non-scarified treatment plots were established in 1999 using 
a TTS disk trencher. Plots in Abitibi measured 15 m × 10 m, whereas those in Côte-Nord measured 
32 m × 6.5 m. At each site, scarified trenches (ca. 60 cm wide, 30 cm deep) were established length-
wise at 2 m apart, resulting in five rows per plot in Abitibi and three rows per plot in Côte-Nord. 
On each site, both treatments were replicated in five blocks within a 2.5 ha area in Abitibi and a 
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5.0 ha area in Côte-Nord. Treatment plots within each block were separated by a 6 m buffer strip 
in Abitibi and by a 2 m buffer strip in Côte-Nord. In June 2000, each plot in Abitibi and Côte-Nord 
were respectively planted with 18 and 32 two-year-old black spruce seedlings, grown from seed 
in 110 mL containers, with a 2.5 m distance between seedlings (ca. 1200 and 1500 seedlings ha–1 
respectively). Seedlings planted in Abitibi were grown at a nursery in the town of Trécesson, 
whereas those planted in Côte-Nord were grown at a nursery in the town of Forestville (Thiffault 
et al. 2005; Thiffault and Jobidon 2006).

2.2 Black spruce growth

For three consecutive years (2015 to 2017), the height of black spruce trees in each plot was meas-
ured at the end of each growing season (mid-September) using a telescopic meter stick. From these 
values, we calculated a two-year relative growth rate (RGR) for each tree as:

RGR height height time� �� � � ��ln ln / . ( )2017 2015 2017 2015 1

2.3 Forest floor sampling and analyses

At the start of the 2017 sampling season, diagonal transects were established on each plot at each 
site. Twelve sampling points per plot were established along three transects in Abitibi and along 
four transects in Côte-Nord. On four monthly sampling dates between May and August 2017, 
forest floor subsamples (ca. 0.5 l) were collected at each sampling point in each plot. Forest floor 
subsamples were bulked into three composite samples per plot, sieved through a 5 mm metal mesh 
screen, placed into 3.8 l plastic bags and transported in coolers to the laboratory (Université de 
Sherbrooke). Forest floor samples were stored at 4 °C until analyzed.

Gravimetric moisture content of each forest floor sample was calculated based on the weight 
loss of subsamples after drying for one week at 60 °C in an air-draft oven. The subsamples were 
then ground with a ball mill and analyzed for total N by high temperature combustion and thermo-
conductometric detection, using a Vario Macro dry combustion analyzer (Elementar Analysensys-
teme GmbH, Hanau, Germany).

Fresh forest floor subsamples (5 g dry mass equiv.) were placed in covered jars and incubated 
for 30 days under aerobic conditions. Following the incubation, the forest floor subsamples were 
extracted in aqueous 1 N KCl and analyzed colorimetrically for NH4+-N concentration (salicylate-
nitroprusside-hypochlorite assay) using a continuous flow analyzer (Astoria2, Astoria-Pacific 
International, Clackamas, OR). Given that scarification results in a mixing of soil horizons, forest 
floor samples can sometimes be contaminated with small amounts of mineral soil, which has a 
higher specific density than forest floor material. For this reason, mineralizable N was expressed 
relative to total N rather than to sample dry weight (see Discussion).

2.4 Gas exchange measurements

At each forest floor sampling date in 2017, gas exchange measurements were performed on 1-year-
old needles from the upper-third of the canopy of two trees in each plot. Measurements were per-
formed between 10:00 a.m. and 2:00 p.m. local time using a LiCor 6400XT Portable Photosynthesis 
System (LiCor Scientific, Lincoln, NE). Selected twigs were inserted into a conifer needle chamber 
with saturating light (1000 µmol photons m–2 s–1) provided by a mixed red/blue LED. The CO2 
concentration in the chamber was maintained at 400 ppm with a flow rate of 150 µmol s–1. Needles 
were left in the chamber for 5 min prior to measurement to allow gas exchange rates to equilibrate. 
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The measured variables included net rates of CO2 assimilation (i.e. photosynthesis) and water vapor 
loss (i.e. transpiration (E)). Following each measurement, twigs were excised, sealed into small 
plastic bags, and returned on ice to the laboratory. Needles were scanned and their projected area 
was calculated using WinSEEDLE image analysis software (Regent Instruments, Québec City, 
QC). Needles were then dried, weighed and analyzed for total N, as described above. From these 
values, we calculated net rate of photosynthesis per needle surface area (Pn) and per needle mass 
(A). Instantaneous water use efficiency was calculated as:

iWUE � �PnE 1 2. ( )

Photosynthetic N use efficiency was calculated as:

PNUE N� �A [ ] . ( )1 3

2.5 Needle sampling and analyses

Unlike instantaneous leaf-level gas exchange measurements made on only a few sampling dates, 
foliar δ13C and δ18O isotope ratios reflect season-long gas exchange fluxes (Farquhar and Lloyd 
1993). An increase in δ13C reflects an increase in the 13C/12C ratio of plant biomass, which may 
occur for one of two reasons: (1) lower stomatal conductance (i.e. higher WUE) resulting in a 
decrease of intercellular CO2, allowing more of the heavier 13C-CO2 to diffuse to chloroplasts and 
be fixed into plant biomass; (2) higher net rates of photosynthesis at a given stomatal conduct-
ance, resulting in a faster diffusion of CO2 to chloroplasts and a decrease of intercellular CO2. To 
determine which of these two mechanisms is most prevalent, we must look at variations in foliar 
δ18O. An increase in the total evapotranspiration of a given tree will result in a preferential loss 
of the lighter 16O-H2O and an increase in the assimilation of the heavier 18O isotope into plant 
biomass. Hence, a significant positive relationship between foliar δ13C and δ18O isotope values 
indicates that variations in δ13C values are likely induced through moisture stress and controlled 
by stomatal conductance rather than by photosynthetic capacity.

In September 2016, needle samples were collected from two trees from each plot in order to 
quantify δ13C and δ18O isotope ratios. We pooled an equal amount of ground needle material from 
both trees in each plot, and sent a 20 g subsample to the G.G. Hatch Stable Isotopes Laboratory at 
the University of Ottawa (Canada). The 20 subsamples were flash combusted at 1450 °C (Dumas 
combustion) and the resulting gas products were analyzed for their δ18O and δ13C isotope ratios 
using a Delta V Advantage isotope ratio mass spectrometer (Thermo Scientific, Bremen, Germany).

At each forest floor sampling date in 2017, needles were collected from the same two black 
spruce trees in each plot, in all orientations from the top third of the canopy, using pruning shears. 
Needle samples were placed in coolers under ice packs and transported to the laboratory, where 
they were oven-dried at 60 °C. Dried needle samples were ground in a ball mill and analyzed for 
total N, as described above.

2.6 Statistical Analyses

The effects of scarification and sites, as well as their interactions, on the various response vari-
ables were tested using mixed effects models. For tree height and RGR, the identity of each block 
was used as a random variable. For soil properties, the identity of each block and the sampling 
date were used as random variables. For gas exchange and foliar measurements, the identity of 
each block, the sampling date and the identity of each tree were used as random variables. When 
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significant interactions were found between scarification and site, the effects of scarification were 
tested within each site. Linear regression was used to test the relationship between δ18O and δ13C 
isotopic values. All statistical analyses were performed using the lmer package in R statistical 
software (Version 3.2.2, R Development Core Team 2015). A significance level of α = 0.05 was 
used, unless otherwise stated.

3 Results

3.1 Tree height and relative growth rate

We found a significant (P < 0.001) effect of scarification on tree height (Fig. 1a), with average 
tree height (n = 250) being 136% greater on scarified than non-scarified plots across both sites. 
Likewise, from 2015 to 2017, RGR across both sites was 39% greater (P < 0.001) in scarified than 
non-scarified plots (Fig. 1b).

3.2 Forest floor moisture and N mineralization

On both sites, scarification significantly (P < 0.001) reduced forest floor gravimetric moisture content 
across sampling dates (Fig. 2a). We found a significant (P = 0.013) site × scarification interaction on 
forest floor N mineralization across sampling dates. More specifically, N mineralization (per total 
N) in Côte-Nord was significantly higher (P = 0.037) in scarified than non-scarified plots, whereas 
no effect was observed in Abitibi (Fig. 2b).

Fig. 1. Tree height (a) and relative growth rate (RGR) (b) of black spruce trees 
on non-scarified and scarified plots, at two boreal sites in Québec. Trees were 
planted as containerized 2-year-old seedlings in 1999. Two way mixed model 
ANOVA revealed a significant (P < 0.001) effect of scarification on tree height 
and RGR across both sites (N = 250 trees per treatment across sites). Vertical 
lines denote standard errors of the means (n = 90 in Abitibi; n = 160 in Côte-
Nord).
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3.3 Foliar measurements

Net rate of photosynthesis per needle surface area (Pn) was higher in non-scarified than in scarified 
plots (Table 1), although this effect was not statistically significant (P = 0.087). Net rate of photo-
synthesis per needle mass (A) was significantly higher (P = 0.027) in Abitibi than in Côte-Nord. 
Transpiration (E) was significantly higher (P = 0.027) in non-scarified than in scarified plots. Scari-
fication reduced foliar N in Abitibi and increased foliar N in Côte-Nord, although this interaction 

Fig. 2. Forest floor gravimetric moisture content (a) and nitrogen mineraliza-
tion rate per total N (b) in non-scarified and scarified plots at two boreal sites in 
Québec. Each bar represents mean values based on 3 bulk samples × 5 plots × 4 
sampling dates (n = 60). Two way mixed model ANOVA revealed a significant 
(P < 0.001) main effect of treatment on forest floor moisture content (Fig. 2a). 
In the case of N mineralization (Fig. 2b), a significant site × treatment inter-
action required us test the effects of scarification within each site; consequently, 
statistically different (P = 0.037) means were found in Côte-Nord (different 
lower-case letters), but not in Abitibi (ns = not significant). Vertical lines denote 
standard errors of the means.

Table 1. Mean gas exchange and foliar nitrogen measurements of one-year-old black spruce needles in 
scarified and non-scarified plots in two sites of Québec, 18 years after treatment. Trees were planted as 
containerized 2-year old seedlings in 1999. The reported treatment means are based on 2 trees × 5 plots 
× 4 sampling dates (n = 40). The reported P values result from two-way mixed model analyses of vari-
ance testing the effects of treatments and sites, as well as their interaction. Values in parentheses denote 
one standard error of the mean.

Abitibi Côte-Nord Significant 
findingsNon-scarified Scarified Non-scarified Scarified

Pn
9.58  

(0.90)
8.92  

(0.76)
9.15  

(0.98)
6.75  

(0.92)
Non-scarified > Scarified; 

(P = 0.087)
A 0.033  

(0.003)
0.032  

(0.003)
0.025  

(0.002)
0.022  

(0.002)
Abitibi > Côte-Nord; 

(P = 0.027)
E 4.39  

(0.61)
3.00  

(0.29)
4.52  

(0.43)
3.84  

(0.40)
Non-scarified > Scarified; 

(P < 0.003)
Foliar N 7.13  

(0.23)
6.83  

(0.22)
6.90  

(0.21)
7.50  

(0.18)
Site x Treatment; 

(P = 0.087)

Pn: CO2 exchange rate per needle area (µmol CO2 m2 s–1), A: CO2 exchange rate per needle mass (µmol CO2 g–1 s–1), 
E: transpiration (mmol H2O m–2 s–1), Foliar N: foliar nitrogen concentration (mg N g–1)
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was not statistically significant (P = 0.087). The iWUE across both sites was significantly higher 
(P < 0.001) in scarified than in non-scarified plots (Fig. 3a), as well as in Abitibi compared to Côte-
Nord (P < 0.001). Photosynthetic N use efficiency (PNUE) was significantly (P = 0.011) higher in 
Abitibi compared to Côte-Nord (Fig. 3b).

Values of δ13C were greater in Côte-Nord than in Abitibi (P = 0.011). There was a significant 
(P = 0.012) site × treatment interaction on needle δ18O values (Fig. 4). More specifically, needle 
δ18O values were greater in Abitibi compared to Côte-Nord (P < 0.001), and significantly higher 

Fig. 3. Instantaneous water use efficiency (a) and photosynthetic nitrogen use 
efficiency (b) of black spruce trees on non-scarified and scarified plots, at two 
boreal sites in Québec. Trees were planted as containerized 2-year-old seedlings 
in 1999. Each bar represents mean values based on 2 trees × 5 plots × 4 sam-
pling dates (n = 40). Two way mixed model ANOVA revealed significant main 
effects of treatments (P < 0.001) and sites (P < 0.001) on water use efficiency 
(Fig. 3a), and a significant effect of sites (P = 0.011) on photosynthetic nitrogen 
use efficiency (Fig. 3b).Vertical lines denote standard errors of the means.

Fig. 4. Results of linear regression analysis testing the relationship between 
δ18O and δ13C isotopic values of one-year-old needles in non-scarified (closed 
symbols) and scarified (open symbols) plots, at two boreal sites in Québec. 
Needles were collected from two black spruce trees per plot, in September 2016 
(n = 10). Trees were planted as containerized 2-year-old seedlings in 1999. We 
found a significant positive regression slope (solid line) on scarified plots only, 
on both the Abitibi (P = 0.021, R2 = 0.51) and the Côte-Nord (P = 0.024, R2 = 
0.49) sites.
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(P = 0.004) in scarified than non-scarified plots in the Abitibi site only. On both sites, there was 
a significant positive relationship between δ18O and δ13C on scarified plots (Abitibi: R2 = 0.51, 
P = 0.021; Côte-Nord: R2 = 0.49, P = 0.024), but not on the non-scarified plots (Fig. 4).

4 Discussion

Our data provided evidence that scarification increases black spruce height in both climatic regions 
of Québec. The fact that RGR was also higher on scarified plots suggests that scarification sus-
tained favorable growth conditions, even 18 years after treatment. This implies a sustained release 
of black spruce trees from competing vegetation as well as a possible long-term increase in site 
nutritional quality. Contrary to what we had predicted, the relative increase in black spruce height 
was not higher in Côte-Nord than in Abitibi. We had based our prediction on the hypothesis that 
black spruce trees in Côte-Nord are subject to greater interference from ericaceous shrubs and 
would therefore benefit the most from scarification (as discussed below). What our data suggest, 
however, is that the relative growth response of black spruce to scarification may not necessarily 
relate only to the factors limiting growth before treatment, but also to the potential maximum growth 
rate of a given site. This potential growth rate is likely to be higher in Abitibi than in Côte-Nord, 
given the higher temperature and longer growing season. This is supported by models developed 
by Hamel et al. (2004), who found that the number of seasonal degree-days was the best predictor 
of black spruce productivity. Another factor that may boost the potential maximum growth rate in 
Abitibi is the fact that planting density was lower than in Côte-Nord (1200 vs. 1500 stems ha–1), 
resulting in lower intra-specific competition. Higher seasonal degree-days and/or lower intra-
specific competition would both allow trees in Abitibi to benefit more from the favorable growth 
conditions created by scarification.

We initially hypothesized that faster growth rates on scarified plots would increase total stand 
evapotranspiration, and that this might lead to soil water deficits and moisture stress in the drier 
Abitibi climate, more so than in Côte-Nord. Likewise, we predicted that greater moisture stress 
on scarified plots would result in a greater increase in iWUE in Abitibi than in Côte-Nord. While 
we did observe a decrease in soil moisture and an increase of iWUE on scarified plots, the effect 
was similar on both sites. These data are consistent with the significantly lower transpiration rates 
in scarified plots on both sites (Table 1). Greater iWUE suggests that stomatal conductance may 
play an important role in mitigating moisture stress on scarified plots. This is corroborated by the 
significant positive relationships between foliar δ13C and δ18O on scarified plots at each site, but 
not on the non-scarified plots (Farquhar et al. 1998; Scheidegger et al. 2000). This implies that 
greater moisture stress caused by scarification at either site exceeded the difference in precipitation 
and soil water availability that occurred between the two sites.

As mentioned in section 2.3, we reported forest floor N mineralization rates relative to total 
N (rather than total mass), in order to avoid artefact errors resulting from the mixing of mineral 
soil and organic forest floor. The ratio of mineralizable-to-total N does not inform us on the total 
amount of N that is available to trees, but serves as an index of soil organic matter quality. Thus, 
an increase in forest floor N mineralization per total N on scarified plots in Côte-Nord implies that 
scarification in this climatic region had improved soil nutritional quality, 18 years after treatment. 
Consistent with this result, there was a 22% decrease in PNUE on scarified plots in Côte-Nord, 
although this effect was not statistically significant (P = 0.144). Regenerating black spruce forests 
in cool-humid climates, such as Côte-Nord, are characterized by a dense understory of ericaceous 
shrubs (Reicis et al. 2020) that reputedly reduce soil N cycling. Ericaceous litter tannin inputs to 
the forest floor can reduce soil enzyme activities (Joanisse et al. 2007) and the mineralization of 
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organic N (Joanisse et al. 2009). Reicis et al. (2020) reported that canopy gaps allow greater light 
penetration to the forest floor, which increases the ericaceous shrub cover and ericaceous litter 
tannin concentrations. From these previous studies, we infer that scarification improves site nutri-
tional quality in Côte-Nord, by accelerating canopy closure thereby reducing light penetration to 
the forest floor and decreasing the competitive effects of ericaceous shrubs.

Although our study did not focus on the main effects of climatic regions on black spruce 
physiology, we did observe higher iWUE, PNUE, net rate of photosynthesis (per needle weight) and 
foliar δ18O in Abitibi than in Côte-Nord. While some of these effects are consistent with expectations 
(e.g. higher WUE in the warmer-drier climate), others are not (e.g. lower PNUE in the cooler-humid 
climate). In fact, a simultaneous increase in WUE and PNUE due to drier climate is contrary to the 
trade-offs predicted by theory (Wright et al. 2003). We deem, however, that it is tenuous to infer 
mechanisms controlling differences in the physiological status of black spruce trees growing on 
sites located hundreds of kilometres apart, whereby the contribution of genetic variation may be 
confounded with that of phenotypic plasticity (Benomar et al. 2016). Furthermore, some of our 
measured traits, such as δ18O values, are not only influenced by total evapotranspiration, but also 
by the isotopic composition of soil water, air humidity, precipitation patterns and leaf morphology 
(Barbour 2007). For these reasons, we believe that it is better to study the physiological responses 
of black spruce to treatments within given sites, as this is conducive to understanding adaptive 
mechanisms for future forest management across different regions.

In summary, our study shows that scarification in each climatic region maintains higher 
relative growth rates of black spruce 18 years after treatment. Scarification increases the total 
transpiration from trees evenly across the east-to-west moisture gradient in the province of Québec, 
to which trees adapt by increasing WUE. In the relatively warmer-drier climate, a longer growing 
season may allow black spruce to benefit from scarification as much as in cooler-humid climate, 
where scarification is thought to alleviate competition from ericaceous shrubs. On the other hand, 
scarification appears to improve soil nutritional quality only in the relatively cooler-humid climate.
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