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Highlights
• Four boreal tree species (Scots pine, Norway spruce, birches and European aspen) classified 

with an overall accuracy of 95%.
• Presence of European aspen detected with excellent accuracy (UA: 97%, PA: 96%).
• Late spring is the best time for species classification by remote sensing.
• Best time to separate aspen from birch was when birch had leaves, but aspen did not.

Abstract
Current remote sensing methods can provide detailed tree species classification in boreal forests. 
However, classification studies have so far focused on the dominant tree species, with few studies 
on less frequent but ecologically important species. We aimed to separate European aspen (Populus 
tremula L.), a biodiversity-supporting tree species, from the more common species in European 
boreal forests (Pinus sylvestris L., Picea abies [L.] Karst., Betula spp.). Using multispectral drone 
images collected on five dates throughout one thermal growing season (May–September), we tested 
the optimal season for the acquisition of mono-temporal data. These images were collected from 
a mature, unmanaged forest. After conversion into photogrammetric point clouds, we segmented 
crowns manually and automatically and classified the species by linear discriminant analysis. The 
highest overall classification accuracy (95%) for the four species as well as the highest classifica-
tion accuracy for aspen specifically (user’s accuracy of 97% and a producer’s accuracy of 96%) 
were obtained at the beginning of the thermal growing season (13 May) by manual segmentation. 
On 13 May, aspen had no leaves yet, unlike birches. In contrast, the lowest classification accuracy 
was achieved on 27 September during the autumn senescence period. This is potentially caused 
by high intraspecific variation in aspen autumn coloration but may also be related to our date of 
acquisition. Our findings indicate that multispectral drone images collected in spring can be used 
to locate and classify less frequent tree species highly accurately. The temporal variation in leaf 
and canopy appearance can alter the detection accuracy considerably.
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1 Introduction

European aspen (Populus tremula L.; hereafter aspen) is an exceptionally valuable tree species for 
boreal forest biodiversity and hosts diverse and highly specialized fauna and flora (Esseen et al. 
1997; Kouki et al. 2004; Tikkanen et al. 2006). Several aspen-associated species are threatened in 
various boreal European countries (ArtDatabanken 2015; Henriksen and Hilmo 2015; Hyvärinen 
et al. 2019). As such, aspen presence in a conifer-dominated forest is considered to indicate forest 
structures important for conservation. In conifer-dominated old-growth forests, specifically, aspen is 
considered invaluable for several specialized species (Oldén et al. 2014). The importance of aspen 
in ecological inventories is further amplified by observations that aspen is declining in abundance 
in old-growth boreal forests (Kouki et al. 2004; Hardenbol et al. 2020).

Inventories of tree species composition through traditional field work means are time-
consuming and costly. If the locations of aspens could be identified from remotely sensed data, 
this information could be used for designing and monitoring conservation areas (Chambers et 
al. 2013; van Ewijk et al. 2014; Fassnacht et al. 2016). Unfortunately, tree species identification 
becomes increasingly complex and unreliable as the number of species increases. Boreal forests 
provide a comparatively simple forest ecosystem with only a few common tree species, and several 
studies have developed remote sensing methods for tree species detection in the Nordic countries 
(Holmgren et al. 2008; Ørka et al. 2009; Dalponte et al. 2014; Hovi et al. 2016). Remote sensing 
studies conducted in Nordic countries have largely focused on separating Scots pine (Pinus syl-
vestris L.), Norway spruce (Picea abies [L.] Karst.), and deciduous tree species that are generally 
birches (Betula spp.). For ecological monitoring and especially for nature conservation purposes, 
this level of accuracy ignores ecologically important features. Recently, using remotely sensed data 
to detect and monitor aspen trees has received more attention (Säynäjoki et al. 2008; Ørka et al. 
2009; Viinikka et al. 2020; Kuzmin et al. 2021). However, there is still a lack of studies focusing 
on remotely sensed aspen detection in old-growth forests. This lack is in part due to the low pro-
portion and scattered distribution of aspen within these forests (occurring either as separate trees 
or in small clusters), which complicates remote sensing efforts. Furthermore, aspen is spectrally 
and structurally similar to other tree species, primarily birches (Viinikka et al. 2020).

In principle, remote sensing has clear potential to map aspen at various spatio-temporal 
scales with Airborne Laser Scanning (ALS) or photogrammetric point clouds, airborne imaging 
spectroscopy, and combinations of these techniques (reviewed by Kivinen et al. 2020), which are 
similarly applied to other tree species (reviewed by Fassnacht et al. 2016). Studies that have so far 
focused on separating aspen from other deciduous tree species solely with ALS data, have obtained 
rather poor results (Ørka et al. 2007; Korpela et al. 2010). However, when aerial images were used 
to manually separate deciduous trees from coniferous trees and subsequently ALS data was used to 
separate aspen from other deciduous tree species, a classification accuracy of 78.6% was achieved 
(Säynäjoki et al. 2008). In addition, studies using color-infrared aerial images and hyperspectral 
imagery have also been conducted for aspen classification (Erikson 2004; Tuominen et al. 2018; 
Viinikka et al. 2020; Kuzmin et al. 2021; Mäyrä et al. 2021). Of these studies, the three most recent 
ones were partly performed in old-growth forest environments and achieved high classification 
accuracies for aspen with F1-scores ranging from, at best, 86% to 92%.

Previous studies involving aspen have not considered the use of seasonal variation in leaf or 
canopy appearance to improve detection accuracy. Aspen, like other deciduous tree species, shows 
clear seasonal patterns throughout the thermal growing season. Leaf flush, leaf expansion and matu-
ration, coloration and senescence patterns alter the structural and spectral values of deciduous tree 
leaves and canopies (Boyer et al. 1988; Blackburn and Milton 1995), including aspen (Keskitalo 
et al. 2005). In addition to intraspecific patterns of leaf and canopy characteristics, there are also 
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interspecific seasonal ecophysiological differences between deciduous tree species (Key et al. 2001; 
Fawcett et al. 2020). For example, in boreal Europe the timing of leaf flush in birches is earlier 
than that of aspen (Heide 1993) which can help in their separability (Dymond et al. 2002). Using 
seasonal data may therefore improve the accuracy of remote sensing in tree species classification. 
However, this requires that the seasonal patterns be regular and systematic and that sensors can 
separate the species-specific variations in leaf characteristics.

Time-series data have been previously used for species classification throughout the thermal 
growing season of deciduous tree species. These types of data have been collected with satellites 
(Sheeren et al. 2016; Persson et al. 2018), aircrafts (Key et al. 2001; Hill et al. 2010), and drones 
(Lisein et al. 2015; Weil et al. 2017). Based on these studies, seasonal data can improve deciduous 
tree species classification. In these studies, seasonal data were analyzed either as separate dates for 
which the classification accuracies were compared with each other or as combinations of dates. By 
comparing the classification accuracies obtained at different times, the most reliable single date for 
data collection can be determined for a specific area. However, in studies that combined images 
from various dates, classification accuracy was further improved (Lisein et al. 2015; Persson et al. 
2018), with the combination of images from different phenological stages appearing particularly 
promising (Hill et al. 2010). The use of drones appears to be especially promising for the collection 
of time-series data for species classification. Drones can provide a high temporal resolution and 
present a high capability of detecting phenological dynamics from the level of individual trees to 
that of small ecosystems (Berra et al. 2019; Fawcett et al. 2020). Multispectral drone image point 
clouds have been frequently employed for species classification (Nevalainen et al. 2017; Franklin 
and Ahmed 2018; Xu et al. 2020), but are often limited to Red, Green, and Blue band (RGB) images 
with one near infrared channel (Lisein et al. 2015; Michez et al. 2016).

Our aim in this study was to determine the optimal season for the inventory of mature aspen 
trees in old-growth conifer-dominated boreal forest stands. We utilized a complete tree-level field 
survey of aspens and high spatial resolution multispectral (blue, green, red, red edge, and near 
infrared) drone images obtained on five dates over a single growing season. These data were used 
to investigate how the seasonal patterns in leaf and canopy characteristics affect the remote detec-
tion of aspen trees. To achieve these objectives, we produced photogrammetric point clouds from 
multispectral imagery. Subsequently, we applied three types of segmentation; manual from image 
orthomosaics and automatic Individual Tree Detection (ITD) from multispectral (a single-sensor 
solution) and RGB sensors. Finally, the individual tree segments were classified into species based 
on the spectral and relative height information which the points within each segment contained 
(Lisein et al. 2015; Nevalainen et al. 2017).

2 Materials and methods

2.1 Study area

Our study area was located in Jyrinvaara, eastern Finland, in the municipality of Lieksa (approx. 
63°20´N, 30°30´E; Fig. 1). Our study area lies in the transition zone between the southern and 
middle boreal vegetation zones (Ahti et al. 1968). This region is characterized by a mosaic of 
boreal forest, peat bogs, mires, agricultural fields, and lakes. Of the forests in this region, roughly 
95% were intensively managed for timber (Korhonen et al. 2001). To conserve some of the older 
forests in this region, a network of protected areas was established in the 1990s (Ministry of the 
Environment of Finland 1992, 1994). Within these protected areas, the old-growth forest parts are 
not strictly virgin natural forests, as they were historically used for slash-and-burn cultivation until 
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the middle of the 19th century (Lehtonen and Huttunen 1997), and many were also selectively 
harvested for timber in the late 19th and early 20th centuries. Despite previous extensive uses, 
these old-growth forests developed many features typical of natural old-growth forests by the end 
of the 20th century (Uotila et al. 2002), which was the main reason for their protection. Notably, 
they were never clear-cut, and have been unmanaged for approximately 100 years.

Based on data collected in 2019 from the Ilomantsi Pötsönvaara weather station (63°14´N, 
31°04´E; downloaded from https://en.ilmatieteenlaitos.fi/download-observations) the average tem-
perature of the coldest month was –12 °C in January and of the warmest month +15.1 °C in June. 
Furthermore, the annual rainfall was 793.5 mm of which 43% fell as snow and the thermal growing 
season (defined to begin when the daily mean temperature rises above 5 °C and snow has melted 
from open areas and to end when the daily mean temperature falls permanently below 5 °C) lasted 
from 27 April until 17 September with a total of 1068.6 degree days.

Based on an earlier inventory of these protected areas (Kouki et al. 2004; Hardenbol et al. 
2020), we selected the Jyrinvaara area for this study. It had a typical density of aspen of various 
sizes in its old-growth forest parts (Fig. 1). In this protected area we inventoried all the old-growth 
forest parts (three parts in total). The dominant tree species in this reserve are Norway spruce and 
Scots pine. Silver birch (Betula pendula Roth) and downy birch (B. Pubescens Ehrh.) are rather 
common, while less common species include aspen, rowan (Sorbus aucuparia L.), and grey alder 
(Alnus incana [L.] Moench). This taxonomy is based on the database from the Missouri Botani-
cal Garden (2021). The size of the three inventoried old-growth forest parts was ca. 9 ha in total.

Within the reserve, both diameter at breast height (dbh) and position were recorded for all 
living aspens (n = 106) and for a sample of birches (n = 160) located close to aspens with a dbh 
above 5 cm in 2019 (Table 1). Dbh was measured at 1.3 m height above ground. The positions were 
recorded with a Topcon HiPer V and a Trimble R10 Global Navigation Satellite Systems (GNSS) 
with an accuracy of <1 m for horizontal coordinates. In a comparison with aerial images, it was 
clear that some trees had >2 m positioning errors. The clearly erroneous tree locations were later 
manually corrected based on RGB drone image mosaics to ensure a better match with the remotely 
sensed data. In addition, based on the RGB aerial images (see section 2.2), we visually selected 
pines (n = 122) and spruces (n = 122) to be included in the species classification (Supplementary 
file S1, availble at https://doi.org/10.14214/sf.10515; Table 1). For these trees dbh was not avail-
able. The visual interpretation of pines and spruces was verified by two operators.

Fig. 1. The location of the study area (Jyrinvaara) in Finland (left), and a zoomed in view (right) of this protected area. 
Within the protected area, there are three old-growth forest parts containing European aspen that are outlined in red. 
The various colored dots represent the various tree species (green for European aspen, yellow for birches [both silver 
and downy birch], blue for Norway spruce, and orange for Scots pine).

https://en.ilmatieteenlaitos.fi/download-observations
https://doi.org/10.14214/sf.10515


5

Silva Fennica vol. 55 no. 4 article id 10515 · Hardenbol et al. · Detection of aspen in conifer-dominated boreal…

2.2 Drone image data

The multispectral drone image data were acquired from the study area on five dates throughout the 
thermal growing season in 2019 (Table 2, Fig. 2). Our study included three acquisition dates at the 
beginning of the thermal growing season in spring, one in summer, and one in autumn. This skewed 
data acquisition was based on our hypothesis that springtime classification could potentially only 
be optimal during a limited period and we wanted to capture this moment while summer would 
be largely homogenous, and autumn would have a longer optimal timeframe. The images were 
acquired using a multi-rotor platform DJI Matrice 210 equipped with MicaSense RedEdge-M 
camera. The MicaSense sensor produces 1.2-megapixel images in the blue (B, 475 nm, full width at 
half maximum [FWHM] of 20 nm), green (G, 560 nm, FWHM of 20 nm), red (R, 668 nm, FWHM 
of 10 nm), red edge (RE, 717 nm, FWHM of 10 nm), and near infrared (NIR, 840 nm, FWHM of 
40 nm) bands. The altitude of 135 m aboveground resulted in a ground sampling distance of around 
9 cm. To avoid erroneous data due to changing illumination conditions during flight and to keep 
our data comparable between dates regardless of weather conditions (Table 2) we also collected 
data for later radiometric correction of the multispectral images. This data collection followed 
best practices as also outlined by MicaSense (2020). Immediately before and after each flight, we 
captured calibration images from a MicaSense Calibrated Reflectance Panel (CRP). The reflectance 
values of the CRP were: B = 0.528, G = 0.53, R = 0.53, RE = 0.53, and NIR = 0.528. Additionally, 
we equipped the drone with a RedEdge Downwelling Light Sensor (DLS) which attaches informa-
tion about the illumination conditions to the metadata of every captured image during the flight.

We also collected RGB drone image data on date 5 (2019-09-27) for quality assurance, i.e. 
correction of wrongly positioned birches and aspens and segmentation accuracy assessment, and 
for adding the pines and spruces based on visual interpretation. These data were collected using a 
DJI Phantom 4 RTK multi-rotor platform with a real-time kinematic receiver and were processed 
into orthomosaics using the DJI software. The altitude of 140 m aboveground resulted in a ground 
sampling distance of 3.8 cm; compared with the 9 cm ground sampling distance of the multispectral 

Table 1. The reference trees for the training and validation of the remotely sensed models for aspen detection. The total 
number of trees per tree species and various diameter at breast height (dbh) measures are only available for the field-
inventoried tree species. Birches refers to silver and downy birch.

Tree species Number of trees Mean dbh (cm) Minimum dbh (cm) Maximum dbh (cm) Data source

European aspen 106 41 25 65 Field
Birches 160 28 17 44 Field
Norway spruce 122 - - - Visual interpretation
Scots pine 122 - - - Visual interpretation

Table 2. Characteristics of the multispectral and RGB drone image data sets collected from our study area for aspen 
detection.

Date Type No. of  
images

Image  
overlap

Aspen developmental 
stage

Birch developmental 
stage

Weather  
condition

13 May 2019 Multispectral 1339 80/75 Leaf off Late leaf flush Sunny
22 May 2019 Multispectral 1485 85/85 Early leaf flush Mature leaves Overcast
30 May 2019 Multispectral 1685 85/85 Late leaf flush Mature leaves Sunny
13 June 2019 Multispectral 1772 85/85 Mature leaves Mature leaves Overcast
27 Sept. 2019 Multispectral 1232 85/75 Senescence Senescence Overcast
27 Sept. 2019 RGB 1497 85/85 Senescence Senescence Overcast
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data. Although multispectral data was tested for the purposes of quality assurance and for adding 
pines and spruces, the lower spatial resolution complicated these tasks.

We deployed four ground control points with white color cross targets of 50 by 50 cm to 
georeference the multispectral data. Their coordinates were measured using the virtual reference 
station real-time kinematic (VRS RTK) method with an accuracy of 1–2 cm for horizontal and 
vertical coordinates.

2.3 Image data processing

The drone data was processed to generate dense point clouds using the multispectral images. 
The processing was carried out using the Agisoft Metashape v. 1.6 software (Agisoft LLC, St. 
Petersburg, Russia) and followed the workflow outlined by Agisoft (2020). Agisoft Metashape is a 
commercial software that uses the Structure from Motion approach to generate a three-dimensional 
reconstruction from a collection of overlapping photographs, which can provide a dense and accu-
rate three-dimensional point cloud (Iglhaut et al. 2019). The photogrammetric workflow consisted 
of three stages: radiometric correction, image alignment and point cloud densification. First, the 
calibration images taken from the CRP and the metadata info from the DLS were used for radio-
metric correction of the multispectral images by checking the Agisoft options “Use reflectance 
panels” and “Use sun sensor”. This resulted in calibrated reflectances that are less influenced by the 
weather conditions during data acquisition. In the second stage of processing, the quality was set to 
“high”, which means that full resolution images were used to orient the images. During this image 
alignment stage, camera calibration was also performed by Agisoft, based on Brown’s distortion 
model (Brown 1971). Finally, dense point clouds were calculated using the multispectral images 

Fig. 2. False-color images from the five inventoried dates based on the collected multispectral data depicting the de-
velopmental stages of birches, both silver and downy birch (yellow dots) in the upper row and European aspen (green 
dots) in the bottom row.



7

Silva Fennica vol. 55 no. 4 article id 10515 · Hardenbol et al. · Detection of aspen in conifer-dominated boreal…

to acquire the highest point density and resolution. During this stage, the software generates a 
photogrammetric point cloud based on the camera locations and orientations, and internal param-
eters determined by the “image alignment” stage. We selected “High quality” and “Moderate” as 
settings for “Quality” and “Depth filtering”, respectively, as these have been shown to be the most 
suitable settings for forest inventory (Puliti et al. 2015, 2017). The resultant point clouds included 
both xyz coordinates and spectral information for each point. The points were finally exported as 
text files for further processing.

2.4 Individual Tree Detection and computation of predictor variables

The multispectral photogrammetric point clouds from each date were processed separately. The 
points were first converted to the standard Finnish N2000 elevation system (Saaranen et al. 2021). 
The elevations were further normalized into above ground level with the publicly available ALS-
based elevation model provided by the National Land Survey of Finland (2020). Subsequently, 
we outlined the inventoried old-growth forest parts (Fig. 1) and only used data that fell within 
these borders to reduce the computational cost. The points enveloped within the outlined area were 
tiled to further reduce computing demand. Each tile was 100 m, but a buffer of 10 m was added 
on each side to avoid splitting trees between tiles. Next, Canopy Height Models (CHMs) with a 
50 cm resolution were constructed from the normalized point clouds using the LAStools software 
(Isenburg 2020) and the method presented by Isenburg (2014) and Khosravipour et al. (2014). This 
method avoids the generation of no-data areas inside the CHMs by stacking a set of temporary 
CHMs constructed with different height thresholds.

The ITD was performed with the R software version 3.5.3 (R Core Team 2019) and its 
libraries LidR (Roussel et al. 2020), rLiDAR (Silva et al. 2017), and ForestTools (Plowright and 
Roussel 2018). The CHMs were first smoothed with a Gaussian filter where the window size was 
five pixels. The smoothing intensity σ was set at 0.6 for pixels with height < 20 m and at 1.0 for 
pixels with height ≥ 20 m (Pitkänen et al. 2004). The locations and heights of the individual trees 
were first detected as local maxima in the CHMs based on a moving window with a size of 5 × 5 
pixels. Local maxima with maximum height < 2 m were considered low vegetation and omitted.

Marker-controlled watershed segmentation was applied to the smoothed CHMs to obtain 
crown boundaries for each detected tree. Each boundary was linked with the largest field-measured 
tree within it. We did not measure all trees inside the study area, so a tree detection rate could not be 
assessed, but the accuracy of segmentation was evaluated visually against an orthomosaic produced 
from the RGB images. We examined how accurate the segments involving field-measured trees 
(only aspen and birch) were on date 5 (2019-09-27, Fig. 3). Highly accurate segments contained 
only one tree with only some branches from neighboring trees included. Moderately accurate seg-
ments contained a dominant tree that was properly linked to a field-measured tree but also contained 
some smaller distorting trees. Poorly accurate segments included multiple dominant trees and in 
many cases the field-measured tree was linked to a wrong dominant tree.

Because the multispectral segmentation resulted in multiple poorly accurate segments that 
would have an effect on the interpretation of multi-seasonal data, we also executed the segmenta-
tion process in two alternate ways. First, we employed the processing chain described above for 
the RGB imagery available from 2019-09-27. These data provided a considerably higher point 
density, and fewer segments with moderate or poor accuracy. Second, we performed a manual 
segmentation based on an orthomosaic derived from the same RGB images. The segments were 
drawn in QGIS 3.16.5 (QGIS Development Team 2021) and verified by two operators. The manual 
segmentation was included as a best-case scenario that might be less useful in practice but would 
show the seasonal effects on classification without additional errors from segmentation.
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Multispectral points with height ≥ 2 m above ground level were used to extract a set of 
spectral (n = 44) and height (n = 27) distribution variables for each tree segment (Table 3). The 
spectral values of each point were normalized by dividing the brightness at each band by the sum 
of all brightness values observed for the same point (Yu et al. 1999). All height percentiles as well 
as mean and median heights were normalized into relative values by dividing their values by the 
maximum height of the individual segments. Maximum height itself was not included as a predictor 
since it could not be normalized. This way the height distribution variables retained the informa-
tion related to crown shape, but tree height did not have an effect in classification, which made the 
classification models more general. Finally, each predictor was normalized to the standard unit 
interval which made the model interpretation easier.

2.5 Statistical analysis

The variables extracted for the segments that were linked with the field-measured trees were 
imported into R for species classification with linear discriminant analysis (LDA). We performed 
the LDA for two main classifications: (1) for separating all four tree species (four-class classifica-
tion), and (2) for separating aspen against a combined class of birches, spruces, and pines (two-class 

Fig. 3. Examples of highly, moderately, and poorly accurate automatic multispectral- and RGB-based segmentations 
and the number and percentage of segments in each accuracy category. The green dots represent European aspen, the 
yellow dot a silver birch, and the segments are outlined in yellow. The segmentation accuracies in this figure are from 
date 5 (2019-09-27). The pixel size is 3.3 cm.
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classification). However, the results showed that the two-class case did not improve the accuracy 
of aspen inventory compared with the four-class case, so all results are reported for all species.

The LDA models were trained using the R-package MASS (Ripley et al. 2020). The number 
of predictor variables in the LDA was set at five, which is a compromise between the accuracy of 
predictions and avoidance of overfitting. We implemented the variable selection based on a heu-
ristic optimization algorithm (Packalén et al. 2012) that is a modification of the original Simulated 
Annealing method (Kirkpatrick et al. 1983). This algorithm tested a large number of different pre-
dictor combinations attempting to improve from the best currently found predictor set. To avoid 
convergence on local optima in the variable space, worse solutions also had a probability to be 
accepted as the basis of further iterations. The probability of accepting worse solutions decreased 
linearly as the number of iterations increased and was controlled by a parameter called tempera-
ture. We iterated the algorithm ten thousand times with the temperature set as 0.2. The variable 
combination that provided the highest classification accuracy was selected for reporting. The accu-
racy was assessed based on two different criteria: (1) the greatest value of the summed user’s and 
producer’s accuracies of aspen, and (2) the greatest value of Cohen’s kappa coefficient. The first 
case provided the optimal variables for classifying aspen, and the second case for classification of 
all four tree species. For clarification, user’s accuracy is the accuracy from the user’s perspective 
and refers to how many of the trees predicted to belong to a certain species actually belong to that 
species. Conversely, producer’s accuracy is the accuracy from the producer’s perspective and refers 
to how many of the field-measured trees belonging to a certain species are correctly classified as 
that species (Congalton and Green 2019).

The reported accuracy values were obtained via leave-one-out cross-validation (LOOCV). 
The accuracy assessment was performed based on confusion matrices, overall/user’s/producer’s 
accuracies, and Cohen’s kappa coefficients. In addition, the discriminant functions and plots were 

Table 3. A list of all predictor variables for aspen detection that were extracted 
from the multispectral image point cloud data based on the individual tree seg-
ments. Abbreviations: H = height; R = red; G = green; B = blue; RE = red edge; 
NIR = near infrared; NDVI = normalized difference vegetation index; GNDVI = 
green normalized difference vegetation index.

Predictors Description

Height

Relative H P5, H P10, …, H P95, H P99 Height percentiles
Relative H Mean Mean
Relative H Median Median
H SD Standard deviation
H Skew Skewness
H Kurt Kurtosis
H CV Coefficient of variation
H VAR Variance
Normalized spectral

R;G;B;RE;NIR P5, R;G;B;RE;NIR P25, 
R;G;B;RE;NIR P75, R;G;B;RE;NIR P95

Band percentiles

R;G;B;RE;NIR Mean Mean
R;G;B;RE;NIR SD Standard deviation
R;G;B;RE;NIR Skew Skewness
R;G;B;RE;NIR Kurt Kurtosis
NDVI;GNDVI P95* NDVI and GNDVI 95% percentiles
NDVI;GNDVI Mean* NDVI and GNDVI mean

* Equations: NDVI = (NIR – R)/(NIR + R) and GNDVI = (NIR – G)/(NIR + G)
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interpreted to uncover the relative importance of different predictors. Discriminant functions are 
linear combinations that indicate how the various predictors determine the discriminant space 
where each observation is mapped to the nearest group center. Discriminant plots show how the 
various observations are scattered within this space. Our analysis mainly focused on the first two 
discriminants.

3 Results

3.1 Manual segmentation

3.1.1 Variable selection optimized for aspen

Manual segmentation yielded clearly higher classification accuracies than automatic segmenta-
tions in all cases, so we report its results first. When the variable selection was optimized for aspen 
separability, the user’s and producer’s accuracies for aspen ranged from 84% to 97% (Table 4). The 
accuracy of aspen classification was the greatest for date 1 (2019-05-13): user’s accuracy 97%, 
producer’s accuracy 96% (Table 4). At this time, the aspens were without leaves and the birches 
had partially flushed leaves. On date 1, aspen was separated by the first discriminant and the other 
species by the second discriminant (Fig. 4). The first discriminant separated aspen exceptionally 
well, but the other species showed clear overlap on the first discriminant. Both discriminants were 
dominated by spectral predictors (G P95, RE P95, RE P75, NDVI Mean) and the only relative 
height predictor (H P45) had a comparatively small effect on the classification (Table 5). Overall, 
the spectral predictors reflected the differences between aspens’ bare branches and the other species’ 
green leaves. The aspen group had the smallest group means for RE P95, RE P75, and NDVI Mean, 
as these predictors describe the amount of green vegetation. Aspen also had the largest group mean 
for G P95, because bare branches have larger reflectance at visible wavelengths than green vegeta-
tion. Interestingly, the RE P95 and RE P75 had different signs in the first discriminant (Table 5). 
We investigated the distributions of RE brightness values for crowns of different species, and for 
aspen the distribution was normal, while the other species’ distributions were left-skewed. This 
meant that aspen had a larger increase in brightness from RE P75 to RE P95 than other species, 
which could explain the differences in signs of these variables in the first discriminant function.

The accuracy of aspen classification decreased when leaves were present on both aspen 
and birch (Table 4). However, date 3 (2019-05-30) showed nearly as good accuracies for aspen 
as date 1 (user’s 96%, producer’s 93%). On date 3, the first discriminant separated the aspen and 

Table 4. Accuracy values obtained from tree species classification by linear discriminant analysis and manual segmen-
tation for the five inventoried dates. The best results obtained in the aspen- and kappa-optimized classifications are 
bolded.

Optimization criterion Accuracy values Date 1:
13 May 2019

Date 2:
22 May 2019

Date 3:
30 May 2019

Date 4:
13 June 2019

Date 5:
27 Sept. 2019

Aspen-optimized Kappa coefficient 0.80 0.79 0.90 0.71 0.83
Overall accuracy, % 85 84 92 78 88
Aspen user’s accuracy, % 97 85 96 84 87
Aspen producer’s accuracy, % 96 95 93 91 84

Kappa-optimized Kappa coefficient 0.93 0.91 0.93 0.88 0.86
Overall accuracy, % 95 93 94 91 90
Aspen user’s accuracy, % 96 90 92 85 86
Aspen producer’s accuracy, % 96 83 94 84 83
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Fig. 4. Class separation by two discriminant axes in the aspen-opti-
mized tree species classification by manual segmentation on the five 
inventoried dates.
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birch from the conifers, primarily based on two RE variables (Table 5). The second discriminant 
established another axis where aspen and pine had small values while birch and spruce had large 
values. The second discriminant was dominated by B P75, where pine and aspen had larger group 
means than birch and spruce. The blue wavelengths are strongly absorbed by chlorophylls, so this 
observation could mean that birch and spruce were experiencing different developmental stages 
or had different levels of chlorophyll content in late May compared with pine and aspen.

The other dates showed clearly worse accuracies for aspen (user’s 84–87%, producer’s 
84–91%) but overall, these values were still rather good (Table 4). Based on the confusion matrices 
(Suppl. file S2), mixing between aspen and birch occurred primarily at dates 4 (2019-06-13) and 
5 (2019-09-27). On date 2, slight mixing between aspen and pine could also be observed. During 
the autumn season (date 5, 2019-09-27) when leaf coloration altered, there was a clear decline in 
aspen classification accuracy compared to spring and summer, and the greatest amount of mixing 
with birch. Spectral variables dominated the discriminant functions for each of these dates, and 
each model had only one relative height metric. Predictors derived from red edge or NIR bands 
were included in each model (Table 5), indicating that multispectral sensors provide considerably 
better accuracies in species classification than ordinary RGB cameras. Full confusion matrices for 
each date are shown in Suppl. file S2.

Table 5. The selected predictors, their normalized and non-normalized (in parentheses) means for all four tree species, 
and the discriminant function coefficients obtained from the aspen-optimized tree species classification by linear dis-
criminant analysis and manual segmentation. The most important predictors for each discriminant and date are bolded. 
Abbreviations: P = Percentile; H = height; R = red; G = green; B = blue; RE = red edge; NIR = near infrared; NDVI 
= normalized difference vegetation index; GNDVI = green normalized difference vegetation index. Birches refers to 
silver and downy birch.

Dates Predictors Predictor means 
for European 

aspen

Predictor means 
for birches

Predictor means 
for Scots pine

Predictor means 
for Norway 

spruce

LD1 LD2

Date 1: 
13 May 2019

H P45 0.48 (0.85) –0.06 (0.79) 0.04 (0.80) –0.37 (0.76) 0.22 –0.24
G P95 1.34 (0.14) –0.18 (0.12) –0.19 (0.12) –0.75 (0.12) 0.61 –1.34
RE P95 –0.89 (0.27) 0.79 (0.29) –0.04 (0.28) –0.13 (0.28) 1.47 –1.36
RE P75 –1.12 (0.25) 0.70 (0.28) 0.23 (0.27) –0.09 (0.26) –2.28 1.86
NDVI Mean –1.16 (0.64) 0.16 (0.73) –0.37 (0.69) 1.17 (0.80) –1.00 –2.00

Date 2: 
22 May 2019

H P70 0.57 (0.91) 0.23 (0.89) 0.01 (0.88) –0.76 (0.83) 0.64 0.47
NIR SD 1.03 (0.05) –0.42 (0.03) 0.05 (0.04) –0.43 (0.03) 0.48 0.45
R Skew –0.62 (0.19) 0.84 (1.21) –0.91 (–0.01) 0.43 (0.92) –0.14 1.59
RE Skew 0.65 (–0.27) –0.13 (–0.61) –0.55 (–0.79) 0.15 (–0.49) –0.04 0.72
NIR P25 –1.13 (0.41) 0.41 (0.46) –0.51 (0.43) 0.98 (0.48) –1.24 –0.42

Date 3: 
30 May 2019

H P55 0.46 (0.85) 0.11 (0.82) 0.02 (0.81) –0.54 (0.76) 0.45 –0.36
B Kurt –0.22 (2.14) 0.81 (5.47) –0.72 (0.50) –0.07 (2.61) 0.07 0.28
RE P95 1.16 (0.32) 0.64 (0.31) –0.91 (0.27) –0.87 (0.27) 4.45 –0.25
B P75 0.35 (0.06) –0.77 (0.05) 1.08 (0.07) –0.44 (0.05) 0.25 –1.33
RE P75 0.94 (0.30) 0.73 (0.29) –0.78 (0.26) –0.91 (0.26) –2.21 0.16

Date 4: 
13 June 2019

H P65 –0.23 (0.01) –0.01 (0.01) –0.35 (0.01) 0.56 (0.01) –0.04 –0.53
R SD 0.16 (0.02) –0.34 (0.01) 0.77 (0.02) –0.50 (0.01) –0.50 0.26
B P25 –0.56 (0.04) –0.56 (0.04) 1.50 (0.06) –0.33 (0.04) 2.02 0.56
R P25 –0.66 (0.04) –0.53 (0.04) 1.59 (0.08) –0.37 (0.04) –9.09 –4.21
NDVI Mean 0.52 (0.84) 0.55 (0.84) –1.53 (0.71) 0.43 (0.83) –4.49 –3.70

Date 5: 
27 Sept. 2019

H P95 0.32 (0.97) 0.33 (0.97) –0.04 (0.96) –0.63 (0.95) –0.40 –0.17
NIR Skew 0.72 (1.03) 0.48 (0.86) –0.02 (0.51) –1.17 (–0.30) –0.30 –1.26
G P95 0.78 (0.14) 0.69 (0.14) –0.46 (0.13) –1.04 (0.12) –0.44 –0.79
RE P95 1.10 (0.32) 0.66 (0.31) –0.95 (0.27) –0.81 (0.27) –3.51 1.49
RE P75 1.03 (0.30) 0.72 (0.30) –0.89 (0.26) –0.87 (0.26) 1.86 0.12
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3.1.2 Variable selection optimized for kappa of all species

We also performed an alternative classification where the variable selection was optimized by the 
kappa coefficient obtained from LDA of all four species. The overall accuracy for all four species 
was relatively stable throughout the growing season and ranged from 90% to 95% (Table 4). The 
kappa coefficient on the other hand ranged from 0.86 to 0.93. The greatest accuracies were again 
obtained on dates 1 (2019-05-13, 95%) and 3 (2019-05-30, 94%).

On date 1, the classification model was comparable to the model with aspen-optimized 
predictors but relied solely on spectral data. The first discriminant was primarily influenced by 
red edge and near-infrared bands and contributed to the separation of pine and aspen (Table 6). 
The second discriminant focused primarily on separating birch (Fig. 5) and was dominated by 
the green band (G P75). Fig. 5 shows that the first two discriminants did not separate pine very 
well, but the third discriminant (not shown) contributed 13% to the total separation and primarily 
improved the classification of pine.

Table 6. The selected predictors, their normalized and non-normalized (in parentheses) means for all four tree species, 
and the discriminant function coefficients obtained from the kappa-optimized tree species classification by linear dis-
criminant analysis and manual segmentation. The most important predictors for each discriminant and date are bolded. 
Abbreviations: P = Percentile; H = height; R = red; G = green; B = blue; RE = red edge; NIR = near infrared; NDVI 
= normalized difference vegetation index; GNDVI = green normalized difference vegetation index. Birches refers to 
silver and downy birch.

Dates Predictors Predictor means 
for European 

aspen

Predictor means 
for birches

Predictor means 
for Scots pine

Predictor means 
for Norway 

spruce

LD1 LD2

Date 1: 
13 May 2019

G P95 1.34 (0.14) –0.18 (0.12) –0.19 (0.12) –0.75 (0.12) 0.91 1.43
RE P95 –0.89 (0.27) 0.79 (0.29) –0.04 (0.28) –0.13 (0.28) 1.44 0.10
G P75 1.21 (0.13) –0.37 (0.11) 0.15 (0.11) –0.74 (0.11) –1.81 –4.20
RE P75 –1.12 (0.25) 0.70 (0.28) 0.23 (0.27) –0.09 (0.26) –2.40 0.74
NIR P25 –1.03 (0.43) 0.04 (0.48) –0.36 (0.46) 1.19 (0.53) –2.68 –2.91

Date 2: 
22 May 2019

H P70 0.57 (0.91) 0.23 (0.89) 0.01 (0.88) –0.76 (0.83) –0.75 –0.29
NIR SD 1.03 (0.05) –0.42 (0.03) 0.05 (0.04) –0.43 (0.03) –0.64 –0.53
G P95 1.17 (0.14) –0.07 (0.13) –0.28 (0.13) –0.64 (0.13) –0.33 0.72
RE P95 0.18 (0.31) 1.17 (0.33) –0.80 (0.29) –0.76 (0.29) –1.71 –0.18
R P25 0.76 (0.09) –0.94 (0.06) 1.00 (0.09) –0.51 (0.06) –0.19 –2.07

Date 3: 
30 May 2019

H P55 0.46 (0.85) 0.11 (0.82) 0.02 (0.81) –0.54 (0.76) 0.34 0.47
R Mean 0.01 (0.06) –0.80 (0.05) 1.36 (0.08) –0.40 (0.06) –0.54 2.48
RE P95 1.16 (0.32) 0.64 (0.31) –0.91 (0.27) –0.87 (0.27) 4.29 1.24
NIR P75 –0.32 (0.57) 0.07 (0.58) –0.48 (0.56) 0.67 (0.61) –0.22 0.97
RE P75 0.94 (0.30) 0.73 (0.29) –0.78 (0.26) –0.91 (0.26) –2.30 –0.07

Date 4: 
13 June 2019

B Mean –0.45 (0.04) –0.58 (0.04) 1.44 (0.06) –0.35 (0.04) –1.58 –2.96
G Mean 0.22 (0.11) –0.65 (0.10) 0.74 (0.11) –0.15 (0.10) 0.30 3.26
RE P75 1.02 (0.27) 0.38 (0.27) –0.70 (0.26) –0.63 (0.26) –0.49 –2.76
R P25 –0.66 (0.04) –0.53 (0.04) 1.59 (0.08) –0.37 (0.04) 4.29 –0.18
GNDVI P95 –0.24 (0.66) 0.42 (0.68) –0.58 (0.65) 0.28 (0.67) 0.52 0.42

Date 5: 
27 Sept. 2019

H P70 0.45 (0.92) 0.36 (0.91) –0.04 (0.89) –0.78 (0.85) –0.60 –0.07
NIR SD 0.64 (0.05) 0.42 (0.05) –0.30 (0.04) –0.76 (0.03) –0.52 –0.12
RE P95 1.10 (0.32) 0.66 (0.31) –0.96 (0.27) –0.81 (0.27) –2.42 2.08
RE P75 1.03 (0.30) 0.72 (0.30) –0.89 (0.26) –0.87 (0.26) 0.33 –2.92
B P25 –0.39 (0.04) –0.54 (0.03) 1.49 (0.05) –0.46 (0.03) –0.21 –2.10
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Fig. 5. Class separation by two discriminant axes in the kappa-optimized 
tree species classification by manual segmentation on the five inventoried 
dates.
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On date 3, the selected model resembled the corresponding aspen-optimized model, but the 
separation of pine and spruce was improved by employing the red (R Mean) and near-infrared 
(NIR P75) bands instead of the previous predictors derived from the blue band. The lowest overall 
accuracy was obtained in the autumn (date 5, 2019-09-27), but was still very good at 90%. Pine, 
spruce, and the deciduous species were well separated both in summer (date 4, 2019-06-13) and 
autumn, but the mixing between aspen and birch at these dates decreased the overall accuracy 
(Fig. 5). Full confusion matrices for each date are shown in Suppl. file S3.

3.2 Comparison of manual and automatic segmentations

In contrast to the manual segmentation, the automatic multispectral-based and RGB-based segmen-
tations resulted in lower classification accuracies for all dates and optimizations because of poorer 
segmentation (Table 7). The multispectral-based segmentation in the aspen-optimized classification 
had user’s accuracies for aspen ranging from 77% to 89% and producer’s accuracies ranging from 
78% to 91%. Conversely, based on the RGB segmentation, the user’s accuracies for aspen ranged 
from 85% to 97% and producer’s accuracies ranged from 79% to 93%. Similarly, in the kappa-
optimized classification, the classification based on the multispectral segmentation resulted in a 
kappa coefficient ranging from 0.75 to 0.81 while classification based on the RGB segmentation 
had a kappa coefficient ranging from 0.84 to 0.90. In agreement with the classification based on 
the manual segmentation, date 1 had the best results for aspen-optimized classifications based on 
automatic segmentation. In contrast, date 3 for multispectral-based segmentation and date 2 for 
RGB-based segmentation proved more accurate than date 1 in the kappa-optimized classification. 
It is important to note that the predictor selection differed considerably in the classifications based 
on automatic segmentation compared with the classifications based on the manual segmentation. 
As such, the classifications based on the automatic segmentations did not just add more random 

Table 7. Tree species classification accuracy values obtained from both the aspen-optimized and the kappa-optimized 
variable selections based on multispectral-based and RGB-based segmentations. The best results in the aspen- and 
kappa-optimized classifications are bolded.

Optimization criterion Accuracy values Date 1: 
13 May 2019

Date 2: 
22 May 2019

Date 3: 
30 May 2019

Date 4: 
13 June 2019

Date 5: 
27 Sept. 2019

Multispectral-based segmentation

Aspen-optimized Kappa coefficient 0.55 0.52 0.80 0.65 0.72
Overall accuracy, % 66 64 85 74 79
Aspen user’s accuracy, % 89 85 86 87 77
Aspen producer’s accuracy, % 91 78 84 83 81

Kappa-optimized Kappa coefficient 0.77 0.78 0.81 0.79 0.75
Overall accuracy, % 83 84 86 84 81
Aspen user’s accuracy, % 88 79 84 78 75
Aspen producer’s accuracy, % 84 71 76 83 79

RGB-based segmentation

Aspen-optimized Kappa coefficient 0.70 0.80 0.89 0.71 0.83
Overall accuracy, % 78 85 91 79 87
Aspen user’s accuracy, % 97 89 91 85 85
Aspen producer’s accuracy, % 93 87 88 81 79

Kappa-optimized Kappa coefficient 0.84 0.90 0.88 0.84 0.85
Overall accuracy, % 88 92 91 88 89
Aspen user’s accuracy, % 90 90 88 80 82
Aspen producer’s accuracy, % 92 79 83 82 80
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error with the same selected predictors, which can clearly be seen when comparing discriminant 
plots (Fig. 4 with Suppl. file S6 and Fig. 5 with Suppl. file S7). The selected predictors for each 
date with multispectral-based and RGB-based segmentation are shown in Suppl. files S4 and S5.

As indicated above, the RGB-based segmentation resulted in better classification results 
than the multispectral-based segmentation and this is clearly a result of segmentation accuracy. 
In all cases, the RGB-based segmentation proved more accurate than the multispectral-based seg-
mentation (Fig. 3). For example, on date 5 the RGB-based segmentation had 30 moderately and 
30 poorly accurate segments while the multispectral-based segmentation had 58 moderately and 
49 poorly accurate segments.

4 Discussion

4.1	 Seasonal	variations	in	aspen	classification	accuracy

Compared with previous efforts to separate aspen from other tree species, on the most optimal date 
with manual segmentation, we obtained excellent classification accuracies with a user’s accuracy 
of 97% and a producer’s accuracy of 96% for aspen. This result is comparable to the F1-scores of 
92% for aspen reported by Viinikka et al. (2020) and the 86% reported by Kuzmin et al. (2021). 
Previously, however, the review by Kivinen et al. (2020) reported much lower accuracies for aspens 
classification with user’s accuracies between 56% and 86% and producer’s accuracies between 
24% and 71%.

We find that spring, when aspen has no leaves yet, but birch already has leaves, is the optimal 
time to separate aspen from other tree species. This is likely a result of the differences in spectral 
values between bark or branches and leaves and indicates that there is little intraspecific variation 
in aspen and birch ecophysiology but there is large interspecific variation. Previous studies have 
also found or suggested that temporal differences in leaf flush can be used to separate tree species 
(Key et al. 2001; Persson et al. 2018). However, in other cases, large intraspecific variation can 
be a detriment despite obvious temporal differences in leaf flush (Lisein et al. 2015). The period 
during which aspen has no leaves but birch does is short and is probably under the influence of 
annual and geographic variation. Consequently, phenological monitoring via, for example, cameras 
mounted in place (Zeng et al. 2020) or drones (Fawcett et al. 2020) is required to not miss the 
optimal time for inventories.

During the late spring and summer season when both aspen and birches have leaves, there is 
little interspecific variation and strong spectral similarity between these tree species, and in addition 
intraspecific variation is small (Viinikka et al. 2020). Since this period lasts long, it is often selected 
for single date species classification studies. However, in accordance with other studies (Persson et 
al. 2018), we find that the lack of obvious phenological differences results in poorer classification 
accuracy of images acquired during summer. Like the study by Viinikka et al. (2020) we find that 
the red edge and near infrared bands are important to discriminate aspen during this time.

Despite expectations that the autumn senescence period would be a good time to separate 
aspen from the other tree species based on phenological differences (Hill et al. 2010; Persson et 
al. 2018), with our data this was the poorest performing time. Previous studies have shown both 
worse (Voss and Sugumaran 2008; Lisein et al. 2015) and better (Key et al. 2001; Hill et al. 2010) 
performance in species classification of deciduous trees in autumn compared with other periods. 
The poorer classification accuracy during the autumn senescence period in our case can potentially 
be attributed to the large degree of intraspecific variation in the onset of aspen senescence, even 
within local populations (Fracheboud et al. 2009). Leaf/canopy spectral values during the autumn 
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senescence period are strongly connected to the onset timing (Lichtenthaler 1987) and since the 
onset displays large variation, canopy spectral values between aspen trees likely also portray large 
variation on a particular date throughout this period (Keskitalo et al. 2005). Furthermore, aside 
from senescence timing influencing spectral values there may also be inherent differences between 
aspen trees in their autumn coloration not influenced by the onset of senescence, especially between 
individuals from different clonal colonies. Intraspecific variation might be a bigger challenge in 
the autumn senescence period compared with other times of the year. Fracheboud et al. (2009) 
observed that in contrast to the onset of aspen autumn senescence, the onset of bud set in aspen 
exhibits much less variability within local populations. Our findings are, however, not conclusive 
on the value of images acquired in autumn, considering that we only had a single acquisition date in 
autumn and that the optimal autumn date may not have been covered by this acquisition. Moreover, 
leaf coloration during senescence can differ widely between years and thereby alter classification 
accuracy interannually (Hill et al. 2010).

4.2	 Seasonal	variations	in	overall	classification	accuracy

The accuracy values for all species are very promising, especially on the first and third date, with 
our findings presenting the best classification accuracy achieved thus far when considering aspen 
as a separate species (Viinikka et al. 2020). Our results suggest that the late spring/early summer 
season should be preferred in image acquisition for species-specific forest inventory scenarios. 
Focusing on the separability of pine and spruce, they were rather well separated on all dates but 
slightly worse in autumn. This is potentially related to annual ecophysiological patterns in pine 
whereby pine drops old needles in autumn and new shoots reach full size during summer (Hovi 
et al. 2016). Spruce, on the other hand, portrays less seasonal variation. Although we did not per-
form inventories in late summer (July and August), it is possible that pine and spruce separability 
performs worse with our method during that time, as observed by Hovi et al. (2016).

The separability of deciduous trees from conifers was most apparent on the third date. Sea-
sonal variations in the separability of deciduous trees from conifers are likely related to combina-
tions of the abovementioned seasonal ecophysiologies of the various tree species. Overall, we find 
that the red edge band is a reliable classifier for the separation of deciduous trees from conifers, in 
accordance with findings from hyperspectral datasets aimed at general tree species classification 
(reviewed by Fassnacht et al. 2016).

4.3 Implications for remote sensing

Our results showed that multispectral drone image point clouds have a great capability of detect-
ing tree species, including non-dominant trees in mixed forests. Drones enable cost-effective data 
acquisitions for small-sized areas during the season that provides the best classification accuracy. 
The optimal time to acquire the images was late spring prior to aspen leaf flush for both aspen-
optimized and general tree species classification. In Finland, springtime has already been shown 
to provide more accurate tree species estimates than other seasons, when airborne laser scanning 
data is used (Villikka et al. 2012; Hovi et al. 2016). Our results confirm that the same applies to 
drone image point clouds that also contain spectral information that is lacking from most laser 
scanning data sets. Predictors computed from the red edge and near infrared bands were repeat-
edly included into the various classification models. With advances in hyperspectral sensors, the 
accuracy of tree species classification could potentially be further improved (Sothe et al. 2019; 
Viinikka et al. 2020), but the higher spectral resolution comes at the cost of spatial resolution and 
geometric accuracy (Feng et al. 2020).
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Using a multispectral sensor as a single-sensor solution to inventory aspens has proven 
relatively inaccurate in our case. The main problem was that the multispectral sensor had a larger 
ground sampling distance than the RGB sensor’s, which led to a less dense point cloud. As a result, 
also the accuracies of automatic segmentation and the resultant classification were poorer with 
multispectral data. The inaccuracy of the automatically produced segments meant that there were 
multiple cases in which several species were present within a single segment, and thus the spectral 
and height variables were skewed compared with more accurate manual or RGB-based segments. 
Thus, we recommend that additional RGB data from drone imagery acquired relatively close to 
the surface are also collected to obtain a more accurate segmentation. It is still beneficial to also 
process the multispectral images into point clouds because the introduction of height dimensions 
enables tree species classification using only points that are above a given height threshold. This 
way the confusing effect of ground pixels on the species classification can be avoided.

The classification accuracy of aspen was nevertheless still good with automatically produced 
segments for date 1 (multispectral-based segmentation: user’s 89%, producer’s 91%, RGB-based 
segmentation: user’s 97%, producer’s 93%). These are very promising results considering practical 
inventories in the future, especially if the accuracy of automatic segmentation can be improved 
further with higher resolution images and better segmentation algorithms. Manual segmentation is 
also a reasonable option in the model training stage, but applications to large-area mapping require 
automated segmentation approaches.

4.4 Implications for nature conservation

The importance of remote sensing applications for nature conservation (Kerr and Ostrovsky 
2003; Nagendra et al. 2013) and especially the use of accurate tree species classification has been 
addressed multiple times (Shang and Chisholm 2014; Fassnacht et al. 2016). The importance of 
aspen classification is especially apparent for protected area designation (Lehtomäki et al. 2009) 
and the monitoring of aspen populations in established protected areas (Hardenbol et al. 2020). Our 
method resulted in a highly accurate and cost-effective way to provide general tree species clas-
sification as well as aspen-specific classification. However, since our study only included aspens 
that reach the canopy, complete demographic monitoring of aspen cohorts within a forest stand 
via remote sensing requires applications such as under-canopy drone laser scanning by which to 
classify below-canopy trees (Hyyppä et al. 2020). Despite this limitation in detecting individual 
below-canopy trees, we would recommend the use of our method for protected area designation 
and monitoring.
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