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In forest planning, forest inventory information is used for predicting future development 
of forests under different treatments. Model predictions always include some errors, which 
can lead to sub-optimal decisions and economic loss. The influence of growth prediction 
errors on the reliability of projected forest variables and on the treatment propositions have 
previously been examined in a few studies, but economic losses due to growth prediction 
errors is an almost unexplored subject. The aim of this study was to examine how the growth 
prediction errors affected the expected losses caused by incorrect harvest decisions, when 
the inventory interval increased. The growth models applied in the analysis were stand-level 
growth models for basal area and dominant height. The focus was entirely on the effects of 
growth prediction errors, other sources of uncertainty being ignored. The results show that 
inoptimality losses increased with the inventory interval. Average relative inoptimality loss 
was 3.3% when the inventory interval was 5 years and 11.6% when it was 60 years. Average 
absolute inoptimality loss was 230 euro ha–1 when the inventory interval was 5 years and 860 
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1 Introduction
The purpose of forest planning is to help decision 
makers to choose appropriate forest management 
actions for a given planning period. The recom-
mendations are based on information collected in 
the forest inventory. Nowadays in Finland, a forest 
inventory is commonly carried out at 10–15year 
interval, and the information is updated between 
inventories using growth models. The predicted 
growth under different treatment schedules forms 
the basis for selecting the optimal future treat-
ments for each stand. In Finland, growth models 
used in forest planning are usually tree-level 
models (e.g., Hynynen et al. 2002) but stand-level 
models (e.g., Gustavsen 1977, Saramäki 1977, 
Nyyssönen and Mielikäinen 1978, Vuokila and 
Väliaho 1980, Oikarinen 1983) can also be used. 
Commonly used Finnish simulators for forest 
planning purposes are MELA (Siitonen 1996), 
MOTTI (Hynynen et al. 2005), SIMO (Rasinmäki 
et al. 2009) and MONSU (Pukkala 2004). MELA, 
MOTTI and MONSU are based on tree-level 
models, SIMO includes both tree- and stand-level 
growth models.

Future development of forests predicted by 
growth models always includes errors, the amount 
of which depends on (i) random variation in 
growth, (ii) inaccurate description of the present 
state of the forest and (iii) the parameters of 
growth models and their estimation errors (Ståhl 
and Holm 1994). In addition, there may be uncer-
tainty concerning the model misspecification, i.e. 
the number of relevant predictors and the form of 
their effect, both of which may introduce system-
atic error or bias (e.g. Kangas 1999). The errors 
from the parameters of growth models or errors 
due to model misspecification can be reduced by 
making an improved model. Likewise, the errors 
due to inventory can be reduced by making a new, 
more accurate, inventory. Uncertainty caused by 
natural randomness, on the other hand, cannot 
be decreased with additional information. When 
growth is predicted for several consecutive peri-
ods, growth model variables include errors, which 
result from the prediction errors of previous peri-
ods (Kangas 1997). This error will accumulate in 
simulation and the longer the prediction period 
is the greater the variance of a given forest vari-
able is. 

The effects of growth prediction errors on the 
reliability of the projected forest variables and 
the treatment propositions in the planning system 
have been discussed in a few studies. Ojansuu et 
al. (2002), Hyvönen and Korhonen (2003) and 
Haara and Korhonen (2004) have studied predic-
tion periods of less than 15 years. In all of these 
studies, the correct treatment propositions were 
defined by applying the silvicultural guidelines 
(Hyvän metsänhoidon… 2006) to the known data 
on initial state and realized growth. These were 
then compared with recommendations generated 
by the MELA software. Information updated 
using growth models produced only a few or no 
incorrect treatment propositions according to all 
of these studies. The economic losses due to them 
were not analyzed, however. 

According to Haara and Leskinen (2009), uncer-
tainty due to MELA growth models (Hynynen et 
al. 2002) commonly used in Finland leads to 
relative RMSE-values of 5−10% when prediction 
period was five years and relative RMSE-values 
of 5−20% when the prediction period was ten 
years at stands where no treatments were done. 
The studied variables were basal area median 
diameter, height of basal area median tree, basal 
area and the stand volume. Corresponding values 
at stands where the effect of treatments was 
included were 5−20% and 5−40%. This is the best 
available information concerning the accuracy of 
growth models used in Finland. Mäkinen et al. 
(2008) had a longer period (20 years), but they 
only had a small data set from central Finland, 
and the stands were selected only from among 
very dense stands. 

Mostly the different error sources are consid-
ered one at a time. Holopainen et al. (2010), 
however, considered the effects of forest inven-
tory errors, stochastic variation in timber assort-
ment prices and errors in growth predictions in 
predicting net present values (NPV) of individ-
ual stands. When these factors were considered 
one at a time, growth prediction errors had the 
greatest impact on relative variance of the NPVs. 
When all of the factors were included, interac-
tion between factors led to a greater variance of 
NPVs. The variance was smaller, however, than 
the sum of variances of all of the factors, indi-
cating that the different errors may somewhat 
cancel each other out.
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A lot of effort has lately been put to decreas-
ing forest inventory costs. New methods have 
been developed for collecting data using remote 
sensing and for updating the information continu-
ously using growth models. The aim has typically 
been to achieve at least the same level of accu-
racy as with the traditional method. The various 
implications of information accuracy have been 
researched only recently. Improving the accu-
racy of the information is important only if the 
improvement has a clearly positive influence on 
the decisions made using the information. Erro-
neous information can lead to incorrect decisions 
which cause economic loss (Burkhart et al. 1978, 
Hamilton 1978), a so-called inoptimality loss. 
Such a loss can be calculated as the difference 
between net present values produced by error-
free information and those produced by errone-
ous information (as in Eid 2000). Calculating 
the inoptimality loss requires that the error-free, 
optimal result is known.

The research on the effects of inoptimality 
losses has so far focused on losses due to forest 
inventory errors (e.g., Ståhl et al. 1994, Eid 
2000, Holmström et al. 2003, Eid et al. 2004, 
Holopainen and Talvitie 2006, Juntunen 2006, 
Duvemo et al. 2007, Borders et al. 2008, Islam et 
al. 2009, Mäkinen et al. 2010). In one study, the 
effect of fluctuations of prices has been included 
(Ståhl 1994). Effects of growth prediction errors 
on inoptimality losses have been investigated 
much less, even though they have an effect on 
how long the inventory results can be used in 
decision making. So far it has been assumed that 
the information, once collected, is equally usable 
throughout the whole planning period, while in 
reality the quality of information deteriorates over 
time. 

If the economic losses caused by lengthening 
the inventory interval are known, the decision 
maker can evaluate when new information should 
be collected. In some time-point, collecting new 
information will reduce the losses more than the 
new inventory introduces costs, and this time 
point defines the optimal life-span of data. In 
order to make this kind of choice, the decision 
maker must also know the quality and cost of 
a new inventory. In general, the more uncertain 
the decision is, the more useful new information 
should be (Eid 2000). For instance, sometimes 

the choice between thinning a stand and final 
harvesting is very uncertain (i.e. the two options 
may seem equally profitable) and the decision 
made may affect the income of forest owner 
considerably. If the stand meets the regeneration 
criteria and will be harvested regardless of errors 
in growth modelling, however, growth prediction 
errors are negligible. 

In this study, we evaluated the influence of 
growth prediction errors on the expected losses 
from forest decisions at various inventory inter-
vals. It was assumed that the longer the inventory 
interval is, the lower the quality of information 
becomes because of errors in growth prediction. 
These losses can further be used in defining the 
life-span of the information. 

 

2 Material and Methods

2.1 Material

The input data for the forest planning simulations 
consisted of 99 stands in central Finland. The 
various stand attributes were estimated using a 
traditional stand-wise field inventory, but for the 
purposes of this study they were treated as if they 
were true values. The average stand size was 2 
hectares and thus the total area of the stands was 
approximately 200 hectares. Different develop-
ment classes, site classes and main tree species 
were well represented in the material. Average, 
maximum and minimum values of aggregate 
stand attributes are shown in Table 1a, the site 
quality distribution in Table 1b and the species 
distribution in Table 1c.

2.2 Methods

The simulation period in this study was 60 years 
and the effects of the growth prediction errors 
were determined for inventory intervals of 5, 10, 
15, 20, 30 and 60 years. In order to be able to 
capture the effects of growth prediction errors, we 
assumed that inventory errors did not occur. Thus, 
new error-free information on stand attributes (in 
this case more specifically basal area G and domi-
nant height Hdom) was obtained in each inventory 
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done at the given intervals. We assumed that the 
basic growth models were able to predict the true 
development of the stands and the models them-
selves contained no errors. Erroneous develop-
ments were produced by adding random growth 
prediction errors generated by error models 
developed for this study to the growth predic-
tion. The treatments were assumed to occur at 
the end of each period. Error-free and erroneous 
developments, with thinnings and final harvests, 
were simulated and optimized for each stand. 
We calculated economic losses caused by growth 
prediction errors using the results of simulation 
and optimization.

Phase I: Simulation and Optimization of 
Error-Free Developments

The stand-level growth models used in the forest 
planning simulations were basal area and domi-
nant height growth models for Scots pine and 
Norway spruce (Vuokila and Väliaho 1980), basal 
area growth models for white and pubescent birch 
(Mielikäinen 1985), a dominant height growth 
model for white birch (Oikarinen 1983) and domi-
nant height growth model for pubescent birch 
(Saramäki 1977). Different models were used for 
seedling stands, i.e. for stands where the mean 
height is less than 1.3 m. For pine, a growth model 
by Huuskonen and Miina (2007) was used. For 
other tree species, no growth models for seedling 
stands exist. In these stands, it is just assumed 
that the seedling stand will reach the 1.3 m mean 
height at a given age, and at that point the stand 
has certain “target values” for the needed variables 
(i.e. dominant height, basal area, mean diameter, 
volume), depending on the tree species and site 
quality. The target values are based on the pub-
lished growth and yield tables. After that growth 
models for non-seedling stands can be used. Thus, 
ingrowth is predicted for Norway spruce and birch 
seedling stands rather than growth.

The growth prediction of basal area and domi-
nant height were calculated separately for every 
tree species (each stratum) in each stand.

Simulation and optimization were done with the 
SIMO software (see Kangas and Rasinmäki 2008, 
Rasinmäki et al. 2009). The aim in the simulation 
and optimization computations was to determine 
the optimal harvest schedule for each stand. In 
order to do this, we first simulated a number 
of alternative harvest schedules for each stand 
by predicting the future development using the 
growth models, and simulating thinnings and final 
harvests with alternative timings. The simulated 
thinnings follow the published guidelines (Hyvän 
metsänhoidon… 2006). In this study, the length 
of each simulation period was 5 years. Harvests 
were done at the end of a five-year period. For a 
description of the simulator, see Fig. 1.

After simulating a number of alternative harvest 
schedules and future developments for each stand, 
the optimal harvest schedules were selected from 
the set of alternative harvest schedules using an 
optimization algorithm. The optimization task 

Table 1a. Average, maximum and minimum values of 
aggregate stand attributes in forest planning input 
data.

Stand variable Average Max Min

Basal area (m2 ha–1) 13.7 35.3 0
Basal area median diameter (cm) 13.2 34.4 0
Age (years) 38.8 180 1
Dominant height (m) 13 27.4 0.3
Volume (m3 ha–1) 109.8 375.3 0

Table 1b. Distribution of sites in forest planning input 
data.

Site class  Proportion of stands (%)
(mineral soil or 
corresponding peatland)

Grove 1
Grove-like heath 14
Fresh heath 46
Dryish heath 26
Dry heath 12

Table 1c. Distribution of species in forest planning 
input data.

Main tree species Proportion of stands (%)

Scots pine 57
Norway spruce 22
White birch 10
Pubescent birch 10
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Fig. 1. A flow chart of the simulation logic.
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was to maximize the net present value of the 
stand, which was calculated as
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where NPV is the net present value of the stand, 
NPV[0,60] is the net present value at the simula-
tion period (60 years), NPV60 and NPV60land are 
the net present value of the stand and the land 
at year 60 calculated with the models presented 
by Pukkala (2005), r is the interest rate used and 
N5t the net income at time 5t (t being the ordi-
nal number of the simulation period). Pukkala’s 
(2005) models predict the expected NPV based 
on, for instance, the quality of the site (land NPV) 
and the forest characteristics such as species, age, 
volume (stand NPV). The interest rate used for 
discounting future net incomes was 3%. The net 
incomes consisted of the income from thinnings 
and final harvests and cost of regeneration after 
final harvest.

The optimization algorithm was a simple heu-
ristic search algorithm called HERO (see Pukkala 
and Kangas 1993). The solution space was lim-
ited: harvests were done at intervals of five years 
and alternative timings of harvests were limited 
by the number of branches in the simulation. 
Because no constraints were included in the opti-
mization task and whole allowable solution space 
was gone through, the method always identified 
the optimal solution from the set of simulated 
alternatives.

Phase II: Simulation and Optimization of 
Erroneous Developments

The erroneous growth prediction was generated 
by the error model, the erroneous growth being 
the sum of the assumed true growth and the 
random error component 

ˆ ( )I It t t= + ε 2

where Ît is predicted erroneous growth, It is true 
growth and εt is the growth prediction error. 

The growth prediction error was assumed to 
consist of stand effect (inter-stand variation) and 
period effect (intra-stand, or between growth 
period variation). Thus the growth prediction 
error in each stand was described as

εt tu e= + ( )3

where εt is total growth prediction error, u is stand 
effect and et is period effect within the stand.

Fig. 2. Function f(T), which limited inter-stand error 
u.

Fig. 3. Correlation between consecutive period growth 
prediction error of basal area and dominant height 
as a function of stand age.

co
rr 

(ε
t, 
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Intra-stand error, et, was assumed to follow the 
autoregressive process AR(1), where error e at 
period t + 1 depends on error e at period t so that

e Ae bt t t+ += +1 1 4( )

where A is the correlation coefficient of growth 
prediction error between consecutive periods and 
bt+1 is the random error. For the random error 

component bt, a new normally distributed value 
was generated on each time step. 

The inter-stand error u was also assumed to 
follow normal distribution. In addition, it was 
assumed that the value of u was constant over the 
whole rotation period and the same for all tree 
species. Thus, the value of u was generated once 
at the beginning of the simulation for each stand. 
When the stand was regenerated, a new normally 
distributed value of u was generated. The error 
was further limited by an age-dependent factor 
f(T), having a value of 1 in young stands and 0.1 
in old stands (Fig. 2), resulting in a specific value 
ut for each planning period as

u f T ut t= ( ) ( )5

Thus, although u is constant, when the stand becomes 
older, ft(T) becomes smaller, so that cov(ut, ut+1) 
diminishes and the correlation of the growth pre-
diction error between prediction periods changes 
as a function of age of stand (Eq. 6).

Table 2. Relative RMSE values and biases of basal area 
(G) and height (H) after a 5-year growing period 
(Haara and Leskinen 2009) and the variances of 
growth prediction errors based on these values.

  G (m2 ha–1) Hdom (m)

RMSE 0.076 0.086
Bias –0.008 0.007
var(ε) 0.00571 0.00735
var(u) 0.0036 0.00467
var(e) 0.00208 0.00268
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The variance of growth prediction error (εt) was 
based on the results of Haara and Leskinen (2009, 
Table 2). The total variance of εt was divided into 
the variance of intra-stand variance (var(et)) and 
inter-stand variance (var(u)), applying the results 
from Kangas (1999) for volume and assuming 
the proportions of 0.365 and 0.635 for the intra-
stand and the inter-stand variances respectively 
(Table 2). The value of the correlation coefficient A 
was set at 0.4. In the study of Kangas (1999), if the 
variation of volume was divided to an experiment 
effect and AR(1)-distributed error for intra-stand 
correlation, the correlation coefficient was 0.37, 
which supports this choice. As both the inter-stand 
effect and the intra-stand effect were correlated 
in time, the resulting total autocorrelation was 
0.41−0.78, depending on age of stand (Fig. 3). 

Again, in Kangas (1999), assuming a model with 
intra-stand AR(1) autocorrelation but no experiment 
effect gave as a total autocorrelation 0.72. Thus, 
the chosen parameters seem reasonable enough 
based on earlier studies available.

Given these assumptions, the development of 
the basal area of the stand with growth prediction 
error was described as

G G
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where G is basal area, PG is the growth percent-
age predicted by the growth model and εt+1 is the 
growth prediction error at period t + 1.
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Because growth modelling in seedling stands 
was different for different tree species, model-
ling of the growth prediction errors was also 
different for pine seedling stands and the other 
seedling stands. The growth prediction error for 
pine seedling stands was calculated in a similar 
way to non-seedling stands. For other tree spe-
cies, the growth prediction error was simulated 
by generating a random error into the age at 
which the stand reaches the target values, i.e. the 
ingrowth age. Thus, it is assumed that the stand 
either reaches the target values at a lower or at a 
higher age than the growth and yield tables predict 
(ingrowth is slower or faster than assumed), but 
the target values as such were assumed deter-
ministic. The random error in stand age was 
also divided into intra-stand and inter-stand com-
ponents. The ingrowth age error was generated 
from a normal distribution with zero mean and 
variance estimated from Kalliovirta (unpublished) 
and divided into intra-stand and inter-stand vari-
ance applying the results from Kangas (1999), 
similarly to modelling growth prediction errors 
for non-seedling stands (Table 3).

Inter-stand growth prediction error (u) was 
assumed to correlate between forest variables. 
Correlation was assumed between basal area and 
dominant height (non-seedling stands and seed-
ling pine stands) and between seedling spruce 
and birch stratum ages. The assumed correla-
tions were positive as we presumed that the same 
environmental factors (such as temperature and 
humidity) have an influence on the growth predic-
tion errors of both variables. However, no data 
exist to support this choice.

We also assumed that spruce and birch seedling 
stand ingrowth ages were correlated with non-

seedling stand basal area and dominant height. 
In spruce and birch stands, the growth prediction 
error was generated to ingrowth age in seedling 
stands and to basal area and dominant height 
in non-seedling stands. The correlation between 
seedling stand ages and basal area or dominant 
height of non-seedling stands is assumed to be 
negative because the underestimation of seedling 
ingrowth age means that the stand reaches the 
development stage required by the non-seedling 
growth models earlier than in reality, i.e. it grows 
faster than in reality. Degree of correlation was 
defined subjectively, as no data are available. In 
pine stands, the correlation of basal area or domi-
nant height between seedling and non-seedling 
stands was 1 because the growth prediction error 
was added to the same variables the whole rota-
tion period and thus the same value of u could 
always be used. 

Covariances were calculated with variances 
of the inter-stand growth prediction error u (see 
Tables 2 and 3) and the correlation matrix

Table 3. Relative variance of growth prediction error of 
age of spruce and birch seedling stands according 
to Kalliovirta (unpublished) and its subdivision 
into inter-stand and intra-stand variances var(u) 
and var(e) respectively.

  Tspruce Tbirch

var(ε) 0.01254 0.01464
var(u) 0.00797 0.0093
var(e) 0.00457 0.00534

corr u G u H u T u T( ( ), ( ), ( ), ( ) ')

. .
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− −1 0 5 0 8 00 8
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




( )8

Erroneous developments were simulated similarly 
to error-free developments, by adding random 
errors generated by the error models (Fig. 1). We 
adopted a Monte Carlo simulation approach and 
multiple erroneous developments were simulated 
for each stand and inventory interval combination. 

We used 100 simulation iterations, but growth 
prediction errors led in some stands to such illogi-
cal developments that not all iterations could 
be finished by the SIMO simulator. The total 
number of such iterations was 10 out of 54 900, 
i.e. 0.0168% of the simulated developments. 
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Aborted simulation iterations were rejected from 
further calculations.

When the erroneous developments were sim-
ulated, we assumed that new error-free forest 
inventory information on the forest attributes was 
derived at particular intervals. In practice, this 
meant that the erroneous values were substituted 
by the error-free values when forest inventory 
was simulated. Thus, the simulation of growth 
prediction errors started again from zero after an 
inventory. Still, when erroneous development led 
incorrectly to harvest, the impact of this incorrect 
decision was not cancelled out when forest inven-
tory was simulated. This meant that the erroneous 
values were substituted by the error-free values in 
relation to the group of trees remaining after the 
incorrect decision. 

Erroneous developments were optimized simi-
larly to error-free developments.

Phase III: Simulation of Error-Free Develop-
ments Forced to Erroneous Harvest 
Schedules

The optimized harvest schedules based on the 
reference simulations (without simulated errors) 
were assumed to represent the real optimal har-
vest decisions. The optimized harvest schedules 
that were based on the erroneous simulations 
(with simulated errors) were assumed to lead to 
sub-optimal decisions. Thus, for every stand there 
were as many alternative sub-optimal harvest 
schedules as there were simulation iterations. 
To assess the losses due to the growth prediction 
errors and the resulting incorrect harvest deci-
sions, error-free developments were simulated 
for each stand with the optimized harvest sched-
ules from the erroneous simulations. This meant 
that the correct development of the stand was 
simulated again with the harvests and timings of 
harvests of each erroneous development. 

The inoptimality loss was determined as the dif-
ference between the net present value of the error-
free harvest schedule and that of the erroneous 
harvest schedule simulated without the growth 
prediction errors. The relative inoptimality loss 
was calculated relative to the net present value 
of the stand with the formula

Li
i

% % ( )= − ×NPV NPV
NPV

100 9

where Li% is the relative inoptimality loss in itera-
tion i, NPV is the net present value of error-free 
development and NPVi is the net present value 
in iteration i.

The number of inoptimality loss values for any 
stand and inventory interval combination was 
equal to the number of successful simulation 
iterations. 

3 Results

Average absolute and relative RMSE values of 
basal area and dominant height produced by the 
used error model were calculated for the 5-year 
and 10-year periods (Table 4). They are com-
pared with the values from the study by Haara 
and Leskinen (2009). The relative RMSEs in 
dominant height were slightly higher than the 
ones observed by Haara and Leskinen (2009) and 
those for basal area slightly smaller. Overall, the 
values used in this study were close enough to 
the observed error levels for the purpose of the 
study: the models used in this study represent well 
enough the accuracy available with the models 
currently in use.

Average inoptimality losses at different inven-
tory intervals are shown in Table 5 and in Fig. 4. 
Both absolute and relative inoptimality losses 
increased when the inventory interval became 
longer. Absolute losses were approximately 

Table 4. Absolute and relative RMSE values of basal 
area and height when the simulation period is 5 
years and 10 years. Upper values are results of this 
study and values in parentheses results from Haara 
and Leskinen (2009).

Length of  RMSE (abs) RMSE (%)
simulation
period G Hdom(m)/ G Hdom(m)/
 (m2 ha–1) HgM (m) (m2 ha–1) HgM (m)

 
5 years 1.3 1.6 6.5 10
 (1.4) (1.1) (7.6) (8.6)
10 years 2.2 2.3 9.1 12.3
 (2.4) (1.4) (11.6) (10.4)
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230−860 euro ha–1 depending on the length 
of the inventory interval. Relative losses were 
3.3−11.6%. Inoptimality losses grew most when 
the inventory interval was extended from 15 to 20 
years. Extending the interval from 20 to 60 years 
increased losses by only 2.5 percentage units. 

Average relative inoptimality losses were lower 
in stands with a high NPV than in stands with a 
low NPV (Fig. 5), but in absolute terms the losses 
were smallest in sites with low NPV. Average rela-
tive inoptimality losses differed between develop-

ment and site classes. Losses were mainly bigger 
in young stands than in mature stands (Fig. 6), 
but again the absolute losses were quite small 
in young stands, i.e. from 100 to 400 euro ha–1. 
Average relative losses were larger in barren 
stands than in rich stands (Fig. 7), but likewise 
the absolute losses were smallest in these sites. 
Inoptimality losses were also different between 
main tree species but no apparent trend can be 
seen (Fig. 8). 

Fig. 9 illustrates how inventory costs and losses 

Table 5. Average, highest and lowest absolute (euro ha–1) and relative (%) inoptimality losses and deviations 
of losses at different inventory intervals. Results are calculated from stand wise average values.

Length of Inoptimality loss (euro ha–1) Inoptimality loss (%)
inventory interval Average Max Min Standard Average Max Min Standard
(years)  value value deviation  value value deviation

5 229.6 1287.7 0 205.1 3.3 19.9 0 3.5
10 341.3 3581.2 0 481.9 4.5 28.5 0 5.4
15 392.8 3316.3 0 493.8 5.7 40.9 0 7.4
20 685 3931.3 0 659.6 9.1 35.2 0 6.9
30 768.3 4132.8 0 717.1 10.4 40.9 0 8.4
60 859.6 3358.2 0 712.5 11.6 36.3 0 8.3

Fig. 4. Average absolute inoptimality losses at different 
inventory intervals.

Fig. 5. Average relative inoptimality losses at differ-
ent inventory intervals by productive value class. 
1 = 0−4000 euro ha–1, 2 = 4000−6000 euro ha–1, 
3 = 6000−8000 euro ha–1, 4 = 8000−10 000 euro 
ha–1, 5 = 10 000−12 000 euro ha–1, 6 = over 12 000 
euro ha–1.



839

Pietilä et al. Influence of Growth Prediction Errors on the Expected Losses from Forest Decisions

can affect the optimal inventory interval, i.e. how 
the costs define the life-span of data. It is assumed 
that inventory errors and growth prediction errors 
are independent of each other. It means that the 
total loss is calculated as the sum of losses due 
to these two sources, i.e. that inventory errors do 
not cancel out any of the prediction errors or vice 
versa. Moreover, we assume that in each inventory 
the inventory costs and expected losses due to 
inventory errors are similar, and applied only once 
when a 60-year interval is assumed and 12 times 
when a 5-year interval is assumed. Thus, the total 
costs and losses are the sum of inventory costs, 
inoptimality losses caused by inventory errors and 
inoptimality losses of growth prediction errors, all 
discounted. According to the figure, a five year 
inventory interval is optimal when inventory costs 
and losses are less than 40 euro ha–1. If inventory 
costs and losses are more than 40 euro ha–1, a 15 
year inventory interval is optimal until inventory 
costs and losses are more than 350 euro ha–1 when 
a 60 year inventory interval is optimal. 

Fig. 7. Average relative inoptimality losses at differ-
ent inventory intervals by site class. 1 = grove-like 
heath and corresponding peatland, 2 = fresh heath 
and corresponding peatland, 3 = dryish heath and 
corresponding peatland, 4 = dry heath and corre-
sponding peatland. One stand whose site type was 
grove was left out. 

Fig. 6. Average relative inoptimality losses at differ-
ent inventory intervals by development class. 
2 = young seedling stand, 3 = advanced seedling 
stand, 4 = young thinning stand, 5 = advanced thin-
ning stand, 6 = mature stand. Four seedling stands, 
which also contained upper storey (initial develop-
ment class, e.g., seed tree or shelter tree stand), 
were left out because only one or two stands belong 
to all of these types.

Fig. 8. Average relative inoptimality losses at different 
inventory intervals by main tree species. 1 = Scots 
pine, 2 = Norway spruce, 3 = white birch, 4 = pubes-
cent birch. Two stands whose main tree species 
was not Scots pine, Norway spruce or birch were 
left out. 
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4 Discussion

Inoptimality losses caused by some inventory 
methods have been on average less than 700 
euro ha–1 according to earlier studies (e.g., Hol-
mström et al. 2003, Juntunen 2006, Duvemo et 
al. 2007). In this study, the growth prediction 
errors led to losses of 700 euro ha–1 in an inven-
tory period of 30 years. According to Mäkinen et 
al. (2010), inventory errors caused inoptimality 
losses of less than 6.4% on average. In this study, 
inventory intervals whose length was 20 years 
or more led to higher losses. Based on this kind 
of comparison only, the maximum information 
updating period is 15 years; thus, a 20-year inven-
tory interval led to higher relative losses than a 
new inventory. 

However, many other elements should also be 
taken into account when the profitable inven-
tory interval is adjusted. Because carrying inven-
tory out is more expensive than updating the 
information using models, inventory costs have 
a significant effect on the profitable length of 
the inventory interval. When the losses from the 
inventory were assumed to be independent of the 
losses from growth prediction errors, the optimal 

inventory interval is 15 years when the inventory 
costs and losses are more than 40 but less than 350 
euros per hectare. This assumption of independ-
ency probably overestimates the total losses, as 
there is evidence that different error sources actu-
ally compensate each other to some extent (Eid 
2000, Holopainen et al. 2010). However, if the 
overestimation does not depend on the inventory 
interval, it does not affect to the relations between 
the different intervals, i.e. the optimal life-span. 

For comparison, the observed costs of the tradi-
tional inventory in Finland have varied from 7.9 
euro ha–1 (Uuttera et al. 2002) to 9.4 euro ha–1 

(Uuttera et al. 2006), meaning that the actual costs 
of inventory are far less than the expected losses. 
Forestry Centres have, however, decided to stop 
the traditional forest field inventory, and laser 
scanning based inventory was started in summer 
2010. The costs of this new method at stand 
level are not yet known, but the laser-scanning 
based inventory in Eid et al. (2004) cost about 
11 euro ha–1. The accuracy of the new method 
is expected to be much better than the previous 
one, but real large-scale accuracy analysis is still 
lacking. 

In this study, when the inventory interval was 
20 years or more, lengthening the interval had 
only a slight effect on the amount of inoptimality 
losses. One explanation of this is that the errors 
in the near future have the most significant effect 
on the NPV and then on the inoptimality losses. 
Moreover, the compilation of the initial data set 
may have an effect on how much extension of the 
inventory interval affects losses.

According to this study, growth prediction 
errors have different effects for instance, in dif-
ferent site classes and development classes. How-
ever, this finding is based on the assumption that 
the prediction errors do not depend on site quality. 
In the future, the error models should probably 
depend on site and species. For instance, when 
Haara and Leskinen (2009) modelled the error 
variance of the basal area, the variance was higher 
in richer soils since site quality was a significant 
predictor. 

Because the effects of inventory errors are also 
different in different stands (see also Eid 2000, 
Mäkinen et al. 2010), relations between errors 
probably vary between stands. If the quality of 
the initial information is poor, it is possible that 

Fig. 9. Effects of inventory costs and losses on optimal 
inventory interval. The costs and losses of inven-
tory are in the x-axis, the total costs and losses 
due to inventory and growth prediction errors in 
the y-axis.
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updating will not make it worse (Kangas 2010). 
Inventory errors and growth prediction errors may 
also partly cancel each other out (Holopainen et 
al. 2010) and relative RMSEs of forest variables 
may become even smaller when information is 
updated using growth models (Välimäki 2006). 
On the other hand, quality of inventory informa-
tion has an influence on the quality of independ-
ent variables in the models (Eid 2003) and on 
what variables should be selected when models 
are constructed. Quality of inventory information 
thus also affects losses caused by growth predic-
tion errors.

According to Mäkinen et al. (2010) relative 
inoptimality losses caused by inventory errors 
were low in young stands and high in mature 
stands. In this study, since the influence of growth 
prediction errors was the reverse, it may be prof-
itable to carry out an inventory in young stands 
often and to predict the development of mature 
stands with growth models. 

The growth prediction errors in this study were 
produced with a model based on real observed 
errors. However, there are many assumptions that 
could not be verified with the available data. The 
autocorrelation between periods is a very impor-
tant parameter, but very scant information was 
available. The division of error to stand-effect 
and period-effect was also based on real data 
(Kangas 1999), but the data set used was very 
small. The defined intra-stand autocorrelation 
parameter can also be supported with the same 
study. The effect of stand age on correlation was 
based on an assumed model. Limit term (function 
f(T)) was used in order to avoid errors growing 
unrealistically large. It was assumed that with the 
term f(T), limited errors describe real situations 
better than unlimited errors. All the assumptions 
related to error model incur uncertainty in the 
results. However, error model formulated led to 
quite realistic error levels compared to previous 
studies (see Table 4). In future, the sensitivity 
of the results to the various assumptions needs 
to be examined, and better information on these 
parameters obtained.

All the error distributions were assumed to 
be normal. Normal distribution assumption was 
used as no data are available to analyze the true 
distribution. This may not be the best option in all 
cases, but fortunately Mäkinen et al. (2010) noted 

that the shape of distribution is not crucial. Also, 
we had to make assumptions on the correlation of 
the errors of different variables without any real 
data to support the choices.

This study was carried out using a stand-level 
simulator. This approach was selected because 
returning the tree-level variables to the error-free 
development path (depending on the correct and 
incorrect decisions carried out in the period) after 
each inventory would be computationally prob-
lematic. Moreover, it was assumed that the model 
describes the true growth, and erroneous growth 
paths vary around it. In reality the erroneous paths 
are described by the model, which is an expected 
value of possible true paths. However, since the 
latter procedure would be more complicated to 
compute, the simpler approach was adopted.

This study focused on the growth prediction 
errors and their economic effects. For purposes 
of forest planning decision making, it will be 
important to know the total cost of information 
used. Total cost consists of costs and losses of the 
inventory and of updating information as well as 
losses caused by uncertainty of such things as 
future timber prices and silvicultural treatment 
costs. If an estimate of the total cost of various 
decision and activity alternatives existed, it would 
be possible for the decision maker to decide when 
and by what methods the new information should 
be collected, how much the decision maker would 
pay for information and how great a loss deci-
sions could lead to. In future, the various sources 
of uncertainty and their relations to each other 
should be taken into account.
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