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Highlights
•	 Orthoimage mosaic and 3D canopy height model were derived from UAV-borne colour-

infrared digital camera imagery and ALS-based terrain model.
•	 Features extracted from orthomosaic and canopy height data were used for estimating forest 

variables.
•	 The accuracy of forest estimates was similar to that of the combination of ALS and digital 

aerial imagery.

Abstract
In this paper we examine the feasibility of data from unmanned aerial vehicle (UAV)-borne aerial 
imagery in stand-level forest inventory. As airborne sensor platforms, UAVs offer advantages cost 
and	flexibility	over	traditional	manned	aircraft	in	forest	remote	sensing	applications	in	small	areas,	
but they lack range and endurance in larger areas. On the other hand, advances in the processing 
of digital stereo photography make it possible to produce three-dimensional (3D) forest canopy 
data on the basis of images acquired using simple lightweight digital camera sensors. In this study, 
an aerial image orthomosaic and 3D photogrammetric canopy height data were derived from the 
images acquired by a UAV-borne camera sensor. Laser-based digital terrain model was applied 
for estimating ground elevation. Features extracted from orthoimages and 3D canopy height data 
were used to estimate forest variables of sample plots. K-nearest neighbor method was used in the 
estimation, and a genetic algorithm was applied for selecting an appropriate set of features for the 
estimation task. Among the selected features, 3D canopy features were given the greatest weight 
in the estimation supplemented by textural image features. Spectral aerial photograph features 
were given very low weight in the selected feature set. The accuracy of the forest estimates based 
on a combination of photogrammetric 3D data and orthoimagery from UAV-borne aerial imaging 
was at a similar level to those based on airborne laser scanning data and aerial imagery acquired 
using purpose-built aerial camera from the same study area.
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1 Introduction

Unmanned aerial systems (UAS) typically consist of unmanned aerial vehicles (UAVs) and ground 
equipment including at least a computer workstation for planning and transferring flight routes to 
the UAV as well as for monitoring the UAV telemetry data, an antenna link for sending or receiv-
ing data between UAV and ground station, and a take-off catapult if that is required by the UAV 
modus operandi.

Unmanned aerial systems first came into widespread use in military applications, and they 
are used in particular for carrying out tasks that are dangerous or involve extended periods of aerial 
surveillance. The UAVs, sometimes also called drones, are of numerous different sizes, shapes 
and configurations. For example, UAV size ranges from hand launched to the size of conventional 
aircraft, and their configurations resemble, e.g., conventional aeroplanes or helicopters, tailless 
flying wing aircraft or multi-rotor helicopters.

The civilian applications of UAS have been less widespread than military applications, but 
also in the civilian or commercial field there is substantial interest in using UAS for various pur-
poses, such as security surveillance, searching for missing people, mapping of wildfires and remote 
sensing (RS) of cultivated crops or forests (e.g. Watts et al. 2012; Lisein et al. 2013; Salami et al. 
2014). In civilian applications their use is limited and hindered by various aviation regulations that 
are poorly adapted to the needs of unmanned flight (e.g. Ojala 2011; Kumpula 2013).

For forest inventory and mapping purposes, UAVs have certain advantages compared to 
conventional aircraft (e.g. Anderson and Gaston 2013; Koh and Wich 2012). The UAVs used for 
agricultural or forestry remote sensing applications are typically much smaller than conventional 
aircraft, and in covering small areas they are more economical to use, since they consume less fuel 
or electric energy and often require less maintenance. Furthermore, they are very flexible in rela-
tion to their requirements for take-off and landing sites, which makes it possible to operate from 
locations that are close to the area of interest. Also, there are no formal qualifications required for 
personnel operating UAS. Due to the higher flexibility of UAS compared to conventional aircraft, 
they have great potential for various remote sensing applications tailored to customer’s needs.

UAS also have disadvantages compared to conventional aircraft. Because UAVs are usu-
ally small in size, their sensor load and the flying range are somewhat limited. The small size also 
makes UAVs prone to oscillation caused by gusts of wind. Furthermore, their size generally means 
a short flying radius, because the aircraft size is linked to the energy storage size. This makes their 
use less feasible in typical operational inventory areas (of the size 200 000 ha and more). Outside 
the technical limitations the principal issue of the applicability of UAS in forest mapping is the 
legislation concerning unmanned flight. As a rule, UAVs must be operated within visual line of 
sight from the ground station in Finland, as is the case in most EU countries. Furthermore, e.g. in 
Finland, the maximum flying altitude is 150 m in unrestricted airspace (e.g. Ojala 2011; Kumpula 
2013). These regulations seriously restrict the productivity of the UAS by forcing the operator to 
fly at low levels (limiting imagery coverage) and close to the base (thus reducing the productivity 
measured in hectares). An exception to the regulation can be made by reserving the airspace in 
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advance,	which	allows	automatic	imaging	flights	relying	on	the	autopilot	(and	GPS)	only,	and	it	
also	allows	for	higher	flying	altitudes,	thus	increasing	image	coverage	(altitude	is	constrained	by	
the desired image resolution).

In Finland, currently airborne laser scanning (ALS) data and digital aerial photography 
are	the	most	significant	remote	sensing	methods	for	forest	inventories	aiming	at	producing	stand	
level forest data. In recent years a new forest inventory method based on these data sources has 
been adopted for stand and sub-stand level forest mapping and the estimation of forest attributes. 
Normally, low-density ALS data (typically 0.5–2 pulses/m2) and digital aerial imagery with a 
spatial resolution of 0.25–0.5 m (covering visible and near-infrared wavelengths) are used. ALS 
is currently considered to be the most accurate remote sensing method for estimating stand-level 
forest variables in operational inventory applications (e.g. Næsset 2002, 2004; Maltamo et al. 
2006). Compared to optical remote sensing data sources, ALS data are particularly well suited to 
the estimation of forest attributes related to the physical dimensions of trees, such as stand height 
and volume. By means of ALS data, a three-dimensional (3D) surface model of the forest can be 
derived.	Since	it	is	possible	to	distinguish	laser	pulses	reflected	from	the	ground	surface	from	those	
reflected	from	tree	canopies,	both	digital	terrain	models	(DTMs)	and	digital	surface	models	(DSMs)	
can be derived from ALS data (e.g. Axelsson 1999, 2000; Baltsavias 1999; Hyyppä et al. 2000; 
Pyysalo 2003; Gruen and Zhang 2003). On the other hand, optical imagery is typically acquired 
to complement the ALS data, because ALS is not considered to be well suited for estimating tree 
species composition or dominance, at least not at the pulse densities applied for area-based forest 
estimation (e.g. Törmä 2000; Packalen and Maltamo 2006, 2007; Waser et al. 2011). Of the various 
optical RS data sources, aerial images are usually the most readily available and best-suited for 
forest inventory purposes (e.g. Maltamo et al. 2006; Tuominen and Haapanen 2011).

As well as with the use of ALS, it is also possible to derive a 3D forest canopy surface model 
(CSM) based on aerial imagery using digital aerial photogrammetry (e.g. Baltsavias et al. 2008; St-
Onge et al. 2008; Haala et al. 2010). Photogrammetric CSM requires very high-resolution imagery 
with stereoscopic coverage. CSMs derived using aerial photographs and digital photogrammetry 
have been reported to be well correlated to CSMs generated from ALS data, although they have 
problems such as a lower resolution and geometric accuracy (e.g. St-Onge et al. 2008; Haala et 
al. 2010), but altogether, they are considered as a viable alternative to ALS (e.g. Baltsavias et al. 
2008). The aerial imagery required for the basis of photogrammetric CSM can be acquired by 
using a relatively light imaging sensor, which makes it feasible to use UAV as a sensor carrier. A 
significant	advantage	to	this	approach	is	that	both	the	3D	canopy	model	and	an	orthophoto	mosaic	
can be produced from the same image material. On the other hand, under a dense forest canopy it 
is	difficult	to	derive	an	accurate	DTM	with	photogrammetric	methods,	because	with	typical	camera	
angles, not enough ground surface is visible in the aerial images (e.g. Bohlin et al. 2012; Järnstedt 
et al. 2012; White et al. 2013). Thus a DTM has to be obtainable by other means in order to be 
able to derive the canopy and vegetation height (above ground) from the CSM. This is generally 
no problem in Finland since laser scanning of the entire country is underway using an airborne 
laser	in	the	leafless	season	for	producing	a	highly	accurate	DTM	for	the	entire	country.	Since	one	
can assume that the terrain’s surface changes very slowly, this DTM can be used for consecutive 
forest inventories, and only the CSM has to be rebuilt for the new inventory cycles.

The	objective	of	this	study	was	to	test	the	canopy	height	model	based	on	photogrammetric	
CSM and ALS-based DTM in combination with orthoimagery acquired using a UAV-borne camera 
sensor in estimating forest inventory variables.
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2 Materials and methods

2.1	 Study	area	and	field	data

The UAS-based aerial imaging was tested in the Evo forest area in the municipality of Lammi, 
in southern Finland (approximately 61°19´N, 25°11´E). The location of the test area is illustrated 
in Fig. 1.

The test area is a state-owned forest that is used as a training area for HAMK University of 
Applied	Sciences.	The	field	measurements	employed	in	this	study	were	carried	out	using	fixed-
radius (9.77 m) circular plots that were measured in 2010–2012. From each plot, all living tally trees 
with a breast-height diameter of at least 50 mm were measured. For each tally tree, the following 
variables were recorded: location, tree species, crown layer, diameter at breast height, height, and 
height	of	living	crown.	The	geographic	location	of	the	field	plots	was	measured	with	Trimble’s	
GEOXM 2005 Global Positioning System (GPS) device, and the locations were processed with 
local base station data, with an average error of approximately 0.6 m.

The following forest variables were calculated for sample plots on the basis of the tally trees: 
mean diameter, mean height, basal area, total volume of growing stock and volumes for tree spe-

 Fig. 1. Location of the test area.
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cies groups of pine, spruce and broadleaved trees. Mean height and diameter were calculated as 
the height and diameter of the basal area median tree. The volumes of individual tally trees were 
calculated using models by Laasasenaho (1982) which were based on tree species, stem diameter 
and height as independent variables.

The forests in the study area are dominated by coniferous tree species, mainly Scots pine 
(Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst), and to a lesser degree, larches 
(Larix spp.). Of the deciduous species, birches (Betula pendula Roth and B. pubescens Ehrh.) 
are most common. Other, mainly non-dominant tree species present in the study area are aspen 
(Populus tremula) and grey alder (Alnus incana). Compared with forests typical to the region, the 
forests in the study area have relatively high variation in relation to the amount of growing stock, 
tree species composition and size of the trees. The characteristics of the principal forest variables 
in	the	field	measurement	data	(covered	by	aerial	imagery	from	2011	and	2012)	are	presented	in	
Table	1	and	the	growing	stock	volume	distributions	of	the	field	data	are	presented	in	Fig.	2.

Table 1. Average,	maximum	(Max)	and	standard	deviation	(Std)	of	field	variables	in	the	field	data	sets	(for	all	variables:	
minimum = 0).

2011 plots (81) 2012 plots (165)
Forest variable Average Max Std Average Max Std

Total volume, m3/ha 215.8 529.4 110.9 213.6 653.6 119.2
Volume of Scots pine, m3/ha 76.0 314.3 80.4 77.9 314.3 80.8
Volume of Norway spruce, m3/ha 97.2 448.9 118.9 88.3 561.3 114.2
Volume of broadleaved, m3/ha 42.7 249.9 51.6 47.4 403.4 66.9
Mean diameter, cm 23.5 56.2 9.9 24.1 59.1 8.8
Mean height, m 20.2 34.7 7 20.6 34.7 6.3
Basal area, m2/ha 22.5 46.7 9.3 22.1 56.8 9.4

Fig. 2. The volume distribution of the dataset plots used with 2011 and 2012 image acquisition.
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2.2 Aerial imagery

The aerial imagery used in this study was acquired in the summers of 2011 and 2012. We had air-
space reservation for the study area up to altitude 600 m in order to be able to operate by autopilot 
and GPS, without the restriction of staying within visual line of sight. Different combinations of 
aircraft	and	camera	equipment	were	utilised	in	the	consecutive	flight	campaigns.	In	2011,	the	aerial	
imagery was acquired using a combination of a Gatewing X100 UAV and a RICOH GR Digital III 
camera	converted	for	acquiring	colour-infrared	imagery.	The	altitude	used	in	the	UAV	flights	was	
approximately	150	m	above	average	ground	elevation.	The	nominal	distance	between	flight	lines	
was	50	m.	The	area	covered	was	approximately	350	ha,	and	there	were	81	field	sample	plots	in	the	
photographed area. In 2012, the aerial imaging was carried out using a combination of C-Astral 
Bramor	UAV	and	Olympus	camera.	The	flight	altitude	used	here	was	approximately	450	m	above	
average	ground	elevation.	The	nominal	distance	between	flight	lines	was	60	m.	The	area	coverage	
was	approximately	770	ha,	and	there	were	165	field	sample	plots	in	the	photographed	area.	The	
acquisition of aerial images in 2011 and 2012 was designed in a way that approximately 80 % 
sidelap	and	forward	overlap	was	achieved	in	the	inventory	area.	However,	the	actual	within	flight	
line	stereo	coverage	varied	depending	on	whether	the	UAV	flew	upwind	or	downwind,	since	both	
UAVs	flew	at	constant	airspeed.	Thus,	the	interval	between	individual	images	was	set	to	guarantee	
sufficient	stereo-coverage	when	flying	downwind.

The	technical	specifications	of	the	camera	sensors	used	in	acquiring	the	aerial	imagery	are	
presented	in	Table	2.	The	locations	of	the	true	flight	lines	of	the	2012	flight	campaign	as	recorded	
by	the	UAV	GPS	receiver	are	illustrated	in	Fig.	3a,	and	the	locations	of	field	plots	of	2011	and	
2012 are shown in Fig. 3b.

Both UAV platforms used a catapult system for take-off. The Gatewing X100 was launched 
using an elastic bungee cord and the Bramor with a pneumatic system. Both UAVs require an open 
(treeless) strip of 100–200 metres in length (depending on the height of the surrounding trees) 
and a 30-metre width for gaining altitude after launch, before heading towards a pre-programmed 
flight	route.	The	Gatewing	X100	landed	after	flight	by	belly-landing	at	a	pre-programmed	point,	
requiring a treeless strip of approximately 200 × 40 metres for descent towards the landing point. 
The Bramor landed using a parachute system, after decreasing altitude by circling around a pre-
programmed	landing	point	it	opened	a	parachute	at	a	defined	altitude,	requiring	only	a	small	opening	

Table 2. Camera	sensors	fitted	to	UAVs.

Camera Ricoh GR Digital III Olympus E-420

Sensor type CCD CMOS
Image sensor size 17.3 mm ×13.0 mm 17.3 mm × 13.0 mm
Image resolution 3648 × 2736 pixels 3648 × 2736 pixels
Field of View (FOV) 65° × 51° 38.1° × 29.1°
Pixel size 4.74 µm 4.74 µm
Groud sample distance* 5.2 cm 8.5 cm
Spectral bands** 490 – 600 nm

600 – 700 nm
700 – 1000 nm

490 – 600 nm
600 – 700 nm
700 – 1000 nm

Frame rate 0.25 Hz 0.5 Hz
Weight 220 g 380 g
Size 109 × 60 × 26 mm 129.5 × 91 × 53 mm

*At	the	applied	flying	altitude
**Both	Ricoh	and	Olympus	had	a	blue	cutting	filter	Schott	GG495	which	has	a	cut-off	wavelength	495	nm.
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Fig. 3a. UAV	flight	lines	of	the	2012	photo	acquisition.	The	take-off	and	landing	site	is	located	approximately	300	m	
north-east	of	Ylinen	Rautjärvi	(approach	and	descent	curves	made	by	the	UAV	prior	to	landing	can	be	seen	on	the	map).

in the forest for landing. The modus operandi of both UAV platforms was found to be applicable 
for forest mapping operations in the tested conditions. However, the Bramor UAV combination 
of catapult take-off and parachute landing was considered technically preferable in Finnish forest 
conditions, mainly due to the parachute landing system, which was considered less prone to landing 
damage because at the touchdown moment the UAV vertical speed is low and horizontal velocity 
is close to zero. Furthermore, the parachute landing provides a higher number of potential spots 
for	flight	operations,	since	smaller	open	areas	are	needed	in	comparison	to	belly	landing	(where	
longer	and	wider	approach	areas	without	trees	are	required).	The	technical	specifications	of	the	
UAV equipment are presented in Table 3.

Table 3. UAV systems (Trimble unmanned aircraft systems 2013, Bramor UAS family 2013).

UAV Gatewing X100 C-Astral Bramor

Wing span (cm) 100 230
Fuselage length (cm) 60 96
Take-off weight (kg) 2.2 4.2
Payload compact camera 0.6 – 1.0 kg
Propulsion type electric electric
Take-off/landing catapult launch/belly landing catapult launch/parachute landing
Flight endurance (min) 45 120
Altitude ceiling (m) 2500 5000
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Fig. 3b. Location	of	field	plots	of	2011	(green)	and	2012	(red).

2.3 Image processing

2.3.1 Orthomosaic composite

The images were converted from the raw format of the cameras into 16-bit CIR images in TIF 
format using RapidToolbox software, and were radiometrically corrected for the effects of the sun 
and lens vignetting (light falloff) (PIEneering 2013b). After this preprocessing step, the EnsoMO-
SAIC photogrammetric software package was used to calculate the orthomosaics. A combined tie 
point	search	and	photogrammetric	bundle	block	adjustment	(e.g.	Krauss	1993)	were	carried	out	
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within automatic aerial triangulation, running the process repeatedly on six image pyramid levels, 
recalculating the results of increased accuracy on each pyramid level using the results of the previ-
ous level as starting point (MosaicMill 2013).

Ground control points were measured to account for systematic error of GPS and for syn-
chronisation	errors	of	GPS/camera	trigger.	Between	7	and	11	control	points	were	used	per	flight,	
resulting in standard deviations of 2.2–19.5 m for X, 2.7–14.5 m for Y and 6.0–8.6 m for Z for 
each exposure station. These standard deviations show the size of the difference of the expected 
and calculated (true) exposure station XYZ, i.e. how accurately the autopilot has collected GPS 
coordinates and triggered the camera.

The	results	of	the	block	adjustment	were	used	to	calculate	sparse	(internal)	surface	models	
for orthomosaicking. The sparse models were derived from the calculated elevations of the image 
tie	and	control	points,	thus	the	density	of	the	tie	and	control	points	define	the	maximum	density	of	
the elevation models. For UAV data the tie points are usually calculated at 5–20 m distances, thus 
also the elevation model contains data at this density. The raster elevation models were resampled 
into	10	m	cell	size	for	all	flights.	It	is	important	to	point	out	that	the	sparse	elevation	models	are	
used only to create orthomosaics, and not used to create dense point clouds or surface models 
addressed in the next chapter.

Orthomosaics were computed at a resolution of 10 cm, applying the surface models and the 
results of the triangulation. The optimal extraction of textural image features requires an appropriate 
scale	between	the	image	resolution	and	the	size	of	the	objects	of	interest	(here	tree	crowns),	and	
thus, excessively high or too coarse image resolutions are not useful for this purpose (e.g. Wood-
cock and Strahler 1987). For the extraction of digital raster image features, the image mosaic was 
resampled (nearest neighbour resampling used) to spatial resolutions of 20 and 50 cm.

2.3.2 Three demensional (3D) digital surface model (XYZ data)

Dense XYZ point clouds were computed using RapidTerrain software that utilises multi-image 
matching using variations of dense stereo-matching procedures with advanced probabilistic opti-
misation. The points were computed at image pyramid level 2, where the pixel size is double the 
original pixel size.

The point clouds were calculated at 10 cm intervals, with 5–10 Z observations for each XY 
point. A Z-value can be calculated for each stereo model covering a XY point, but in this case the 
number of stereo models was limited to 10 in order to have the best (the nearest) stereo models 
and in order to keep the processing times reasonable. RapidTerrain eliminates low correlation point 
matches (outliers) within the matching process, thus the remaining number of Z points was 10 or 
less for each XY. Out of these remaining points, the resulting Z-value is selected at the densest 
(most probable) Z, i.e. at Z where the most of the calculated Z-values lie (PIEneering 2013a).

In addition to the XYZ point data, the photogrammetric canopy height data were interpolated 
to a raster image format. The raster image pixel values of the height image were calculated using 
inverse-distance weighted interpolation based on the two nearest points. The output images were 
resampled to a spatial resolution similar to that of the orthoimages.

The DTM used in calculating canopy height values (above ground) was based on laser 
scanning	in	2006.	ALS	data	was	acquired	from	a	flying	altitude	of	1900	m	with	a	density	of	1.8	
returned pulses per square metre. A raster DTM with 1 meter resolution was derived by inverse 
distance weighting of the elevation values of ALS ground returns.
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2.4 Extraction of the aerial photograph features

The remote sensing features were extracted for each sample plot from a square window centred 
on the sample plot. The size of the window was set as 19.4 × 19.4 m (when using raster data with 
a spatial resolution of 20 cm) or 19.5 × 19.5 m (when using raster data with a spatial resolution 
of	50	cm).	The	size	was	set	to	correspond	to	the	size	of	the	field	measurement	plot	(radius	9.77),	
and besides, the extraction window is constrained by the GRASS software applied for calculating 
textural features requiring an uneven number of pixel rows and columns. The following features 
were extracted from the aerial photographs and rasterised point height data:

1. Spectral averages (AVG) of orthoimage pixel values of NIR, R & G channels
2. Standard deviations (STD) of orthoimage pixel values of NIR, R & G channels
3. Textural features based on co-occurrence matrices of orthoimage pixel values of NIR, R, G & H 

channels (Haralick 1979; Haralick et al. 1973; GRASS GIS 7.0. 2013 )
a. Sum Average (SA)
b. Entropy (ENT)
c. Difference Entropy (DE)
d. Sum Entropy (SE)
e. Variance (VAR):
f. Difference Variance (DV)
g. Sum Variance (SV)
h. Angular Second Moment (ASM, also called Uniformity)
i. Inverse Difference Moment (IDM, also called Homogeneity)
j.	Contrast	(CON)
k. Correlation (COR)
l. Information Measures of Correlation (MOC)

E.g. COR_R = correlation of red channel

The following features were extracted from photogrammetric (XYZ format) 3D point data 
(Næsset 2004; Packalén and Maltamo 2006, 2008):

1. Average value of H of vegetation points [m] (HAVG)
2. Standard deviation of H of vegetation points [m] (HSTD)
3. H where percentages of vegetation points (0%, 5%, 10%, 15%, ... , 90%, 95%, 100%) were accu-

mulated [m] (e.g. H0, H05,...,H95, H100)
4.	Coefficient	of	variation	of	H	of	vegetation	points	[%]	(HCV)
5. Proportion of vegetation points [%] (VEG)
6. Canopy densities corresponding to the proportions points above fraction no. 0, 1,..., 9 to total 

number of points (D0, D1,…, D9)
7. Proportion of vegetation points having H greater or equal to corresponding percentile of H (i.e. 

P20 is the proportion of points having H>= H20) (%) *
8. Ratio of the number of vegetation points to the number of ground points
where:

H = height above ground
vegetation point = point with H > = 2 m
ground point = other than vegetation point
*the range of H was divided into 10 fractions (0, 1, 2,…, 9) of equal distance

In principle, the extraction of the 3D point features is similar to the extraction method applied 
for ALS features, but while ALS is true 3D in the sense that it allows multiple Z returns from a 
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single XY point, photogrammetric data have only one Z-value for each point, not allowing any 
features	below	overhanging	objects.

2.5 Feature selection and k-nn estimation

The k-nearest neighbour (k-nn) method was used for the estimation of the forest variables. The 
estimated stand variables were total volume of growing stock, the volumes of Scots pine, Norway 
spruce and deciduous species, basal area, mean diameter and mean height. Different values of k were 
tested in the estimation procedure. In the k-nn estimation (e.g. Kilkki and Päivinen 1987; Muinonen 
and Tokola 1990; Tomppo 1991), the Euclidean distances between the sample plots were calculated 
in the n-dimensional feature space, where n stands for the number of remote sensing features used. 
The stand variable estimates for the sample plots were calculated as weighted averages of the stand 
variables of the k-nearest neighbours (Eq. 1). Weighting by inverse squared Euclidean distance in the 
feature space was applied (Eq. 2) for diminishing the bias of the estimates (Altman 1992). Without 
weighting, the k-nn method often causes undesirable averaging in the estimates, especially in the 
high end of the stand volume distribution, where the reference data is typically sparse.

∑=
=

y w y kˆ ( ) / (1)i i
i

k

1

where
ŷ = estimate for variable y
yi = measured value of variable y in the ith nearest neighbour plot

∑= =w
d d

i1 / 1 weight for plot (2)i
i
g

i
g

di = Euclidean distance (in the feature space) to the ith nearest neighbour plot
k = number of nearest neighbours
g =	parameter	for	adjusting	the	progression	of	weight	with	increasing	distance*

*(1–2 depending on the variable)

The accuracy of the estimates was calculated via leave-one-out cross-validation by com-
paring	the	estimated	forest	variable	values	with	the	measured	values	(ground	truth)	of	the	field	
plots. The accuracy of the estimates was measured in terms of the relative root mean square error 
(RMSE) (Eq. 3).

=RMSE RMSE
y

% 100* (3)

where:
 

∑
=

−
=RMSE
y y

n

( ˆ )i i
i

n
2

1

yi = measured value of variable y on plot i
ŷi = estimated value of variable y on plot i
y̅ = mean of the observed values
n = number of plots.



12

Silva Fennica vol. 49 no. 5 article id 1348 · Tuominen et al. · Unmanned aerial system imagery and…

The remote sensing datasets encompassed a total of 42 aerial photograph features, 12 
features from rasterised canopy height data and 35 3D point features. All aerial image and point 
features were scaled to a standard deviation of 1. This was done because the original features had 
very diverse scales of variation. Without scaling, variables with wide variation would have had 
greater weight in the estimation, regardless of their capability for estimating the forest attributes.

The extracted feature set was large, presenting a high-dimensional feature space for the k-nn 
estimation. In order to avoid the problems of the high-dimensional feature space, i.e. the ‘curse 
of dimensionality’, which is inclined to complicate the nearest neighbour search (e.g. Beyer et al. 
1999; Hinneburg et al 2000), the dimensionality of the data was reduced by selecting a subset of 
features with the aim of good discrimination ability. The selection of the features was performed 
with a genetic algorithm (GA) -based approach, implemented in the R language by means of the 
Genalg package (R Core Team 2012; Willighagen 2005). The evaluation function of the genetic 
algorithm was employed to minimise the RMSEs of k-nn estimates for each variable in leave-
one-out cross-validation. The feature selection was carried out separately for each forest attribute.

In the selection procedure, the population consisted of either 300 or 400 binary chromo-
somes, and the number of generations was 100 or 200. We carried out 13 feature-selection runs for 
each	attribute	to	find	the	feature	set	that	returned	the	best	evaluation	value.	In	selecting	the	feature	
weights,	floating	point	chromosomes	with	values	in	the	range	of	0–1	were	used,	and	the	number	
of generations was set to 400. Otherwise the selection procedure was similar to the feature selec-
tion. The values for parameters k and g (Eq. 1 and 2) were selected during the test runs. Number 
of nearest neighbors varied between 2, 3 and 4 depending on the variable, and g was between 1–2.

3 Results

For	all	the	estimated	variables,	the	3D-features	were	in	the	majority	among	the	selected	features	in	
relation to the aerial image features. Among the aerial image features, textural features (i.e. Haral-
ick features or standard deviations of image pixel values) were selected most often. Spectral aerial 
image features were very seldom represented among the selected features. The results of feature 

Table 4. The feature combinations selected by GA for estimating forest variables based on data of 20 and 50 cm spatial 
resolutions (DBH = diameter at breast height, v. = volume of growing stock, for feature abbreviations see section 2.4).

Height (20 cm) STD_G, H05, H30, H80, H85, H95, HCV, VEG, P60, IDM_R, MOC_G, MOC_H, SV_H
Height (50 cm) STD_G, HAVG, H30, H40, H85, H95, H100, P40, DV_R, MOC_G, MOC_H, SV_H
DBH (20 cm) HSTD, H0, H90, H95, H100, P20, P60, MOC_NIR, ASM_R, ENT_G, DE_H, MOC_H
DBH (50 cm) H30, H90, H100, P60, P95, SA_G, COR_H, MOC_H, SA_H
Basal area (20 cm) HAVG, H20, H40, H80, H90, D3, ENT_NIR, SV_R, ASM_G, ASM_H, CON_H
Basal area (50 cm) HSTD, H20, H40, H70, H80, D2, P40, DE_NIR, SV_R, CON_H, DE_H, MOC_H
V. total (20 cm) HSTD, H10, H70, H80, H85, H90, H95, D0, P60, SA_R, CON_H, DV_H
V. total (50 cm) HAVG, HSTD, H20, H30, H90, P20, DE_NIR, SA_R, ASM_H, CON_H
V. pine (20 cm) MEAN_NIR, H20, H80, H85, H95, D2, D6, D9, P60, COR_NIR, DE_NIR, IDM_H, SV_H
V. pine (50 cm) STD_G, H20, H40, H80, H85, H95, HCV, VEG, P80, PCG, DV_NIR, SE_R, CON_G, DV_G, 

SE_G, IDM_H, MOC_H
V. spruce (20 cm) MEAN_NIR, HSTD, H40, H70, H100, D3, P80, IDM_H
V. spruce (50 cm) MEAN_NIR, STD_G, HSTD, H20, H050, H80, H95, HCV, D3, ASM_R, IDM_R, ASM_G, 

DE_G, CON_H, IDM_H, MOC_H 
V. broadleaf (20 cm) HSTD, H0, H40, H80, H90, D2, D8, PGH, SV_NIR, COR_G, ASM_H, IDM_H, SA_H, 

VAR_H
V. broadleaf (50 cm) STD_R, H050, H85, H100, D8, P95, ASM_NIR, ASM_R, COR_R, SA_R, MOC_G, CON_H, 

COR_H, MOC_H, VAR_H
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selections for two main estimated forest variables, stand height and total volume of growing stock, 
are presented in Table 4 (results are shown for both tested image data resolutions; 20 and 50 cm).

The imagery from 2011 resulted in better estimation accuracy than the imagery from 2012, 
mainly due to the better quality of the image material (camera parameters of 2012 imagery were not 
best suited for light conditions). When inspected visually, the 2011 imagery had better radiometric 
quality than the imagery of 2012. Comparing the datasets from consecutive years showed, however, 
that there was considerably lower relative RMSE for volumes of pine and spruce in the 2012 data set 
when taking into account the lowest relative RMSE values calculated from the 2012 data set divided 
by	flight	areas.	This	indicates	that	there	is	high	variation	in	the	quality	of	image	material	between	
different	flights,	which	suggests	that	changes	have	occurred	in	the	photographing	conditions	between	
the	flights,	mainly	due	to	changes	in	weather	and/or	solar	illumination,	which	have	not	been	properly	
taken into account in the acquisition of the images. These variations have probably been the main 
factor in the reduced data quality in 2012. The best results are mainly from Flight 3. When comparing 
results from the entire 2011 data and data from Flight 3 in 2012, relative RMSEs of height are lower 
in the latter data set, whereas the 2011 data set performed better in estimating total volume. When 
all	flights	are	considered,	the	2011	data	gave	better	results	in	all	tested	forest	variables.

When testing the effect of the spatial resolution of orthoimages, the results indicate little dif-
ference in the estimation accuracy with the tested resolutions of 20 and 50 cm on both orthoimages 
and DSM. When comparing the 20 and 50 cm resolution data sets from the 2011 photo acquisition, 
the mean stand height estimates as well as those of the volumes of spruce and broadleaved trees 
were more accurate in the 0.2 m resolution data set, while in other variables the coarser resolution 
set gave a better estimate for total volume and in all the runs for basal area. However, for all tested 
forest variables, the effect of spatial resolution was relatively small. The estimation accuracy for 
the tested forest variables with 2011 imagery (using resolutions of 20 and 50 cm) is presented in 
Fig. 4. The comparison between results of 2011 and 2012 data sets (with similar resolutions) is 
presented in Fig. 5.

Fig. 4. Relative RMSE values [%] for estimated forest variables at sample plot level (2011 data, orthoimage resolutions 
20 and 50 cm). Variables: v = volume, g = basal area, hgm/dgm = mean height/diameter (as measured from basal-area 
weighted median tree).
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4 Discussion

The performance of the UAS system in practical aerial image acquisition was good, despite some 
difficult	flying	conditions	in	the	area	of	operation.	For	example,	during	the	flights	the	UAV	was	
occasionally affected by forceful gusts of crosswind at speeds of 10–15 m/s. Still the UAV auto-
pilot	was	capable	of	holding	the	UAV	position	in	the	programmed	flight	route	so	that	there	were	
no gaps in the image coverage. On the other hand, due to various teething problems in operating 
the UAV and camera equipment, there were some shortcomings concerning the image quality and 
the amount of image coverage. For example, in the 2012 imaging campaign the settings of camera 
parameters were found not optimal for the prevalent light conditions, and furthermore, the Bramor 
UAV was acquired very recently, and little experience had been gathered of operating the system 
at that time. Thus, it is possible that the full potential of the method was not achieved.

When assessing the features selected for the estimation task by GA, the list of selected 
features was markedly similar to those typically applied when using ALS data and conventional 
aerial imagery (e.g. Tuominen and Haapanen 2011). This supports the assumption that the infor-
mation content of photogrammetric CHM is similar to that of ALS-based canopy height data. 
Cross-validating the estimation results indicated that the estimation accuracy at sample plot level 
for the tested forest variables (total volume of growing stock, volumes of pine, spruce and broad-
leaved trees, basal area, mean height and diameter) was very similar to or slightly better than the 
results of earlier estimation tests with a combination of ALS and aerial images in the same study 
area	and	using	similar	field	material	(e.g.	Tuominen	and	Haapanen	2011;	Holopainen	et	al.	2008).	
In addition to the different way of producing 3D point data, the main difference to the aforemen-
tioned	earlier	studies	is	that	in	this	study	the	number	of	available	field	reference	plots	was	con-
siderably	lower.	Due	to	the	fact	that	the	field	reference	data	set	here	was	markedly	smaller	than	

Fig. 5. Relative RMSE values [%] for estimated forest variables at sample plot level (2011 and 2012 data, orthoimage 
resolution 50 cm).
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in the aforementioned studies, the results are not entirely comparable. Typically, in inventories 
where non-parametric estimators such as k-nn have been applied, relatively large set of reference 
plots have been used (up to 600–800), depending on the purpose of the inventory and the varia-
tion within the inventory area. Yet a number of studies focusing on ALS-based forest inventories 
have noted that appropriate inventory results can be achieved using a relatively low number of 
reference plots, when those plots are selected in a suitable way (e.g. Gobakken and Næsset 2008; 
Junttila	et	al.	2008;	Maltamo	et	al.	2011).	Based	on	these	studies,	even	60–100	field	reference	plots	
would be enough for reaching relatively high estimation accuracy for variables such as the total 
volume	of	growing	stock,	whereas	the	addition	of	further	plots	does	not	significantly	improve	the	
estimation accuracy. On the other hand, in the case of operational forest inventories, it is typical 
that a high number of inventory variables to be estimated (such as volumes of various tree spe-
cies)	may	require	a	significantly	higher	number	of	reference	plots,	since	the	estimation	problem	is	
more complicated (as in the case of proportions of various tree species). The selection of remote 
sensing features is usually a compromise between the estimation accuracies of several inventory 
variables.	In	such	a	case,	it	is	very	likely	that	a	significantly	higher	number	of	field	reference	plots	
will	be	required	for	sufficiently	covering	the	relevant	variation	over	the	variables	of	interest.	From	
this perspective, the performance of combination photogrammetric 3D and image data applied in 
this study has been very good.

Järnstedt et al. (2012) have tested, in the same study area, a photogrammetric canopy surface 
model based on more conventional aerial stereo imagery, which was acquired using an aircraft-
mounted Microsoft UltracamXp imaging sensor from a considerably higher imaging altitude. 
Compared to the results by Järnstedt et al. (2012), the estimation accuracy of forest variables was 
considerably better in this study. Also, when visually inspecting the 3D canopy data of this study 
and that of Järnstedt et al., the canopy model of this study appears to be of considerably higher 
quality and more detailed. There are some probable reasons for the differences: the considerably 
lower imaging altitude used in this study allowing higher spatial resolution, the greater stereo 
overlap and furthermore, different software used for building the digital surface models, where 
recent development in digital photogrammetry may have brought more sophisticated algorithms 
and, thereby, more detailed or more realistic surface models.

In other studies using the area-based estimation method with test material from similar 
conditions, estimates of stand height with relative RMSE as low as 8–9% have been achieved with 
the help of ALS data, which indicates distinctly higher performance of the ALS data compared 
to the photogrammetric data used here (e.g. Vastaranta et al. 2012). Since the ALS data may have 
several Z values for each point and photogrammetric data have only one Z-value, the informational 
content of ALS is higher, and also the content of extracted point features is slightly different. Part 
of the difference in the estimation accuracy may be due to the different variations of forest vari-
ables in the test data sets and the coverage of the reference plots in relation to the full distribution 
of forest variables in the test data. For example, there may be a relatively low number of available 
reference plots in the high end of the distribution, which causes bias in the estimates due to the fact 
that k > 1 is typically used in k-nn estimation. On the other hand, the shape of the tree crowns in 
photogrammetric DSM differs from that of laser-based DSM, depending on the properties of the 
software used for producing the DSM. Photogrammetric DSMs often fail to accurately represent 
the complex morphology of the canopy surface, whereas at least the near nadir geometry of ALS 
acquisition enables the detailed canopy features to be reconstructed in the canopy surface model. 
It has also been noted that ALS is generally more successful than photogrammetry in detecting 
canopy gaps (e.g. Andersen et al. 2003). On the other hand, ALS also has limited capability for 
detecting and measuring the accurate elevation of a conifer tree top (Jung et al. 2011).
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5 Conclusions

The tested combination of orthoimagery and DSM derived from UAV-borne camera images was 
found to be well suited to the estimation of forest stand variables.

The accuracy of forest estimates based on the data combination was similar to that of the 
combination of ALS and digital aerial imagery using similar estimation methodology.

The tested method has potential in stand level forest inventory. In acquiring large area image 
coverage,	conventional	aerial	imaging	is	likely	to	remain	more	efficient	than	image	acquisition	
based on small UAVs.

In addition to technical problems, there are points in aviation legislation that should be 
revised in order to enhance the operational feasibility of the presented methodology.
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