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Highlights
•	 The fusion of airborne lidar data and satellite images enables accurate canopy cover mapping.
•	 The	zero-and-one	inflated	beta	regression	is	demonstrated	in	large	area	estimation.
•	 Forest/non-forest	classification	should	be	done	directly,	for	example	by	using	logistic	regres-

sion.

Abstract
The	fusion	of	optical	satellite	imagery,	strips	of	lidar	data	and	field	plots	is	a	promising	approach	
for the inventory of tropical forests. Airborne lidars also enable an accurate direct estimation of 
the	forest	canopy	cover	(CC),	and	thus	a	sample	of	lidar	strips	can	be	used	as	reference	data	for	
creating	CC	maps	which	are	based	on	satellite	images.	In	this	study,	our	objective	was	to	validate	
CC	maps	obtained	from	an	ALOS	AVNIR-2	satellite	image	wall-to-wall,	against	a	lidar-based	
CC map of a tropical forest area located in Laos. The reference CC values which were needed 
for	model	training	were	obtained	from	a	sample	of	four	lidar	strips.	Zero-and-one	inflated	beta	
regression (ZOINBR) models were applied to link the spectral vegetation indices derived from 
the	ALOS	 image	with	 the	 lidar-based	CC	estimates.	 In	addition,	we	compared	ZOINBR	and	
logistic	regression	models	in	the	forest	area	estimation	by	using	>20%	CC	as	a	forest	definition.	
Using a total of 409 217 30 ×	30	m	population	units	as	validation,	our	model	showed	a	strong	cor-
relation	between	lidar-based	CC	and	spectral	satellite	features	(root	mean	square	error	=	12.8%,	
R2	=	0.82).	In	the	forest	area	estimation,	a	direct	classification	using	logistic	regression	provided	
better accuracy than the estimation of CC values as an intermediate step (kappa = 0.61 vs. 0.53). 
It	is	important	to	obtain	sufficient	training	data	from	both	ends	of	the	CC	range.	The	forest	area	
estimation	should	be	done	before	the	CC	estimation,	rather	than	vice	versa.
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Abbreviations

ALOS Advanced Land Observing Satellite
ARVI	 Atmospherically	Resistant	Vegetation	Index
AVNIR-2 Advanced Visible and Near Infrared Radiometer - type 2
CC Canopy Cover
FCI		 First	echo	Cover	Index
LSO-CV Leave-Strip-Out Cross Validation
NDVI	 Normalized	Difference	Vegetation	Index
RMSE Root Mean Square Error
SR Simple Ratio
ZOINBR	 Zero-and-One	Inflated	Beta	Regression

1 Introduction

There are considerable uncertainties in undertaking estimates of a tropical forest area and its changes 
(Achard et al. 2014). Observing changes in the forest canopy cover (CC) is critical in the monitor-
ing	of	forest	areas	because	CC	is	the	main	criterion	in	the	international	definition	of	forest.	Forest	
is	defined	internationally	as	“land	spanning	more	than	0.5	hectares	with	trees	higher	than	5	meters	
and a canopy cover of more than 10 percent” (FAO 2005). Areas under reforestation which have 
yet	to	reach	a	canopy	cover	of	10	percent	are	included,	however	national	minimum	CC	limits	for	
forest can range from 10 to 30 percent (UNFCCC 2001). Thus,	deforestation	can	be	defined	as	
the	reduction	of	CC	below	the	minimum	canopy	cover	criterion,	and	any	smaller	decrease	may	
indicate forest degradation.

Canopy	cover	is	defined	as	the	proportion	of	the	forest	floor	which	is	covered	by	the	verti-
cal	projection	of	the	tree	crowns,	so	that	only	the	gaps	between	individual	crowns	are	observed	
(Jennings et al. 1999; Gschwantner et al. 2009). Thus the CC of a closed-canopy tropical forest is 
typically close to 100%. An unbiased estimation of CC requires that the area of interest is covered 
by	vertical	point	observations,	where	the	proportion	of	between-crown	gaps	is	recorded	(Korhonen	
et	al.	2006).	However,	field	measurements	of	CC	are	laborious	and	expensive,	and	in	addition,	
many	tropical	and	boreal	forest	areas	are	difficult	to	access.

Airborne small-footprint lidar (light detection and ranging) sensors can provide CC estimates 
that	are	comparable	to	the	most	accurate	field-based	estimates	(Korhonen	et	al.	2011;	Gatziolis	
2012). The fraction of pulses that penetrate to the ground without interacting with the foliage 
provides	an	estimate	of	CC	that	is	similar	to	field-based	dot	count	estimates,	because	the	view	
geometry	of	airborne	lidars	is	close	to	vertical.	For	example,	Korhonen	et	al.	(2011)	found	that	
the absolute root mean square error (RMSE) of lidar-based estimates was less than 5% when only 
the echoes from the closest scan strip were used.

A	restriction	of	airborne	lidar	use	is	that	continuous,	nationwide	inventories	are	too	expen-
sive	to	conduct	and	maintain.	Optical	satellite	imagery	is	better	suited	for	this	task,	as	it	is	more	
affordable and new images are frequently available. Most forest inventories in developing coun-
tries	utilize	medium	resolution	(20–30	m)	satellite	images	that	are	combined	with	field	plots	and	
higher	resolution	(<	2	m)	remote	sensing	data.	The	integration	of	satellite	images,	airborne	laser	
scanning	and	field	measurements	has	recently	been	proposed	as	a	method	for	creating	regional	
carbon stock estimates (Asner et al. 2010). Multi-phase inventory designs that utilize strips of lidar 
data to estimate the biomass of large areas have also been developed (McRoberts et al. 2014). 
Such	inventories	are	inexpensive	because	wall-to-wall	lidar	coverage	is	not	needed.	Lidar	strips	



3

Silva Fennica vol. 49 no. 5 article id 1405 · Korhonen et al. · Tropical forest canopy cover estimation using…

can	also	be	used	to	provide	auxiliary	information	in	the	interpretation	of	lower	resolution	images	
(Andersen	et	al.	2011;	Strunk	et	al.	2014),	and	if	inventories	relying	on	samples	derived	from	lidar	
became	widely	used,	they	would	also	provide	training	data	for	CC	mapping	using	satellite	images.

The results obtained in the estimation of CC from optical satellite images have been rea-
sonably good (R2	≈	0.60,	RMSE	6–26%)	(Gemmell	et	al.	2001;	Franklin	et	al.	2003;	Wolter	et	al.	
2009),	except	for	those	concerning	tropical	forests	(R2	=	0.29)	(Koy	et	al.	2005).	However,	in	many	
studies	the	field	measurements	of	CC	have	been	obtained	using	imprecise	or	biased	methods,	and	
this	makes	any	accuracy	assessment	of	remotely	sensed	CC	estimates	difficult.	The	main	advantage	
of CC estimates derived from airborne lidar is that the data are accurate and consistent within each 
scan,	although	high	quality	field	data	are	also	needed	if	the	lidar-based	estimates	are	to	be	unbiased.	
Some studies have already used lidar-based CC estimates as training data for the satellite-based 
mapping	of	CC	(Stojanova	et	al.	2010;	Korhonen	et	al.	2013),	or	for	validating	satellite-based	esti-
mates	(Sexton	et	al.	2013).	However,	the	use	of	lidar-based	CC	estimates	as	training	or	validation	
data	for	satellite-based	CC	models	needs	to	be	evaluated,	especially	in	tropical	forests.

In	most	cases	the	inventory	area	will	also	include	non-forested	areas,	and	there	is	therefore	
a	question	of	whether	the	classification	of	satellite	pixels	into	forest	and	non-forest	classes	should	
be	based	on	the	estimated	CC	values,	or	if	it	should	be	done	directly	so	that	the	area	is	first	clas-
sified	as	either	 forest	or	non-forest.	Direct	classification	 is	usually	more	accurate,	but	 indirect	
classification	where	the	continuous	CC	is	estimated	first	would	avoid	situations	where	the	direct	
classification	and	estimated	CC	values	disagree.

In	 this	study,	our	main	objective	is	 to	demonstrate	an	inventory	concept	where	strips	of	
airborne lidar data are used together with optical satellite images to estimate forest canopy cover 
in a tropical forest area. Spectral vegetation indices calculated from an optical satellite image are 
used to create regression models for a CC that is estimated directly from lidar using zero-and-one 
inflated	beta	regression.	These	models	are	validated	by	predicting	the	CC	for	an	area	with	wall-to-
wall	lidar	coverage,	thus	making	it	possible	to	compare	the	predicted	values	pixel	by	pixel	against	
a	lidar-based	CC	map	with	a	similar	resolution.	Finally,	we	examine	if	it	is	better	to	classify	the	
reference data into forest or non-forest by applying a 20% CC threshold before the modelling 
phase,	or	to	first	estimate	the	continuous	percent	of	CC	and	convert	it	into	forest	classification.

2 Materials and methods

2.1 Study area

Our	study	site	is	located	in	the	province	of	Savannakhet	(16°33´N,	104°45´E),	in	Laos.	The	size	
of	the	study	area	is	34	km	×	23	km.	The	climate	is	tropical,	the	terrain	is	flat,	and	the	density	of	
forests varies from open cutting areas to pristine rainforests with closed canopies. The most common 
forest	types	include	dry	dipterocarp	and	mixed	deciduous	forest.	In	dry	dipterocarp	forests	the	CC	
values	range	from	10%	to	70%,	while	the	mixed	deciduous	forests	have	a	CC	>	90%.	Slash-and-burn	
cultivations,	pastures,	paddy	fields	and	settlements	are	also	present	within	the	area.	In	Laos,	forests	
are	defined	as	lands	with	a	CC	>	20%	(UNFCCC	2001).	The	study	materials	included	airborne	
lidar data and optical ALOS (Advanced Land Observing Satellite) AVNIR-2 (Advanced Visible 
and	Near	Infrared	Radiometer	type	2)	satellite	imagery.	In	addition,	high	resolution	aerial	images	
were used for the visual interpretation of errors. The remotely sensed materials were acquired in 
February	during	the	dry	season,	when	some	species	in	the	dry	dipterocarp	forests	were	without	
leaves	and	the	paddy	fields	were	dry.
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2.2 Satellite data

A satellite image of the area was obtained using the AVNIR-2 sensor on the Japanese ALOS satel-
lite	on	February	3,	2009.	The	image	had	blue	(420–500	nm),	green	(520–600	nm),	red	(610–690	
nm)	and	near-infrared	(760–890	nm)	bands,	and	its	spatial	resolution	was	10	meters.	The	entire	
study area was covered by the same image. Geometric correction was made to the image using 
first-order	 (affine)	polynomial	 transformation	 and	 seven	ground	control	 points.	The	RMSE	of	
the	ground	control	points	was	0.2	pixels.	Resampling	to	a	UTM	48	N	projection	was	done	using	
nearest-neighbor interpolation. Additional topographic or atmospheric corrections were not made 
as	the	area	is	reasonably	small	and	flat,	and	the	image	was	free	from	clouds.	Thus	we	assumed	
that	the	atmospheric	influence	was	constant	within	this	reasonably	small	inventory	area	(Song	et	
al.	2001).	However,	if	several	images	are	required	to	be	mosaicked	to	cover	the	inventory	area,	
then atmospheric corrections would be necessary.

Four	strips	were	subjectively	selected	from	the	satellite	image	so	that	they	would	cover	the	
various	land	use	categories	which	occurred	at	the	site,	i.e.	both	forest	and	non-forest	areas,	and	
excluding	settlements	(Fig.	1).	The	width	of	each	strip	was	three	satellite	image	pixels.	The	size	
of	the	basic	population	unit	was	3	×	3	pixels	or	30	×	30	meters,	and	the	distance	between	them	
was	30	m.	Thus,	each	unit	was	sufficiently	large	to	have	enough	laser	echoes	for	a	reliable	CC	
estimate.	Also,	the	effects	of	geometric	correction	and	resampling	decreased	when	the	spectral	
values	were	averaged	from	nine	pixels.

The training data consisted of three east-west strips and one north-south strip (Fig. 1). The 
strips	had	395,	310,	310,	and	301	population	units,	giving	a	total	of	1316	units.	The	digital	numbers	
of	blue,	green,	red	and	near	infrared	bands	were	extracted	for	each	population	unit.	The	mean	and	
standard deviation of the digital numbers within each 30 × 30 m population unit were also calcu-
lated for each band. Band-wise means were used to further calculate different vegetation indices.

Fig. 1. False-color ALOS AVNIR image of the area. Black transects indicate the location of simulated lidar strips that 
were used to train the models. The area with lidar coverage is outlined in white.
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The	vegetation	indices	that	we	tested	were	simple	ratio	(SR),	normalized	difference	veg-
etation	index	(NDVI),	and	the	atmospherically	resistant	vegetation	index	(ARVI).	SR	and	NDVI	
indices	utilize	red	(RED)	and	near-infrared	(NIR)	bands,	with	the	main	difference	that	unlike	SR,	
NDVI	is	not	affected	by	absolute	pixel	values	(Mather	and	Koch	2011).	The	ARVI	index	also	
includes	the	blue	band	(BLUE),	in	an	attempt	to	reduce	the	influence	of	atmospheric	scattering	
(Kaufman	and	Tanre	1996).	These	vegetation	indices	were	calculated	as	shown	in	equations	1–3.

SR = NIR / RED (1)

NDVI = (NIR – RED) / (NIR + RED) (2)

( ) ( )× ×ARVI = NIR – (2 RED – BLUE)  / NIR + (2 RED – BLUE) (3)

2.3 Airborne lidar data

Wall-to-wall	lidar	data	was	acquired	from	the	study	area	on	the	6th–8th	February	2009.	The	Leica	
ALS	40	scanner	was	flown	at	a	height	of	2000	meters	to	acquire	data	with	a	nominal	pulse	density	
of 1 / m2.	The	sidelap	between	the	flight	lines	was	20%,	and	maximum	scan	angle	was	set	at	15°.	
The	scanner	was	capable	of	recording	up	to	four	echoes	per	pulse.	A	Digital	Terrain	Model	(DTM)	
was created with TerraScan software (TerraSolid 2015) using last and single echoes. The CC was 
estimated	for	every	30	×	30	m	population	unit	within	the	scanned	area	as	the	fraction	of	first	and	
single	canopy	echoes.	This	variable	is	known	as	the	first	echo	cover	index	(FCI)	(Korhonen	et	al.	
2011):

∑∑
∑∑

=
+
+

FCI
Single First

Single First
(4)canopy canopy

All All

Echoes > 2.0 m above ground level are considered to represent the canopy.

Ideally	the	FCIs	should	be	calibrated	with	field	measurements	that	are	compatible	with	the	CC	
definitions	(Jennings	et	al.	1999;	Gschwantner	et	al.	2009).	Unfortunately,	reliable	calibration	data	
were not available and hence our CC estimates are slightly biased. The FCI is usually slightly larger 
than	the	CC	which	is	obtained	from	sighting	tubes,	because	the	ALS	pulses	are	not	exactly	vertical	
and therefore have a slightly larger probability of hitting the crowns than vertical pulses. The bias 
caused	by	this	effect	was	between	1–5%	when	the	scan	zenith	angle	was	less	than	15°	(Korhonen	et	
al.	2011).	In	addition,	some	of	the	tree	species	in	the	dry	dipterocarp	forests	were	leafless,	and	thus	it	
is	likely	that	the	CC	was	underestimated	in	these	forests,	although	the	correlation	has	also	been	shown	
to	be	strong	in	a	leaf-off	situation	(Parent	and	Volin	2014).	Thus	both	the	real	and	estimated	CCs	are	
different in the dry and wet seasons. The dry season is however the best option for lidar and optical 
image data acquisition because of the persistent cloud cover which is present during the wet season. 
Nevertheless,	the	FCI	reliably	describes	the	whole	range	of	CC	variations	which	occur	in	the	area.

The 30 × 30 m population units obtained from the strips and used for training the model 
are	from	this	point	onwards,	termed	as	lidar	plots.	For	the	rest	of	the	study,	we	use	the	acronym	
“FCI”	when	discussing	CC	estimates	obtained	specifically	from	the	lidar	data.	“CC”	is	used	when	
referring to the canopy cover in general. Fig. 2 displays a histogram of the FCI values within the 
lidar	plots.	The	indigenous	mixed	deciduous	forests	with	an	FCI	>	90%	are	shown	as	a	peak	in	
the	histogram,	but	the	majority	of	the	study	area	is	dry	dipterocarp	forest,	or	disturbed	forest	with	
lower FCI values. Some of the lidar plots also had an FCI = 0% (n = 12) or 100% (n = 13).
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2.4 Statistical methods

Linear	regression	analysis	 is	not	well	suited	for	 the	estimation	of	CC,	because	 the	predictions	
must be restricted to the 0–1 interval. Beta regression (Ferrari and Cribari-Neto 2004) presents a 
better	alternative	for	CC	estimation	(Korhonen	et	al.	2007;	Coulston	et	al.	2012)	as	the	response	
variable is assumed to be a sample from a beta distribution with unknown parameters. The mean 
and dispersion parameters of the distribution are estimated based on the sample so that the mean 
parameter	is	related	to	the	predictor	variables	by	a	regression	structure,	while	the	dispersion	param-
eter is assumed to be constant. Beta regression also enables the selection of a link function that 
keeps	the	predictions	in	the	correct	range.	However,	it	is	not	capable	of	dealing	with	lidar	plots	
having	a	0%	or	100%	cover,	because	the	beta	distribution	is	not	defined	for	these	values.	Both	
extremes	were	present	in	our	data,	and	therefore	we	applied	zero-and-one	inflated	beta	regression	
(ZOINBR)	which	is	capable	of	solving	this	issue.	Alternatively,	it	would	have	been	possible	to	use	
nonparametric	regression	methods	such	as	the	K-most	similar	neighbor	(Moeur	and	Stage	1995).	
We	tested	K-MSN	against	ZOINBR	and	found	that	the	prediction	accuracy	was	slightly	weaker,	
so	in	this	study,	only	the	ZOINBR	results	are	reported.

Zero-and-one	inflated	beta	distribution	is	an	extension	to	the	beta	distribution	that	can	be	
used to model percent data that contains ones and zeroes (Ospina and Ferrari 2010). ZOINBR 
models	can	be	fitted	using	the	R	statistical	software	(R	core	team	2012)	and	the	external	library	
gamlss (Stasinopoulos and Rigby 2007). Gamlss	(generalized	additive	models	for	location,	scale	
and shape) is meant to overcome the limitations of generalized linear and additive models. The 
response	variable	is	assumed	to	follow	a	parametric	distribution,	but	it	does	not	need	to	belong	to	
the	exponential	family	and	can	be	either	skewed,	kurtotic	or	discrete.

The gamlss models assume that independent observations yi with a probability density func-
tion f(yi|θ) are conditional on the vector θ = (μi, σi, νi, τi)	with	four	distribution	parameters,	each	of	
which	can	be	a	function	of	the	explanatory	variables	(Stasinopoulos	and	Rigby	2007).	Parameters	
μi and σi	are	typically	related	to	the	location	and	scale	of	the	distribution,	while	νi and τi represent 
the	skewness	and	kurtosis.	However,	the	model	can	also	be	applied	for	distributions	with	different	
parameters,	and	the	parameters	can	be	estimated	as	linear,	nonlinear,	or	a	smooth	function	of	the	
explanatory	variables.

The	zero-and-one	inflated	beta	distribution	is	a	mixture	distribution	that	combines	beta	and	
Bernoulli distributions so that probability mass can also be allocated for the values 0 and 1. The 
beta distribution has several parameterizations. The one used in gamlss has the location parameter 

Fig. 2. Histogram	of	the	first	echo	cover	index	(FCI)	values	within	our	data	set.
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μ and the scale parameter σ,	and	its	probability	density	function	for	0	<	y < 1 is as follows (Stasi-
nopoulos et al. 2008):

µ σ
α β

= −α β− −f y
B

y y( | , ) 1
( , )

(1 ) (5)Y
1 1

where B	is	the	beta	function,	α = μ	(1–σ2)/σ2,	β = (1–μ)	(1-	σ2)/	σ2,	α > 0 and β > 0. The zero-and-
one	inflated	beta	distribution	extends	this	function	by	introducing	additional	parameters	p0 and 
p1,	which	describe	probabilities	that	the	observed	value	is	0	or	1,	respectively.	The	probability	
density function is written as:

µ σ ν τ
α β

=

=

− − − < <

=











α β− −f y

p y

p p
B

y y y

p y

( | , , , )

                                                           if 0

(1 ) 1
( , )

(1 )       if 0 1

                                                           if  1

(6)Y

0

0 1
1 1

1

for 0 ≤ y ≤ 1,	where	α and β	are	as	above,	p0 = ν (1+ν+τ)–1,	p1 = τ (1+ ν+τ)–1,	α > 0,	β > 0,	0 ≤ p0 ≤ 1,	and	
0 ≤ p1 ≤ 1 (Stasinopoulos et al. 2008). The parameters μ,	σ,	ν,	and	τ are estimated using the method of 
maximum	(penalized)	likelihood.	Monotonic	link	functions	that	can	be	defined	separately	for	each	
variable	are	used	in	the	process.	By	default,	the	link	functions	are	logistic,	logistic,	log	and	log	for	
μ,	σ,	ν,	and	τ,	respectively.	The	final	parameter	estimates	are	calculated	from	the	values	given	by	
the	gamlss	by	applying	an	inverse	of	the	link	function.	The	expected	value	of	the	distribution	(μ) 
is	dependent	on	the	predictor	variables	as	defined	by	the	estimated	regression	coefficients.	Using	
the	logistic	link	function,	μ is modelled as:

∑µ
µ

η β
−

= =
=

xlog(
1

) (7)j j
j

p

1

where βj =	the	vector	of	model	coefficients	and	xj = the vector of predictor variables. The estimate 
for μ (which is also the model prediction) is obtained by applying the inverse of the logistic function:

µ η η( ) = exp( ) / 1+ exp( ) (8)

Variable	selection	for	the	ZOINBR	models	was	based	on	an	exhaustive	search	to	find	the	
two and three-variable combinations having the lowest model RMSE of predictions:

∑= −

=

y y
n

RMSE ( ˆ ) (9)i i

i

n 2

1

where yi =	FCI,	ŷi =	the	estimate	derived	from	the	satellite	images,	and	n = the number of lidar plots. 
The	most	promising	predictors	and	their	transformations	were	tested	manually	to	find	the	model	
having the best RMSE in leave-strip-out cross validation (LSO-CV). Each of the four strips with 
301–395	lidar	plots	per	strip	was	omitted	from	the	data	one	at	a	time,	and	the	remaining	lidar	plots	
were	used	to	fit	the	model.	The	model	was	then	applied	to	predict	the	FCI	of	the	lidar	plots	in	the	
omitted	strip,	and	the	RMSE	and	bias	(Eq.	10)	were	calculated	for	the	predictions.
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We	report	all	RMSE	and	bias	values	as	percent	points,	 i.e.	 they	are	absolute	values	that	
describe the difference between the observed and predicted values (not divided by the mean of 
response	variable).	In	order	to	enable	a	comparison	with	earlier	studies,	we	also	calculated	the	
pseudo-R2	as	a	square	of	the	sample	correlation	coefficient	between	the	values	estimated	in	the	
LSO-CV and the observed values (Ferrari and Cribari-Neto 2004).

2.5	 Forest	–	non-forest	classification

We	tested	the	binary	classification	of	lidar	plots	into	either	forest	or	non-forest,	based	on	the	CC.	
We	tested	both	the	international	(10%)	and	the	national	(20%)	CC	limits,	but	as	the	differences	in	
model	accuracy	were	small,	only	the	results	obtained	using	the	20%	limit	are	reported.	In	addition,	
we	compared	the	direct	and	indirect	estimations	of	the	forest	area.	In	the	direct	estimation,	we	
converted	the	lidar-based	FCI	values	into	forest	or	non-forest	based	on	the	20%	FCI	limit,	and	the	
new	binary	variable	was	used	as	a	response	in	the	resulting	classification.	In	the	indirect	estima-
tion,	the	FCIs	were	first	predicted	and	then	converted	into	forest	or	non-forest.

Because	the	response	variable	was	binary	(1	=	forest,	0	=	non-forest),	logistic	regression	was	
employed	instead	of	the	ZOINBR.	Logistic	regression	models	are	generalized	linear	models,	where	
the response variable is assumed to follow a Bernoulli distribution. A logistic link function (Eq. 
7)	was	applied	in	all	cases.	Variable	selection	was	similar	to	ZOINBR,	but	Cohen’s	kappa	coef-
ficient	(Landis	and	Koch	1977)	was	used	as	the	main	criterion.	Overall,	the	user’s	and	producer’s	
accuracies were also calculated from the error matrices.

2.6 Map comparisons

The	satellite-based	models	were	applied	to	create	maps	of	FCI	and	forest	area,	and	validated	against	
the	wall-to-wall	FCI	map.	A	water	mask	was	applied	to	exclude	the	population	units	that	included	
water	bodies.	Settlement	areas	were	also	excluded	because	the	lidar	echoes	from	buildings	could	
be erroneously interpreted as canopy echoes. The rest of the land area (n = 409 217 population 
units)	was	included	in	the	comparisons,	regardless	of	the	land	use.	In	addition	to	maps	showing	
the	estimated	and	observed	FCI	and	FCI-based	forest	area,	we	created	maps	that	visualized	the	
magnitude of error in satellite-based FCI predictions and the types of error in the direct forest/
non-forest	 classification.	Aerial	 photographs	were	 utilized	 to	 visually	 inspect	 those	 sites	with	
considerable	errors.	RMSE,	bias,	and	the	pseudo-R2 of the FCI were also calculated for the entire 
population,	as	well	as	the	kappa	coefficient	and	error	matrix	of	the	forest/non-forest	classification.

3 Results

3.1 Canopy cover

The	coefficients	of	our	final	zero-and-one	inflated	beta	regression	model	of	the	training	data	are	
displayed in Table 1. The model shape is quadratic polynomial with two predictor variables: the 
vegetation	index	ARVI	and	the	blue	band	digital	number.	In	the	LSO-CV,	the	model’s	absolute	
RMSE was 11.5% and the pseudo R2 was 0.85. The μ parameter was related to the predictors 
through	regression	structure	and	logistic	link	function,	while	the	other	parameters	were	constant.	
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Differences	 in	RMSE	among	 the	different	variable	combinations	were	 fairly	small,	with	most	
producing RMSEs of 12–13% in the LSO-CV.

Fig. 3 shows a scatter diagram where the estimates obtained from the ALOS image by apply-
ing ZOINBR and LSO-CV are plotted against the FCIs obtained from the lidar data. Lidar plots 
with	an	FCI	close	to	100%	usually	had	an	estimated	FCI	ranging	from	85%	to	100%,	and	as	these	
cases	were	common	in	our	data,	they	seem	to	be	the	main	reason	for	the	slight	overall	underesti-
mation as indicated by the measured bias (0.6%). Underestimation of lidar plots with a very high 
FCI	could	not	be	totally	avoided,	but	in	practical	applications,	FCI	estimates	ranging	from	90%	
to	100%	would	have	a	similar	interpretation.	The	opposite	occurred	at	the	lower	end	of	the	scale,	
where the FCI was overestimated by up to 20% in lidar plots with an observed FCI close to zero. 
Although	the	number	of	these	cases	was	fairly	low,	they	could	be	important	because	such	errors	
influence	the	forest/non-forest	classification.	In	the	middle	of	the	FCI	range,	the	model	fitted	the	
data	well,	but	individual	errors	in	the	estimated	FCI	could	be	as	high	as	30%.

Table 1. Zero-and-one	inflated	beta	regression	model	for	the	estimation	of	canopy	cover.	All	
coefficients	were	statistically	significant	with	P	<	10–10. The model deviance was –2260.1 and 
the AIC (Akaike Information Criterion) was –2244.1.

Parameter Link function Variable Coefficient Standard error

μ Logit Intercept –48.32 3.91
ARVI 4.139 0.202
ARVI2 1.148 0.182
BLUE 0.9399 0.0792
BLUE2 –0.004635 0.000401

σ Logit Intercept –0.9962 0.0232
ν Log Intercept –4.678 0.290
τ Log Intercept –4.598 0.0279

Fig. 3. The relationship between lidar-based canopy cover estimates (FCI) and estimates obtained from the satellite 
image	using	zero-and-one	inflated	beta	regression	(ZOINBR).	Dashed	lines	show	the	20%	FCI	threshold	used	in	forest/
non-forest	classification.
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Including	the	blue	band	as	a	predictor	improved	the	model	performance,	especially	at	the	
lower	end	of	the	FCI	scale.	When	the	blue	band	was	removed	or	replaced	by	the	NIR	band,	the	
model never predicted FCIs smaller than 15%. Green and red bands had a high correlation with the 
blue	band	(R	=	0.97	and	0.95	respectively),	and	using	these	instead	of	the	blue	band	also	improved	
the	model,	but	not	as	much	(RMSE	=	11.9%	and	11.7%	respectively).	The	ARVI	index	performed	
better	than	the	NDVI	and	SR,	both	of	which	provided	an	RMSE	of	12.7%	when	applied	instead	
of	the	ARVI	index	and	using	the	same	model	shape.	The	two-predictor	models	that	included	the	
ARVI	index	always	provided	smaller	RMSEs	than	models	without	it	(the	smallest	RMSE	being	
11.5% vs. 12.5% respectively).

The	FCI	map	obtained	using	the	model	shown	in	Table	1	and	its	error	map	are	shown	as	figures	
4	and	5.	The	model	RMSE	in	the	entire	population	was	12.8%,	bias	0.55%,	and	the	pseudo-R2 was 
0.82,	i.e.	the	accuracy	was	slightly	worse	than	the	estimates	obtained	from	LSO-CV	indicated.	The	
error map indicated that inclusion of other land use categories within the scanned area was one of 
the	main	sources	of	error.	For	example,	a	troublesome	area	around	the	river	bend	in	the	north-west	
region	of	the	map	(Fig.	5)	included	agricultural	areas	where	the	FCI	was	overestimated.	In	addition,	
this area had bamboo thickets where the vegetation was so dense that no last echoes were received 
from	the	ground,	and	the	DTM	was	estimated	to	follow	the	surface	of	the	bamboo.	Thus,	the	spec-
tral	FCI	estimates	for	such	sites	were	close	to	100%,	while	the	lidar-based	FCIs	were	close	to	zero.

Forest	areas	with	underestimation	problems	included	trees	with	low	near-infrared	reflectance,	
i.e.	leafless	dipterocarps	whose	crowns	were	still	captured	by	the	lidar.	These	forests	were	also	
represented	in	the	modelling	data	set,	but	the	model	was	unable	to	adequately	fit	both	the	evergreen	
mixed	deciduous	and	dry	dipterocarp	forests,	and	which	probably	explains	a	large	proportion	of	
the residual variance. FCI was also somewhat overestimated in areas where the forest was cleared 
for slash-and-burn cultivation or for some other land use. This could have been caused by the 
relatively	small	number	of	low-FCI	stands	in	our	training	data	(Fig.	2),	which	probably	resulted	

Fig. 4. First	echo	cover	index	(FCI)	map	obtained	from	the	ALOS	AVNIR-2	image	for	the	area	with	lidar	coverage.
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Fig. 5. Error	map	of	the	estimated	first	echo	cover	index	(FCI)	obtained	from	comparison	with	a	lidar-based	map.	The	
FCI was underestimated in the blue areas and overestimated in the red areas.

in a tendency to overestimate stands with a low FCI. This can also be observed in Fig. 3 where a 
majority	of	lidar	plots	with	an	observed	FCI	of	<	20%	are	actually	predicted	to	have	an	FCI	>	20%.

3.2 Forest and non-forest

Our	best	logistic	model	for	the	direct	prediction	of	forest	area,	and	employing	quadratic	polynomi-
als	of	the	vegetation	indices	ARVI	and	NDVI	as	predictors	is	shown	below:

µ
µ−






= + + −log

1
-0.8317 10.63ARVI 40.59ARVI 42.12NDVI-187.8NDVI (11)2 2

where µ	is	the	expected	value	of	the	predicted	Bernoulli	distribution.

The model AIC was 529.1 and the residual deviance was 519.1 on 1311 degrees of freedom. 
The	model’s	kappa	coefficient	was	0.60	and	its	overall	accuracy	was	91.0%.	This	result	was	superior	
to indirect estimation where the FCIs predicted by the ZOINBR model (Table 1) were converted to 
forest	or	non-forest.	The	indirect	estimation	only	achieved	a	kappa	=	0.45	in	the	LSO-CV,	although	
the overall accuracy was equally as good (90.4%). Error matrices obtained from the LSO-CV are 
shown in Table 2 for both methods. The indirect estimation with the ZOINBR model produced a 
very	high	producer’s	accuracy	for	forest	(98.2%),	which	had	more	observations	than	the	non-forest	
class	(1149	vs.	167).	Thus,	the	indirect	estimation’s	low	producer	accuracy	for	non-forest	(37.1%)	
is	only	reflected	in	the	kappa	coefficient	(0.45).	The	reason	for	this	could	be	that	a	majority	of	the	
lidar	plots	had	high	FCI	values,	and	optimizing	the	ZOINBR	model	for	FCI	weighted	the	densely	
covered lidar plots more than the smaller number of low FCI plots.
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The error matrices of direct and indirect forest area estimation for the whole area are shown 
in	Table	3.	The	direct	model’s	kappa	coefficient	 in	 this	classification	was	0.61	and	the	overall	
accuracy	was	90.6%,	i.e.	very	close	to	the	values	obtained	in	the	leave-strip-out	cross	validation.	
For	the	indirect	approach,	the	kappa	coefficient	was	0.53,	i.e.	better	than	shown	in	the	LSO-CV.	
Based	solely	on	the	CC	criterion,	the	logistic	model	prediction	for	forest	coverage	within	the	area	
was	87.9%,	while	the	lidar-based	observed	value	was	84.5%,	i.e.	the	forest	area	was	slightly	over-
estimated.	Table	3	shows	that	non-forest	was	more	difficult	to	classify	correctly	than	forest	(user’s	
accuracy	75.4%	vs.	92.7%).	The	producer’s	accuracy	for	non-forest	was	only	58.7%,	indicating	
that	41.3%	of	the	observed	non-forest	area	was	misclassified	as	forest.	Again,	the	main	reason	for	
this	could	be	the	insufficient	number	of	low	FCI	plots	contained	in	the	training	data.

The	error	map	of	the	direct	forest/non-forest	classification	is	shown	as	Fig.	6,	and	the	lidar-
based map of the non-forest areas is shown as Fig. 7. Visual inspection of the error map showed 
that	 the	 indigenous,	high-cover	 forests	were	consistently	classified	correctly.	Erroneous	pixels	
were	scattered	all	around	the	map,	but	the	majority	occurred	within	the	disturbed	forest	area	which	
featured	in	the	middle	of	the	mapped	area,	where	non-forest	areas	were	frequently	classified	as	
forest.	The	non-forest	pixels	classified	as	forest	occurred	typically	in	areas	which	were	cleared	
for	agriculture	as	visualized	in	Fig.	8.	The	paddy	fields	were	without	vegetation	during	the	dry	
season	and	therefore	usually	classified	correctly,	but	already,	a	few	pixels	with	a	high	near-infrared	
reflectance	could	cause	the	population	unit	to	be	classified	as	forest	(Fig.	8).	Classifying	forest	
as	non-forest	occurred	less	frequently,	and	mostly	in	the	dry	dipterocarp	forests	with	a	fairly	low	
near-infrared	reflectance.

Table 2. Error matrices of the indirect (ZOINBR) and direct (logistic model) forest/non-forest 
classification	using	a	20%	FCI	 threshold	 in	 the	 leave-strip-out	cross	validation.	Kappa	coef-
ficients	were	0.45	and	0.60	respectively.

  Observed  	User’s
Predicted Method Non-forest Forest Sum accuracy

Non-forest ZOINBR 62 21 83 74.7%
 Logistic model 110 62 172 64.0%
Forest ZOINBR 105 1128 1233 91.5%
 Logistic model 57 1087 1144 95.0%
Sum  167 1149 1316  
Producer’s	 ZOINBR 37.1% 98.2%  90.4%
 Logistic model 65.9% 94.6% 91.0%

Table 3. Error matrices of the indirect (ZOINBR) and direct (logistic model) forest/non-forest 
classification	using	a	20%	FCI	threshold	for	the	whole	population.	Kappa	coefficients	were	0.53	
and 0.61 respectively.

  Observed  	User’s
Predicted Method Non-forest Forest Sum accuracy

Non-forest ZOINBR 28 500 5 645 34 145 83.5%
 Logistic model 37 330 12 171 49 501 75.4%
Forest ZOINBR 35 095 339 977 375 072 90.6%
 Logistic model 26 265 333 451 359 716 92.7%
Sum  63 595 345 622 409 217
Producer’s	 ZOINBR 44.8% 98.3% 90.0%
 Logistic model 58.7% 96.5% 90.6%
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Fig. 6. Error	map	of	the	forest/non-forest	classification	using	the	logistic	model	(Eq.	11).

Fig. 7. Lidar-based	map	of	the	non-forest	areas	(yellow).	Based	on	the	lidar,	84.5%	of	the	scanned	area	was	forest,	
based	on	the	20%	FCI	criterion.	Also,	the	areas	between	the	indigenous	mixed	deciduous	forests	frequently	had	an	FCI	
> 20%.
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4 Discussion

Our	attempt	to	estimate	lidar-based	canopy	cover	using	an	ALOS	AVNIR-2	image	performed	well,	
as our pseudo-R2	values	(full	population	=	0.82,	cross	validated	=	0.85)	are	high	compared	to	earlier	
studies	(e.g.	Carreiras	et	al.	2006;	Wolter	et	al.	2009),	and	especially	encouraging	for	estimating	
the	tropical	forests	of	south-east	Asia	(Koy	et	al.	2005).	We	assume	that	the	high	consistency	of	the	
lidar-based	FCI	proxy	for	CC	helped	to	achieve	this	result,	because	commonly	applied	quick	field-
based CC estimates or estimates derived from the visual interpretation of higher resolution optical 

Fig. 8. Typical	site	with	classification	errors.	Panel	a)	shows	the	classification	errors	visualized	in	an	aerial	image,	and	
b)	in	the	ALOS	AVNIR-2	satellite	image.	Blue	polygons	are	non-forest	areas	classified	as	forest,	red	polygons	forest	
areas	classified	as	non-forest.	Below,	c)	shows	the	extent	of	the	lidar-based	non-forest	area,	and	d)	its	ALOS-based	
estimate upon the aerial image.
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images	are	less	accurate	than	lidar-based	FCIs.	When	the	uncertainty	of	the	estimated	CC	is	small,	
a	major	source	of	error	is	removed	from	the	modelling.	Lidar	data	can	also	be	intersected	exactly	for	
the	selected	satellite	pixels,	which	decreases	the	scale	mismatch	between	validation	data	and	satellite	
imagery.	However,	our	study	area	was	fairly	small,	which	probably	contributed	to	the	high	degree	
of accuracy due to the small amounts of atmospheric variation within the area of interest. Therefore 
we could utilize the blue band that is otherwise prone to atmospheric variations (Häme et al. 2013).

Although	the	lidar-based	CC	estimates	are	slightly	biased,	in	visual	interpretation,	the	lidar-
based forest area map showed a very good agreement with the aerial images (Fig. 8). It is recom-
mended to measure a small number of reference plots (e.g. 10–20) with a sighting tube so that the 
range	of	CC	within	the	inventory	area	is	covered,	and	then	to	calibrate	the	FCIs	with	these	values.	
If	the	field	data	is	lacking,	the	FCIs	can	still	provide	a	meaningful	description	of	the	CC	gradients	
within	the	area.	Future	work	should	therefore	focus	on	understanding	the	scanner	settings,	so	that	
the biases caused by non-vertical scanning could be corrected using empirical models if calibra-
tion data is not available.

The ZOINBR is well suited for large-area CC estimation because the predictions are guaran-
teed to remain logical and plots with 0% or 100% CCs are allowed. The only noticeable problem 
with	the	ZOINBR	method	was	the	slight	underestimation	in	stands	with	a	nearly	100%	FCI,	but	in	
practice,	all	forests	with	a	CC	close	to	100%	can	be	considered	to	be	undisturbed.	The	other	sources	
of error observed in the prediction were not related to the modelling technique. The reasons for 
these errors were usually either the application of the model in population units without trees or 
mixed	land	uses,	or	an	inadequate	number	of	lidar	plots	with	FCIs < 20% (12.7%) in the training 
data,	which	resulted	in	a	poor	level	of	accuracy	in	areas	with	a	low	CC.	Also,	defoliation	of	the	
dry	dipterocarp	forests	had	a	noticeable	influence.	A	forest	area	mask	can	also	be	estimated	from	
the	same	data	using	the	logistic	regression	shown	above.	In	our	initial	test	in	Finland,	the	RMSE	
of	the	FCI	model	increased	by	six	percentage	points	when	it	was	applied	to	systematically	placed	
validation	plots	(Korhonen	et	al.	2013).

In	the	forest/non-forest	classification,	the	direct	logistic	model	provided	better	results	than	
when	first	estimating	the	CC	and	then	classifying	the	estimated	values,	because	it	was	optimized	
to separate those lidar plots close to the FCI threshold. It is also possible to use the CC models for 
forest	classification,	but	this	criterion	should	also	be	included	in	the	variable	selection.	The	balance	
of the data set would be more of an issue if the international 10% CC limit was applied instead of 
the	local	20%	limit,	because	the	number	of	observations	needed	in	the	modelling	increases	with	
unequal class sizes.

Our	study	focused	on	the	pixel	scale	mapping	of	CC	and	forest/non-forest	classification,	
based	solely	on	the	CC	criterion.	In	practical	forest	cover	mapping,	other	criteria	mentioned	in	the	
international	definition	for	forests	must	also	be	included	(FAO	2005),	including	minimum	area,	
minimum	width,	tree	height	and	land	use.	Thus,	in	further	applications	the	full	processing	chain	
described	by	Magdon	et	al.	(2014)	should	be	followed.	In	practical	scenarios,	field	measurements	
of	both	CC	and	height	are	needed	to	obtain	unbiased	estimates.	We	also	used	a	fixed	size	for	the	
population	unit,	although	this	can	influence	the	results	of	forest	area	estimation	(Eysn	et	al.	2012).	
In	addition,	we	did	not	filter	the	30-m	resolution	maps	for	noise	pixels	or	generalize	them	into	a	
smaller	resolution,	both	of	which	should	be	done	for	practical	map	products.

Our	results	concerning	forest	area	are	somewhat	different	from	those	of	Häme	et	al.	(2013),	
who used the same ALOS AVNIR-2 data set to create a mosaicked land cover map for the whole 
province	of	Savannakhet.	They	used	high-resolution	Quickbird	and	Kompsat	images	to	visually	
interpret	the	land	use	for	spectrally	similar	classes	obtained	from	unsupervised	fuzzy	classification,	
and	then	applied	the	classification	to	create	large-area	maps.	Looking	at	this	land	use	map	(Häme	et	
al.	2013,	Fig.	7,	N	=	1	790	000,	E	=	550	000),	our	study	area	is	mostly	classified	as	farmland,	cleared	
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forest,	or	other	non-forest.	Their	results	are	not	directly	comparable	to	ours,	as	we	focused	solely	
on	the	CC	criterion	and	ignored	the	influence	of	land	use.	Nevertheless,	based	on	our	lidar-derived	
FCI	map	(Fig.	7),	the	CC	was	also	commonly	above	20%	in	areas	where	a	visual	interpretation	
may	indicate	other	land	use.	Also,	our	observed	forest	percentage	(84.5%)	seems	considerably	
higher than the map by Häme et al. (2013) would indicate.

In	the	case	of	a	large-scale	inventory,	several	images	are	needed	to	cover	the	area	of	interest.	
In	such	cases	the	lidar	strips	should	be	placed	so	that	a	sufficient	number	of	lidar	plots	are	avail-
able	within	each	image,	so	as	to	avoid	the	need	to	apply	models	to	images	without	reference	data.	
Forest	area	maps	should	also	be	supplemented	by	confidence	intervals	for	the	variables	of	interest,	
and these can be obtained e.g. by the application of model-based or model-assisted sampling equa-
tions	(McRoberts	et	al.	2014).	In	our	study,	the	placement of the lidar strips used for training the 
model	was	subjective,	which	corresponds	to	an	inventory	with	a	model-based	approach.	With	the	
model-based	approach,	the	main	objective	of	the	training	data	collection	is	to	maximize	the	model	
validity by selecting the training data to be as diverse as possible. The selection of strip samples 
should	therefore	be	planned	carefully,	so	that	sufficient	samples	are	obtained	from	all	forest	types	
within the area of interest.
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