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Highlights
•	 A dynamic whole-stand model was derived from simple allometries and biological rationale.
•	 The state-space modelling approach was applied, suggesting several novelties to overcome 

scarcity of longitudinal data.
•	 The	model	consists	of	a	three-dimensional	state	vector,	defined	by	dominant	stand	height,	

stand density and mean stem volume, and three transition functions.
•	 It was tested with data from Scots pine plantations.

Abstract
Growth and yield tables are constrained by a standard production regime and the stand-level 
dynamic	models	are	an	attractive	alternative	for	the	even-aged	monospecific	stands.	The	objec-
tive of this study is to derive a parsimonious and biologically sound whole-stand dynamic growth 
model and to validate its consistency and relevance for prediction of stand growth and yield. The 
state-space modelling approach was employed, introducing several novelties in comparison with 
its	current	usage.	The	model	consists	of	a	three-dimensional	state	vector,	defined	by	dominant	
stand height, number of trees per hectare and mean stem volume, and three transition functions. 
A	site	index	model	was	incorporated	for	height	growth	projection	and	transition	functions	for	
stand density and mean stem volume with respect to dominant height increase were derived from 
simple allometries and biological rationale. The model was examined with data from 79 permanent 
sample plots in Scots pine plantations. Nonlinear Seemingly Unrelated Regression was used to 
account for cross-equation correlations, and the Base-Height-Invariant dummy variable method 
was employed to estimate dynamic-form equations. Model consistency was validated in terms of 
accuracy of predictions and applicability to both thinned and unthinned stands. The new dynamic 
growth model is a parsimonious biometric whole-stand model that simulates the expected stand 
development for a broad spectrum of potential management alternatives and can be incorporated 
in a computer program for further use. It may be especially useful for application when a scarcity 
of longitudinal data prevents the use of more complicated modelling approaches.
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1 Introduction

Individual-tree growth models are largely preferred in the European forestry as an alternative to the 
yield	tables,	since	they	allow	flexibility	in	forecasting	tree	growth	regardless	of	species	mixture,	
age distribution or applicable silvicultural system, which is particularly relevant to the uneven-
aged and mixed-species managed forests (Hasenauer 2006). However, standard forest inventories 
usually do not provide the tree-level estimates required for initializing the individual-tree models. 
Application of these types of models for decision-making requires aggregated outputs, resulting in 
a	projection	of	a	simple	state	description	through	complicated	functions	and	the	over-parameter-
ization of the functions may often limit the accuracy and precision of the quantitative predictions 
(García 1994; Castedo-Dorado et al. 2007a). Population parameters such as stocking and standing 
volume are used to predict forest growth or yield in the whole-stand models and details about the 
individual trees in the stand are not determined (Vanclay 1994). The whole-stand models usually 
utilize information readily available from inventory data and are an attractive alternative for the 
even-aged	monospecific	stands	(Clutter	et	al.	1983;	Vanclay	1994;	Castedo-Dorado	et	al.	2007a).

Vanclay (1994) provided extended review and critical appraisal of the whole-stand model 
types in regard to mixed forest modeling and Pretzsch (2009) distinguished four generations of 
whole-stand growth models, ranging from the experience yield tables to stand growth simulators. 
Burkhart and Tomé (2012) recognized a number of different modelling approaches in elaborating 
whole-stand growth models, such as simultaneous systems of compatible growth and yield equa-
tions, mixed-effects models, models based on annual increments and state-space models.

The state-space approach, which is a standard in many disciplines dealing with processes 
evolving in time (García 2011, 2013b), was adopted	to	forest	modelling	by	García	(1988,	1994).	
Its main idea is to characterize the state of the system at any point in time so that given the present 
state the future does not depend on the past (García 1994). The stand must be adequately described 
by a set of state variables (e.g. basal area, number of trees per hectare, dominant stand height) so 
that the future states can be determined by the current state and future actions and the other stand 
variables	of	interest	can	be	derived	from	the	state	variables	(García	1988).	This	implies	that	growth	
predictions can be made simply by updating the state variables and therefore the dynamic growth 
model is described by a state vector of stand variables, which characterizes the system at any point 
in	time,	and	transition	functions,	which	specify	how	the	state	changes	over	time	(García	1988,	
1994).	García	(1988,	1994)	postulated	that	the	transition	functions	must	possess	three	essential	
properties (causality, consistency and path-invariance) and are usually generated by integration 
of differential equations or summation of difference equations that automatically derives rela-
tions having these features. The allometric functions, on the other hand, are not only concerned 
with description of deterministic size relations, but also with their causality (Pretzsch 2009). The 
relationship widely known as “the allometric equation” has been formulated as a “relative growth 
equation” (Huxley 1972) and expresses the ratio of the relative growth rates of two organs through 
an	allometric	exponent.	Consequently,	the	allometric	equation	has	been	defined	as	a	differential	
equation and is known more in its integrated form, which suggests also that it can be considered 
for development of a transition function.

It is often assumed that the model cannot exceed the accuracy of the data on which it is based 
(Burkhart and Tomé 2012). Vanclay et al. (1995) assert that passive monitoring plots in “typical” 
stands are well suited for preparing standard yield tables and site index curves but are less well suited 
for constructing dynamic growth and yield models because the ability of the resulting models to 
provide inferences about optimal silvicultural treatments would be restricted. These authors recom-
mend establishment of a system of permanent experimental plots that is manipulated to provide data 
on a wide range of stand densities and a range of thinning strategies and which includes sampling of 
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extremes. According to Burkhart and Tomé (2012), permanent plots, which are measured over one 
or more growth periods and actually represent a partial time series for each stand, are an effective 
and	efficient	means	of	obtaining	growth	and	yield	data.	Gadow	and	Hui	(1999)	deduced	that	in	the	
state-space approach, the fundamental data units for estimating the model parameters are pairs of 
consecutive measurements, i.e. interval data and when selecting trial plots, the aim should be to 
obtain a broad coverage of initial states, because model performance is determined by the variety 
of initial states used for estimating the model parameters. Consequently, a small number of plots 
and designed thinning treatments casts doubt on the representativeness of the data and hinders the 
application of more sophisticated state-space model formulations, causing convergence problems, 
non-significant	or	biologically-implausible	parameter	estimates.

The	main	objectives	of	this	study	were:	1)	to	derive	a	parsimonious	and	biologically	sound	
whole-stand dynamic growth model applying the state-space approach and utilizing the allometric 
equation; 2) to test the model with data from Scots pine plantations after thorough examination and 
verification	of	their	quality	and	3)	to	validate	model	consistency	and	applicability	for	prediction	
of stand growth and yield.

2 Materials and methods

2.1 Modelling rationale

2.1.1 Site quality model

Whole-stand growth and yield models must include some measure of site quality to allow for 
site-specific	growth	and	yield	prediction.	Site	index,	which	is	defined	as	the	average	height	of	the	
dominant portion of the stand at an arbitrarily chosen age (Assmann 1970), is the measure most 
commonly used for this purpose and it can be modelled separately, because it also constitutes a 
self-contained sub-system (García 1994). The dynamic, base-age invariant site index model with 
multiple asymptotes derived for Scots pine plantations in Bulgaria by Stankova and Diéguez-Aranda 
(2012) was incorporated as a transition function for dominant height. It is based on Lundqvist-
Korf’s growth function estimated in its anamorphic algebraic difference form and is expressed 
mathematically as:

H H
A A

exp 6.631 1 1 (1)2 1
1
0.342

2
0.342

= −
















where H1 is the predictor height at age A1 and H2 is the predicted height at age A2.

2.1.2 Mean stem volume projection

Another stand-level state variable is the mean stem volume (m3),	defined	as	the	quotient	of	the	
total stand volume and the number of trees. Xue et al. (1999) considered the allometric equation 

∝H v p  to describe the relationship of mean stand height (H) to mean stem volume (v) and found 
a	good	fit	 in	data	from	Pinus tabulaeformis and Larix principis-rupprechtii stands. I used this 
interdependence to suggest invariants, quantities that remain unchanged in the absence of distur-
bances (Table 1), and to derive differential equations estimating the mean volume growth rate in 
regard with dominant stand height and mean stem volume. The differential equation forms were 
obtained from the invariants assuming that they were equal to constant and by differentiating both 
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sides of the resultant equations with respect to H. The respective transition functions were derived 
by	equating	 the	 invariants	 for	 two	dominant	heights	 (Table	1).	According	 to	 the	first	equation	
(E1), volume growth depends entirely on the stem volume itself, while the second equation (E2) 
suggests that the growth rate of mean stem volume depends exponentially on the stand dominant 
height (Table 1). Alternatively, the third equation (E3) considers both mean stem volume and stand 
dominant height as predictors of the volume growth rate. From biological viewpoint Equation E1, 
which predicts volume growth proportional to the mean stem volume (p ≈1/3	considering	dimen-
sionality of height (m) and volume (m3)), will probably hold true when stands of the same age are 
compared.	For	such	stands,	it	is	plausible	to	assume	that	the	bigger	mean	stem	size	is	a	reflection	of	
better site quality and/or wider spacing, which are also prerequisites for faster growth, because of 
abundant resources and/or reduced competition for them. To conform to the natural laws, however, 
volume increment cannot increase continuously in time along with the stem size, as suggested by 
E1 (i.e. the bigger the tree, the faster it grows), because the growth rate of the plants culminates at 
maturation and then decreases with aging. The transition function based on E1 did not show good 
fit when tested with the data of Scots pine.

Dominant stand height is a good predictor of growth (e.g. Eq. E2), because size is biologi-
cally	more	significant	than	chronological	age	as	a	causal	variable,	especially	in	trees,	where	meri-
stems are constantly renewed (García 2009). However, similarly to model E1, equation E2 also 
revealed biological inconsistency. According to E2, volume growth is proportional to dominant 
stand height and no volume growth could be detected, if dominant stand height remains practi-
cally unchanged (e.g. at slow height growth), but stand diameter increases. However, since the 
culmination of the height growth precedes the culmination of the diameter growth, at the time of 
height	growth	decrease	after	its	peak	stand	diameter	grows	intensively	and	adds	significantly	to	
the stem volume increase. Also, in case of thinning from below, when the dominant stand height 
is kept constant, model E2 will predict equal volume growth rates for both the thinned and the 
unthinned stand, which is implausible considering that the trees in the thinned stand have been 
released from competition and provided with wider growth space.

According to Zeide (1993), the growth equations are composed of two principal components, 
expansion and decline, and the lack of any of them (as in E1 and E2) makes the model incomplete 
(Zeide 1993). The expansion component is usually proportional to the size and the decline ele-
ment to the time variable (Zeide 1993) and the third model derived here (E3) complies with this 

Table 1. Derivation of mean volume growth sub-model.
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Abbreviations: v − mean stem volume (m3) and H − dominant stand height (m); p, q – global model parameters
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generalization. When foresters say age they often mean size (García 1994) and stand dominant 
height	can	also	be	viewed	as	an	indicator	of	stand	growth	stage,	which	reflects	 the	interaction	
between age and site conditions (Stankova and Shibuya 2003). The volume growth predicted by 
E3 will increase proportionally to the mean stem volume, but this expansion will be controlled by 
the increase in the dominant height (Table 1). Therefore, when the dominant height growth slows 
down after its peak, the increase in diameter will contribute to the volume growth by contributing 
to its expansion factor, the mean stand volume. The dominant stand height will remain the same 
after thinning from below, but the mean stem volume will be increased. Consequently, the decrease 
in	the	stocking	due	to	thinning	will	be	reflected	in	the	increase	of	the	expansion	factor	of	equa-
tion E3 and in the volume growth rate, respectively. On the other hand, the mean stand volume of 
the	just-thinned	stand	might	become	equal	to	the	mean	stand	volume	of	an	older	stand,	of	higher	
dominant stand height. However, their growth rates still will not be equal, because the dominant 
stand height is inversely related to the growth rate and therefore the younger stand that has been 
recently released through thinning will grow faster than the older one. Consequently, growth model 
E3 possesses the ability to discriminate between thinned and unthinned stands and between stands 
of different development stages. Therefore, the transition function based on E3 will be included 
as a sub-model in the dynamic growth model for Scots pine plantations.

Considering Eq. 1, stand development stage and site quality are accounted for in the transition 
function for mean stem volume by the predictor variables H1 and H2. However, volume growth 
rate	might	vary	even	between	the	stands	of	the	same	site	index	and	this	specificity	is	explained	
primarily by the various levels of stand density resulting in differing competition pressure. Mean 
stand volume v1 in Eq. E3, which is the quotient of the total stand volume and the number of trees, 
reflects	the	level	of	stand	stocking:	for	stands	of	same	age	and	site	index,	smaller	value	of	the	mean	
stem volume and respectively, decreased growth rate, would be ascribed to the larger number of 
trees.	Based	on	this	rationale,	which	suggests	that	in	general,	stand	specificity	in	volume	growth	is	
accounted for by the predictor variables and in line with the results by Хue et al. (1999), I assumed 
that model parameters p and q can be regarded as common to all stands, global model parameters.

2.1.3 Density decrease model

The	volume	growth	model	characterizes	the	average	stem	size	in	the	stand	and	is	not	sufficient	
to estimate the total yield and merchantable stand volume. A third parameter, which measures the 
rate of stand stocking, is needed to complete the description and stand density (expressed here as 
number of trees per hectare) is an appropriate variable to be added to the state vector. The density 
decrease model can be derived by using a relationship suggested in a study by Vanclay (2009), 
according to which the mean diameter of trees in pure even-aged forests tends to remain a constant 
proportion of stand height divided by the logarithm of stand density (N, trees ha–1):

DBH = β(H −1.3) / ln(N )⇔ ln(N ) = β(H −1.3) / DBH (2)

The proposed relationship is a linear regression through the origin of slope β. It may be 
site-dependent, but it performs better for individual stands than to pooled data and once a stand 
has	established	a	trajectory,	it	tends	to	maintain	the	same	trajectory	for	a	long	time	(Vanclay	2009).	
Consequently, the slope β	can	be	viewed	as	a	stand-specific	constant.	If	we	apply	again	the	rela-
tionship, known as the allometric equation, to relate mean stand diameter DBH to stand dominant 
height H, i.e. DBH = aHb, Eq. 2 will be rewritten as:

N
a
H Hln 1.3 (3)bβ ( )= − −
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Equation 3 proposes an exponential relationship between stand density and dominant stand 
height raised to a power. Subtraction of a constant value of 1.3 from the stand height has been 
introduced in Eq. 2 to ensure that the trend passes through the origin for trees approaching breast 
height. This requirement no longer holds for the density decrease model of Eq. 3, which describes 
a trend of reduction in the tree number with the dominant height increase. Consequently, the 
multiplier (H – 1.3) in Eq. 3 can be replaced, for convenience, by the power of height Hc, and the 
resultant new formulation for the density decrease function is:

lnN =ϕHr (4)

where ϕ = β
a  obtains positive values (β, a > 0) and r = c – b is a global model parameter. Vanclay 

(2009) showed with extended set of data the robustness of his relationship (Eq. 2) and the stability of 
the	specific	constant	β, which manifested time-invariance and invariance with thinnings. Parameter 
φ	of	Eq.	4	is	a	quotient	of	Vanclay’s	specific	constant	β and a global constant and consequently it is 
implicitly	derived	as	a	local	(stand-specific)	parameter.	To	derive	the	algebraic	difference	equation	
(ADA)	form	of	Eq.	4,	it	was	first	solved	for	the	local	parameter	φ,

ϕ = lnN
Hr

(5)

then its value was equated for two points on the density decrease curve ϕ = lnN1
H1r

= lnN2
H2r  and 

finally	the	projected	stand	density	N2 was expressed to obtain a dynamic equation for the stand 
density decrease:

N N (6)

H

H
2 1

r

r
2

1=

where Nj (j = 1, 2) is stand density (trees.ha–1) and Hj is dominant stand height (m) of the j-th 
measurement. Equation 6 was included as a transition function for the density decrease in the 
dynamic whole-stand model.

2.1.4 Mean volume prediction function

As already shown, the survival model can be easily initialized from any pair of height-density 
measurements,	which	provide	estimate	of	the	stand-specific	constant	and	define	the	density	decrease	
course	for	the	stand.	The	volume	projection	function	can	be	started	from	bare	land	by	setting	the	
initial conditions for unthinned stand H1 = H0 = 0, v1 = v0 = 0 in Eq. E3 thus obtaining:

v H
q

(7)
p

2
2

1

=






When we have to apply the model to a managed stand, however, we sometimes do not know 
the parameters of the remaining stand after the thinning, i.e. we do not have the information needed 
to	initialize	the	volume	projection	model.	Consequently,	a	mean	stem	volume	prediction	function	
is needed, which would recover its value at any time from the readily available stand informa-
tion, e.g. dominant stand height and tree number. It has been asserted (Barrio-Anta et al. 2006; 
Castedo-Dorado	et	al.	2007b)	that	to	assure	compatibility	between	the	projection	(e.g.	Eq.	E3)	
and the initialization functions, they should be related by the same base equation (e.g. Eq. 7). 
Since Eq. 7 estimates the mean stem volume of an unthinned stand, the mean volume of the same 
stand at the same growth stage (i.e. dominant stand height) is expected to be higher when thinned, 
i.e. when the stand stocking has been decreased. Consequently, the mean stem volume increase, 
relative to the unmanaged stand, can be presumed inversely proportional to the stand stocking. 
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Therefore, a prediction function of the form 
v

H
q
f N

p
1

( )=







 can be suggested to recover the value of 
the mean stem volume from the stand dominant height and density. Several formulations for f (N) 
were tested, e.g. s′Nm, s′ln(N)m	and	their	derivatives	for	fixed	values	of	m (e.g. m = 1, 3/2, 2, 3). 
The	model,	which	was	successfully	fitted	to	the	Scots	pine	data	and	was	chosen	as	a	stem	volume	
prediction equation obtained the form:

v = s

H
q

⎛
⎝⎜

⎞
⎠⎟

1
p

lnN( )2
, s = 1/ s′ (8)

The	tentative	and	rather	simplified	nature	of	Eq.	8	implies	that	it	should	be	used	only	when	
it is indispensable for the model application.

2.2 Data set and data assessment

The model was tested with a data set of stand-level variables (Table 2) collected in 79 permanent 
sample plots of size 150–2000 m2 established in Scots pine plantations in Bulgaria at 450–1600 
m a.s.l. The plots have been measured 2 to 5 times and the data set included 239 plot measure-
ments in total. The data were compiled from	several	sources.	Thirty-five	of	the	sample	plots have 
been used to develop growth and yield tables for Scots pine plantations (Krastanov	et	al.	1980). 
These have been remeasured once or twice at 2 to 6 year intervals and have been exposed to dif-
ferent thinning treatments and thinning intensities. Two of the experimental plots are established 
in	Scots	pine	plantations	against	erosion	and	have	been	re-measured	once:	the	first	one	after	two	
years and the other one after three years (Marinov	2008). Each of the remaining plots is presented 
in two variants, one of which is assigned for silvicultural treatment and the other is a control plot 
(42 plots in total). These are permanent sample plots established for growth and yield studies by 
the forest enterprises responsible for development of forest management plans, and they have been 
measured two to four times at 9 to 12-year intervals. These data were available from the current 
and the archived forest management plans of the local forest management units. The plot domi-
nant height was estimated from the experimental mean plot height by the relationship established 
by Stankova et al. (2006). Data obtained before and after the thinning of the treated plots were 
considered	as	distinct	time	series	thus	yielding	98	data	series	from	79	plots.	This was because 
silvicultural treatments such as thinning cause an instantaneous change in the state variables of 
the	stand	and	the	system	must	therefore	estimate	the	trajectories	starting	from	the	new	state	after	
thinning (Castedo-Dorado et al. 2007a).

Table 2. Description of the data set.

Stand variable Mean Standard deviation Minimum Maximum

DBH (cm) 17.7 6.0 5.6 34.7
N (trees ha–1) 2270 1862 393 9305
H (m) 16.3 5.0 6.3 32.5
Age (years) 38 14 12 80
v (m3) 0.260 0.218 0.011 1.257
y (m3 ha–1) 340.7 144.6 61.4 723.4

Abbreviations: DBH – diameter at breast height; H − dominant stand height; N – stand density; v – mean stem volume; y – total stand 
volume
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The data set used for site index model derivation and parameterization was a subset of the 
data used in the current study and included plots that have not been thinned, or have been exposed 
to light thinnings from below. I applied Eq. 1 also to calculate the site indices for the entire data 
set used to develop the dynamic whole-stand model in order to assess graphically their quality, 
as suggested by Vanclay et al. (1995) (Fig. 1). Examination charts showed that the data span 
plantation	ages	from	12	to	80	years,	allocated	between	stands	of	three	different	site	index	classes	
(Fig. 1a). Young plantations of high site indices are somewhat underrepresented (Fig. 1a, c) and 
site index extremes are not included in the data set (Fig. 1c); however, the data for both low- and 
highly-stocked stands are found at different site quality conditions (Fig. 1a), and the predominating 
age-site quality range is well represented (Fig. 1c). The inclusion of plots in unthinned plantations 
provided observations from overstocked populations, while the availability of plots in managed 
stands enabled representation of a range of stocking levels and types of silvicultural manipulation 
during the period of intensive management (Fig. 1b). As a result of the data appraisal, I concluded 
that	 the	 available	 data	 are	 of	 sufficient	 quality	 for	 development	 of	 a	 dynamic	 growth	model,	
although it must be borne in mind that the relatively small total number of sample plots and data 

Fig. 1. Data examination charts. a – Stand age-site index data range of this study. Basal area values below () and 
above (p) average are indicated. Solid lines connect measurements of the same plot, for site index averaged per plot. 
Dotted gridlines delimit 4m-site index classes. b – Dominant stand height-stand density data range. Site index values 
below (l) and above (o)	average	are	indicated.	Thinning	trajectories	for	some	of	the	managed	plots	are	represented	
by solid lines; c – Site index-stand age data comparison between the permanent sample plots of this study (¢) and 
temporary sample plot data (¿). Site index model by Stankova and Diéguez-Aranda (2012) for reference age 50 years 
and temporary sample plots data from Stankova and Shibuya (2007) are used.
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heterogeneity (regarding their origin, re-measurement frequencies and intervals) may obscure the 
application of more sophisticated model formulations.

2.3 Model examination

The	transition	functions	corresponding	to	Eqs.	6	and	E3	were	fitted	using	a	Base-Height	Invariant	
(BHI) dummy variable approach (Stankova and Diéguez-Aranda 2013), which is analogous to the 
Base-Age Invariant (BAI) dummy variable approach proposed by Cieszewski et al. (2000) and 
where	dominant	height	is	used	for	projection	instead	of	age.	The	implementation	of	this	method	
requires	fitting	the	difference	equations	in	the	following	manner:

the density decrease model as:

N f p N H H, , (9)ij i ib ib ij∑( )=

the mean volume model as:

v g p v H H, , (10)ij i ib ib ij∑( )=

where Nij and vij are the estimated response variables stand density (trees ha–1) and mean stem 
volume (m3) of data series i (data obtained before and after the thinning of the treated plots were 
considered as distinct data series, i.e. the number of the plots does not equal the number of the 
data series) at measurement occasion j, Hij is the predictor variable stand dominant height of 
data series i at occasion j, pi are dummy variables of value 1 for data series i and 0 otherwise, 
Hib is base dominant height (corresponding to the base age in the original method) arbitrarily 
assigned to each data series i, Nib is the value of density (trees ha–1) corresponding to Hib and vib 
is the value of mean stem volume (m3) at Hib. Stand density and mean stem volume correspond-
ing to Hib	(on	the	right-hand	side	of	Eqs.	9	and	10)	are	estimated	as	stand-specific,	local	model	
parameters N̂ib and v̂ib (where N̂ib is predicted stand density corresponding to Hib, and v̂ib is pre-
dicted mean stem volume at Hib), while	the	respective	experimentally	measured	figures	provide	
only initial values for fast convergence. Consequently, the variable values corresponding to the 
base dominant heights are also allowed to vary (i.e. produce residuals) along with the response 
variables and are estimated for all stands simultaneously with the global model parameters. This 
methodological procedure shows similarity to the mixed-effects modeling (Cieszewski et al. 
2000)	and	assures	fitting	the	curve	to	the	observed	trend	in	the	data	rather	than	forcing	the	model	
through any given measurement.

The	total	stand	volume	can	be	obtained	as	the	product	of	the	mean	stem	volume	projected	
with the dominant height growth and the number of trees survived at the end of the growth period. 
The endogenous (response) variable stand density was substituted by an appropriate formulation, 
derived	from	Eq.	6,	on	the	right-hand	side	of	Eq.	8	and	in	the	total	stand	volume	equation,	and	the	
estimated	projected	mean	volume	was	presented	in	the	total	stand	volume	equation	by	the	right-hand	
expression of Eq. E3. Such reformulation places the endogenous variables on the left-hand side of 
the	equations	only,	which	allowed	their	simultaneous	fitting	by	Nonlinear	Seemingly	Unrelated	
Regression	(NSUR)	to	account	for	cross-equation	correlations.	The	final	whole-stand	dynamic	
growth	model	for	predicting	and	projecting	the	principal	stand	growth	variables	was	composed	
from the following four sub-models:
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In Eqs. 11 yij is the estimated response variable total stand volume (m3ha–1) of data series 
i at measurement occasion j, p, q, r and s are global model parameters and e1ij, e2ij, e3ij, e4ij are 
random	errors.	The	first	and	second	sub-models	of	Eqs.	11,	which	stand	for	the	same	response	
variable,	were	presented	and	fitted	in	general	equation	form	(SAS	Institute	Inc.	2013)	to	allow	
their concomitant estimation.

Plots of residuals against lag-residuals were examined and did not reveal the presence 
of autocorrelated errors (Fig. 2), which could have been expected, because the utilized forest 
stand data are constituted of a multiplicity of concurrent, relatively short time series. However, 
graphical and analytical indications of heteroscedasticity (e.g. Fig. 4) imposed the application of 
Heteroscedasticity-Consistent	Covariance	Matrix	Estimator	(HCCME)	to	ensure	the	efficiency	of	
the	regression	estimates	(Long	and	Ervin	2000).	The	goodness-of-fit	of	the	whole-stand	dynamic	
growth	system	was	evaluated	by	the	adjusted	coefficients	of	determination,	the	root	mean	squared	
errors, the absolute and relative biases of the principal model equations and by examining the plots 
of observed against predicted values. The	simultaneous	equation	fitting	was	programmed	using	
the SAS/ETS MODEL procedure (SAS Institute Inc. 2013) and all statistical analyses were 
performed employing the SAS software.

2.4 Model validation

Plausibility and applicability of the whole-stand dynamic model were examined and validated in 
two directions. First, the accuracy of model predictions was assessed through estimation of the 
tolerance intervals for the relative errors. This particular interval test statistic was chosen, because it 
reveals the worst possible prediction scenarios, i.e. it shows, with a high level of certainty (e.g. 99%), 
the range of the possible deviations from the reality, as relative to the values of the variables of 
interest, for the bulk (e.g. 50–95%) of the error distribution. Next, model unbiasedness regarding 
its application to thinned and unthinned stands was assured.

2.4.1 Prediction errors of the future observations

The tolerance intervals were estimated with a data set constructed from the available parameteriza-
tion	data	set	specifically	for	this	validation.	All	possible	predictor-predicted	pairs	of	measurements	
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(both forward and backward in time) were considered, and the resultant data set for validation 
included 504 pairs of observations in total. Tolerance intervals (TI) for the relative errors in 50, 75 
and 95% of the future observations with 99% probability were estimated:

TI = B ± Sg(1− γ ,n,1−α ) for 1− γ = 0.50, 0.75 and0.95 and 1−α = 0.99 (12)

where B is the relative bias, S is the standard deviation of the errors, the function g(1 – γ, n, 1 – α) 
is	the	tolerance	factor	tabulated	for	specified	values	of	n, α and γ and provides that the estimated 
interval will contain at least (1 – γ)100 percent of the future error distribution with probability (1 – α).

2.4.2 Model consistency regarding thinnings

Abrupt alteration of the principal stand characteristics during thinning can affect growth dynamics 
in such a way that, growth underestimation for the unthinned and its overestimation for the thinned 
stands	can	be	induced	(Pienaar	and	Shiver	1986;	Barrio-Anta	et	al.	2006;	Castedo-Dorado	et	al.	
2007b), when developing a model for combined data from both unthinned and thinned stands. 
To account for the possible treatment effect, both transition functions (Eqs. 6 and E3) derived 
within this study were initially assessed after expanding of each of the global parameters (r and, 
p and q, respectively), by inclusion of a dummy variable accounting for the treatment effect as: 
a + Itb, where a is the global parameter, It is the dummy categorical variable for considering the 

Fig. 2. Plots of residuals vs lag−residuals. a1 to a3 – mean stem volume, m3; b1 to b3 – stand density, ha-1; c1 to c3 – 
total stand volume m3/ha.
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silvicultural	treatment	and	obtains	value	0	for	unthinned	and	value	1	for	just-thinned	stands and 
b is the parameter associated with the respective dummy variable. Additionally, the invariance of 
the	stand-specific	parameter	φ of the density decrease model was validated. Upon estimation of 
the global model parameter r,	it	was	substituted	into	Eq.	5	and	the	stand-specific	constant	φ was 
calculated for each pair (Hij – Nij) of height-density measurements. Stability of the parameter esti-
mates	was	then	evaluated	using	two	test	statistics:	coefficient	of	variation	(%)	and	percent	relative	
standard error PRSE(%) = 100×(SE/|φ|), where SE is the standard error. These test-statistics were 
calculated by data series and by plots to assess both the time-invariance and the thinning-invariance 
of	the	specific	constant.

3 Results

The	mean	volume	projection	function	(E3)	was	fitted	with	either	or	both	global	parameters	account-
ing	for	the	treatment	effect,	but	none	of	them	produced	significantly	different	from	zero	dummy-
variable-associated parameter estimates. The density decrease model (Eq. 6), on the other hand, 
did	not	produce	significant	values	for	the	expanded	model	parameters,	when	Heteroscedasticity-
Consistent	Covariance	Matrix	Estimator	was	applied	 to	assess	 the	efficiency	of	 the	estimates.	
The	goodness-of-fit	statistics	for	the	whole-stand	dynamic	growth	system,	composed	of	the	four	
simultaneously evaluated regression equations (Eqs. 11), are shown in Table 3. Fig.3 presents plots 
of experimental against estimated values of the dependent model variables, along with the results 
of the simultaneous F test for slope equal to one and zero intercept of the linear regressions relat-
ing	them	(Figs.	3c–3f),	and	illustrates	the	projected	time	trajectories	of	stand	density	and	mean	
volume (Figs. 3a, b). Both graphs and tests demonstrated a lack of bias of the regression equa-
tions,	as	inferred	from	the	small	and	insignificantly	different	from	zero	absolute	and	relative	biases	
(Table 3) and also from the accepted hypotheses for linear regression through the origin between 
observed and predicted values for all stand growth variables. All dynamic relationships attained 
high	coefficients	of	determination	(between	0.919	and	0.948)	and	small	root	mean	squared	errors	
(Table	3),	which	together	with	the	fitted	trends	in	stocking	and	mean	volume,	illustrated	on	Figs	
3a,	b,	confirmed	that	the	growth	processes	are	adequately	described	by	the	projection	functions.

Table 3. Goodness	-	of	-	fit	statistics	for	the	whole-stand	dynamic	model.

Global model parameters Regression estimation a

Parameter: Estimate p: 0.4740 Dependent
variable

Adj.	R2 RMSE Bias b Relative  
bias (%) bASE

HCCME
0.0207
0.0556

Parameter: Estimate q: 37.934 Stand density 0.948 403 –11 –0.37
ASE
HCCME

2.9410
9.1053

Mean stem volume 
(projected)

0.931 0.0460 –0.0002 –2.42

Parameter: Estimate r: –0.0945
ASE
HCCME

0.0067
0.0402

Mean stem volume 
(predicted)

0.740 0.0893 0.0034 –10.68

Parameter: Estimate s: 69.279
ASE
HCCME

8.6749
27.317

Total stand volume 0.919 41.81 –0.480 –1.89

Abbreviations: ASE – Asymptotic Standard Error; HCCME – Heteroscedasticity - Consistent Covariance Matrix Estimator;  
Adj.	R2	–	adjusted	coefficient	of	determination;	RMSE	–	Root	Mean	Square	Error.
a Total number of observations N = 239. b The	absolute	and	relative	biases	for	all	estimated	stand	variables	are	not	significantly	dif-
ferent from zero.
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Fig. 3. Goodness-of-fit	and	prediction	charts.	a, b − density decrease (a) and volume growth (b)	models	fitted	to	the	ex-
perimental	data.	Fitted	curves	for	five	data	series	comprising	the	data	range	are	shown; c, d	actual	vs.	projected	values:	
stand density (c) and mean stem volume (d); e − actual vs. predicted mean stem volume; f − actual vs. estimated total 
stand	volume.	Linear	regressions	of	observed	against	estimated	variable	values	are	fitted	and	the	results	from	simulta-
neous F-test for line slope equals 1 and zero intercept (Gadow and Hui 1999) are shown in the plots.
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The mortality rate model (Eq. 6), when evaluated in the expanded-parameter form, suggested 
increased value of the exponent r for the treated stands, leading to respectively higher survival 
rates as compared to the unthinned stands of the same starting densities. The same tendency was 
indicated	also	by	the	residual	plot	(Fig.	4c)	where	the	projected	stocking	rates	of	the	higher-density	
thinned	stands	seemed	under-evaluated.	Analysis	of	the	stand	specific	parameter	φ of the density 
decrease	model,	however,	showed	that	its	variation	was	insignificant	both	within	the	data	series	
and	within	the	plots,	which	included	thinned	and	unthinned	data	series.	Indeed,	its	coefficient	of	
variation	ranged	from	0.02	to	5.08%	between	data	series	and	from	0.02	to	6.52%	between	plots,	
while the percent relative standard error (PRSE) had range of 0.01–2.93% for both, data series 
and	plots.	These	test	statistics	not	only	confirmed	that	the	specific	parameter	is	a	constant,	irre-
spective of the growth stage and the management background of the stand, but also revealed that, 
at the level of each population in particular	the	possible	underestimation	of	the	projected	density	
of the thinned stand is relatively negligible (Fig. 4c). No trends to biased estimates of mean stem 
predicted	and	projected	volume	and	total	stand	volume	were	noticeable	with	respect	to	treatment	
from the plots of predicted values vs. residuals (Figs. 4a, b, d).

The	error	terms	calculated	for	the	data	set	constructed	specifically	for	validation	deviated	
from	the	normal	distribution,	and	10%	trimmed	means	and	jackknife	standard	deviations	were 
therefore	used	to	estimate	the	tolerance	intervals	(Rauscher	1986).	The	error	ranges	for	volume	and	
density revealed acceptable values for 3/4 of the future observations (Table 4). It can be concluded 
with	99%	probability	that	in	75%	of	the	future	observations,	the	projected	mean	stem	volume	will	
exceed the true values of this variable by less than 30%. Stand density and total volume prediction 
errors amounted to less than 35% for 75% of the future observations with 99% certainty (Table 4).

The	mean	volume	prediction	function	showed	poorer	fit	than	the	other	three	sub-models,	as	seen	
from	the	regression	goodness-of-fit	statistics	and	from	the	tolerance	intervals	for	the	errors	in	future	
observations (Tables 3 and 4). This function, however, is of auxiliary nature and due to the unbiased 
estimates that it produces, it can assist the whole-stand dynamic model application when needed.

In summary, given the state of the stand at present, the following sequence of equations can 
be solved to predict its state at a desired future stage:

H H
A A

exp 6.631 1 1 (13)2 1
1
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where Eqs. 13 and 14 are optional.
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Fig. 4. Plots of residuals vs. predicted values. a	–	projected	mean	stem	volume;	b – predicted mean stem volume; c – 
stand density; d – total stand volume. The lines connect the residuals (¢) by data series, the symbol l denoting values 
of	just-thinned	plots.
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4 Discussion

The model derived here is based on the state-space approach, which has already been applied to 
develop stand-level dynamic growth models for Scots pine and Radiata pine plantations, natural 
birch and oak stands in north-western Spain (Diéguez-Aranda et al. 2006; Castedo-Dorado et al. 
2007a; Gómez-García et al., 2010, 2015), natural stands of European beech in Switzerland (Álva-
rez-González et al. 2010), interior spruce stands in British Columbia (García 2011), loblolly pine 
plantations in the USA (García et al. 2011), trembling aspen in Western Canada (García 2013a), 
teak	plantations	in	India	(Tewari	et	al.	2014).	These	preceding	models	can	be	classified	into	two	
groups, according to the variables included in the state vector to describe the stand and used for 
future	projections	through	the	transition	functions.	In	the	dynamic	growth	models	developed	in	
Europe,	the	initial	conditions	at	any	point	in	time	are	defined	by	three	state	variables	–	number	of	
trees	per	hectare,	stand	basal	area	and	dominant	height,	which	all	are	projected	in	time,	while	the	
models of the second group (by García 2011; García et al. 2011; García 2013a and Tewari at al. 
2014) include four state variables (top height, trees per hectare, basal area and a measure of stand 
closure),	of	which	dominant	height	growth	is	projected	with	stand	age,	while	the	other	state	vari-
ables	are	projected	with	respect	to	dominant	height	growth.	This	study	proposed	a	dynamic	growth	
model based on three state variables, two of which − dominant height and trees per hectare – have 
already been used in the earlier models, while the mean stem volume was proposed here as a third 
state	variable	and	along	with	stand	density,	measured	as	tree	number,	was	projected	in	regard	to	
the temporal change of stand dominant height.

The widely used growth functions by Bertalanffy-Richards, Lundqvist-Korf and Hossfeld are 
commonly	utilised	in	the	transition	functions	for	projecting	dominant	height	growth	in	time.	The	
transition function for dominant height in the models of García (García 2011; García et al. 2011; 
García 2013a) is derived from the base differential equation of the respective growth function (e.g. 
Bertalanffy-Richards in most cases), while the rest of the authors preferred to use the techniques 
for dynamic equation derivation known in forestry as the Algebraic Difference Approach (ADA; 
Bailey and Clutter, 1974) or its generalization (GADA; Cieszewski 2003), as it was done also in 
this study. A dynamic, anamorphic, base-age invariant site index model was used as a transition 
function for the dominant height of the Scots pine plantations in Bulgaria since some data limitations 
(relatively small number of sample plots, indirect estimation of the dominant stand height, lack of 
data	from	stem	analysis)	has	prevented	development	of	more	flexible	and	biologically	adequate	
GADA formulation (Stankova and Diéguez-Aranda 2012). However, the reliability of Eq. 1 has 
been	revealed	through	its	high	goodness-of-fit	and	accuracy	estimates	as	well	as	by	its	manifested	
superiority to the currently applied site index tables for Scots pine plantations that have limited 
applicability,	because	of	their	narrow	age-height	range	and	poor	fit	to	the	actual	growth	trajectories	
(Stankova	and	Diéguez-Aranda	2012).	Monserud	(1984)	considered	specifying	site	quality	models	

Table 4. Validation test statistics of the whole-stand dynamic model.

 
Dependent
variable

Tolerance intervals (TI) for the relative errors
1 – α = 99% probability for the future errors

1 – γ = 50% 1 – γ = 75% 1 – γ = 95%
of future observations

Stand density –19.6 17.6 –32.7 30.7 –54.9 53.0
Projected	mean	stem	volume –17.4 16.4 –29.4 28.4 –49.7 48.7
Predicted mean stem volume –33.4 12.9 –49.8 29.2 –77.5 57.0
Total stand volume –18.8 19.2 –32.2 32.6 –54.9 55.4
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by habitat types, while Colff and Kimberley (2013) derived an improved, national height-age model 
for Radiata pine in New Zealand, by expressing the slope parameter of the model as a function 
of elevation and latitude, which together account for temperature. According to Bravo-Oviedo et 
al.	(2008)	global	accuracy	for	specific	regions	is	greatly	improved	if	climatic	models	are	applied	
when	climatic	or	edaphic	variability	is	high	(Bravo-Oviedo	et	al.	2008).	Consequently,	in spite 
of	the	undoubted	flexibility	of	the	site	quality	curves	manifesting	polymorphism	and/or	multiple	
asymptotes (e.g. those derived by ADA and GADA), the development of a site index model that 
accounts	for	regional,	habitat	and	environmental	differences	can	be	considered	as	a	subject	of	
future research, because of the variability in forest sites.

The	state	variable	stand	density	(expressed	as	number	of	trees	per	hectare)	was	projected	
with age change in the models by Castedo-Dorado et al. (2007a), Álvarez-González et al. (2010) 
and Gómez-García et al. (2010, 2015), and the density decrease function accounted also for the 
influence	of	site	quality	in	the	model	for	Scots	pine	from	north-western	Spain	by	Diéguez-Aranda	
et al. (2006). The rest of the dynamic models employed a site-independent relationship for the 
mortality relative to height growth derived by García (2009). Similarly, by utilizing a relation-
ship by Vanclay (2009) and applying the algebraic difference approach (ADA) for developing of 
dynamic equations, I derived a dominant height-dependent transition function for stand stocking. 
The base integral equation form of the new model (Eq. 4) proposes an exponential relationship 
between the number of trees and dominant stand height raised to a power, describes a reverse 
sigmoid density decrease pattern and is consistent with the requirement formulated by Clutter et 
al.	(1983)	for	asymptotic	zero	limit	of	stand	density	at	very	advanced	growth	stage.	In	addition,	
stand-specific	values	of	asymptotic	stand	density	at	the	initial	growth	stage	(if	designated	by	stand	
height H = 1 m) equal to exp(φ) are inferred from the model formulation.

The stand basal area was the third principal state variable in the preceding dynamic growth 
systems,	which	apply	the	state-space	modelling	approach.	It	has	been	directly	projected	in	time	
in the models for Scots pine and Radiata pine plantations from north-western Spain and for beech 
stands from Switzerland (Diéguez-Aranda et al. 2006; Castedo-Dorado et al. 2007a; Álvarez-
González et al. 2010), while the models for Downy birch and English oak by Gómez-García et 
al. (2010, 2015) incorporated also dominant stand height and tree number as predictor variables. 
Álvarez-González et al. (2010) considered the thinning effect on the basal area growth by discrimi-
nating parametrically the basal area transition functions for thinned and unthinned stands. García 
(2011),	on	the	other	hand,	who	preferred	to	project	stand	basal	area	indirectly	through	its	product	
with stand dominant height, included site occupancy as a forth state variable to account for the 
increment	reduction,	specific	for	the	young	or	recently	thinned	stands	that	still	do	not	fully	occupy	
the available growth space. In the rationale provided in the derivation of mean stem volume transi-
tion function, I showed how the thinning effect was considered in this study through the choice of 
invariant and differential equation, to suggest biologically sound description of volume increment 
relative	to	height	growth.	As	revealed	also	by	the	validation,	no	significant	differences	between	the	
parameter	values	of	the	volume	transition	function	were	found	for	the	unthinned	and	just-thinned	
plantations,	which	confirms	that	the	thinning	effect	was	actually	built	into	the	model.	Decrease	in	
the	stocking	due	to	thinning	from	below	is	reflected	in	increased	mean	stem	volume	and,	through	
Eq. E3, in accelerated volume growth rate of the retained plants. A thinning from above, on the 
other hand, would reduce the average stem volume of the remaining stand, but will also decrease 
the dominant stand height. The values of the exponents of Eq. E3 (around 1.5 in the numerator and 
2 in the denominator) suggest that the change in the reduction factor (i.e. height) will have more 
pronounced effect on the volume growth than the alteration of the expansion component (i.e. stem 
volume). Consequently, this type of management treatment will also result in increased volume 
growth. The younger stand that has been recently released through thinning, on the other hand, will 
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grow faster than an older stand of the same mean stem volume due to its smaller stand dominant 
height, playing the role of a reduction factor in Eq. E3. Similar to the studies on development of 
a basal area growth system by Barrio-Anta et al. (2006), Diéguez-Aranda et al. (2006), Castedo-
Dorado et al. (2007a, b) and Gómez-García et al. (2010, 2015), the mean stem volume growth 
system here was composed by two sub-modules: one for mean stand volume initialization and 
another	for	its	projection.	It	was	developed	using	the	same	base	equation	to	assure	the	concordance	
of	the	component	models,	with	the	objective	to	provide	initial	condition	value	of	mean	volume	
when it is not obtainable from common forest inventory data. The mean stem volume and stand 
stocking	transition	functions	were	fitted	simultaneously	with	the	total	stand	volume	estimation	to	
ascertain model compatibility and to strengthen the predictive power of the model.

Longitudinal data are rarely ample and usually far from ideal for model development. 
García (2011) recommended sound biological basis of the model and low number of estimated 
model parameters as a means to cope with scarcity and limited representativeness of the data. To 
adapt the more complicated model formulations for basal area growth to their data, García et al. 
(2011), García (2013a) and Tewari et al. (2014) applied restrictions to particular model parameters 
by	fixing	their	values	to	logically	derived	constants.	This	was	done	to	achieve	convergence	and	
reasonable	parameter	estimates.	Parsimony	of	the	formulated	projection	models	was	the	principal	
approach used in this study to deal with the limited amount of repeated measurements data and it 
was pursued as a balance between biological plausibility and simplicity.

The growth and yield tables currently implemented in Bulgarian forest inventory and man-
agement	can	be	classified	as	second-generation	whole-stand	models	(Pretzsch	2009).	They	present	
the most important average and cumulative stand characteristics, according to established silvicul-
tural prescriptions, in homogeneous even-aged managed “normal” stands, usually every 5 years 
(Nedyalkov	et	al.	1983).	The	use	of	growth	and	yield	tables	is	a	robust	approach	to	growth	and	
yield prediction but it is severely constrained by the need to follow a standard production regime 
(Pretzsch 2009). In many situations where decision support is needed, a growth model is required 
to explore different harvesting and management options (Vanclay 2010). Scarcity of repeated-
measurements data, however, often prevents the use of more elaborate modelling approaches. The 
dynamic whole-stand growth model derived here belongs to the advanced-generation whole-stand 
models,	provides	information	about	the	current	values	of	the	main	stand	characteristics	and	projects	
stand development for a broad spectrum of potential management alternatives.

A whole-stand dynamic growth model, which constitutes a simple and robust system of 
state	variables	and	transition	functions	and	enables	easy	and	reliable	description	and	projection	
of growth and yield of even-aged forest stands, was derived. The model is parsimonious, which 
allows its estimation when longitudinal data are scarce, and can be incorporated into a computer 
program (simulator) and disseminated for practical implementation.

Acknowledgements

I wish to thank the Forest Research Institute of the Bulgarian Academy of Sciences, which made 
available, through a research report in its possession, some of the data used in this study, Prof. Ivan 
Marinov for the data from the experimental plots established in plantations against erosion, Assoc. 
Prof. Ulises Diéguez-Aranda and Dr. Esteban Gómez-García for their advice on the simultaneous 
equation	fitting	and	to	Prof.	Oscar	García	for	his	valuable	guidance	during	the	derivation	of	this	
model.



19

Silva Fennica vol. 50 no. 1 article id 1406 · Stankova · A dynamic whole-stand growth model, derived from…

References

Álvarez-González J.G., Zingg A., Gadow K.v. (2010) Estimating growth in beech forests: a study 
based on long term experiments in Switzerland. Annals of Forest Science 67: 307. http://
dx.doi.org/10.1051/forest/2009113.

Assmann E. (1970) The principles of forest yield study. Pergamon Press, Oxford. p. 160.
Barrio-Anta M., Castedo-Dorado F., Diéguez-Aranda U., Álvarez-González J.G., Parresol B.R., 

Rodríguez-Soalleiro R. (2006). Development of a basal area growth system for maritime pine 
in northwestern Spain using the generalized algebraic difference approach. Canadian Journal 
of Forest Research 36: 1461–1474. http://dx.doi.org/10.1139/X06-028.

Bailey R.L., Clutter J.L. (1974). Base-age invariant polymorphic site curves. Forest Science 20: 
155–159.

Bravo-Oviedo	A.,	Tomé	M.,	Bravo	F.,	Montero	G.,	Río	M.	d.	(2008)	Dominant	height	growth	
equations including site attributes in the generalized algebraic difference approach. Canadian 
Journal	of	Forest	Research	38:	2348–2358.	http://dx.doi.org/10.1139/X08-077.

Burkhart H.E., Tomé M. (2012). Modelling forest trees and stands. Springer Sience+Business 
Media, Dordrecht. p. 237–260. http://dx.doi.org/10.1007/978-90-481-3170-9.

Castedo-Dorado F., Diéguez-Aranda U., Álvarez-González J.G. (2007a). A growth model for Pinus 
radiata D. Don stands in northwestern Spain. Annals of Forest Science 64: 453–465. http://
dx.doi.org/10.1051/forest:2007023.

Castedo-Dorado F., Diéguez-Aranda U., Barrio-Anta M., Álvarez-González J.G. (2007b). Mod-
elling stand basal area growth for radiata pine plantations in Northwestern Spain using the 
GADA. Annals of Forest Science 64: 609–619. http://dx.doi.org/10.1051/forest:2007039.

Cieszewski	C.J.	(2003).	Developing	a	well-behaved	dynamic	site	equation	using	a	modified	Hoss-
feld	IV	function	Y3	=	(axm)/	(c	+	xm_1),	a	simplified	mixed-model	and	scant	subalpine	fir	
data. Forest Science 49: 539–554.

Cieszewski C.J., Harrison M., Martin S.W. (2000). Practical methods for estimating non-biased 
parameters in self-referencing growth and yield models. University of Georgia PMRC-TR 7.

Clutter	J.L.,	Fortson	J.C.,	Pienaar	L.V.,	Brister	G.H.,	Bailey	R.L.	(1983).	Timber	management:	a	
quantitative approach. John Wiley & Sons, NY, USA. p. 92,132.

Colff M.vd, Kimberley M.O. (2013). A National height-age model for Pinus radiata in New 
Zealand. New Zealand Journal of Forest Science 43: 4. http://www.nzjforestryscience.com/
content/43/1/4. [Cited 29 May 2015].

Diéguez-Aranda	U.,	Castedo-Dorado	F.,	Álvarez-González	J.G.,	Rojo	A.	(2006).	Dynamic	growth	
model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain). Eco-
logical Modelling 191: 225–242. http://dx.doi.org/10.1016/j.ecolmodel.2005.04.026.

Gadow K. v., Hui G. (1999). Modelling forest development. Kluwer Academic Publishers, 
Dordrecht.	p.	49,	189.	http://dx.doi.org/10.1007/978-94-011-4816-0.

García	O.	(1988).	Growth	modelling	-	a	(re)view. New Zealand Forestry 33(3): 14–17.
García O. (1994). The state-space approach in growth modeling. Canadian Journal of Forest 

Research	24:	1894–1903.	http://dx.doi.org/10.1139/x94-244.
García O. (2009). A simple and effective forest stand mortality model. Mathematical and Compu-

tational Forestry & Natural-Resource Sciences 1(1): 1–9.
García O. (2011). A parsimonious dynamic stand model for interior spruce in British Columbia. 

Forest	Science	57(4):	265–280.
García O. (2013a). Building a dynamic growth model for trembling aspen in western Canada with-

out age data. Canadian Journal of Forest Research 43(3): 256–265. http://dx.doi.org/10.1139/
cjfr-2012-0366.

http://dx.doi.org/10.1051/forest/2009113
http://dx.doi.org/10.1051/forest/2009113
http://dx.doi.org/10.1139/X06-028
http://dx.doi.org/10.1139/X08-077
http://dx.doi.org/10.1007/978-90-481-3170-9
http://dx.doi.org/10.1051/forest:2007023
http://dx.doi.org/10.1051/forest:2007023
http://dx.doi.org/10.1051/forest:2007039
http://www.nzjforestryscience.com/content/43/1/4
http://www.nzjforestryscience.com/content/43/1/4
http://dx.doi.org/10.1016/j.ecolmodel.2005.04.026
http://dx.doi.org/10.1007/978-94-011-4816-0
http://dx.doi.org/10.1139/x94-244
http://dx.doi.org/10.1139/cjfr-2012-0366
http://dx.doi.org/10.1139/cjfr-2012-0366


20

Silva Fennica vol. 50 no. 1 article id 1406 · Stankova · A dynamic whole-stand growth model, derived from…

García O. (2013b). Forest stands as dynamical systems: an introduction. Modern Applied Science 
7(5):	32–38.	http://dx.doi.org/10.5539/mas.v7n5p32.

García O., Burkhart H.E., Amateis R.L. (2011). A biologically-consistent stand growth model for 
loblolly pine in the Piedmont physiographic region, USA. Forest Ecology and Management 
262: 2035–2041. http://dx.doi.org/10.1016/j.foreco.2011.08.047.

Gómez-García	E.,	Crecente-Campo	F.,	Stankova	T.,	Rojo	A.,	Diéguez-Aranda	U.	(2010).	Dynamic	
growth model for Birch stands in northwestern Spain. Forestry Ideas 16(2): 211–220.

Gómez-García E., Crecente-Campo F., Barrio-Anta M., Diéguez-Aranda U. (2015). A disaggregated 
dynamic model for predicting volume, biomass and carbon stocks in even-aged pedunculate 
oak	stands	in	Galicia	(NW	Spain).	European	Journal	of	Forest	Research	134:	569–583.	http://
dx.doi.org/10.1007/s10342-015-0873-3.

Hasenauer H. (Ed.) (2006). Sustainable forest management. Growth models for Europe. Springer, 
Berlin-Heidelberg. p. 5.

Huxley J.S. (1972). Problems of relative growth. 2nd edition. Dover Publications Inc, New York. 
p. 6–13.

Krastanov	K.,	Belyakov	P.,	Shikov	K.	(1980).	Dependencies	in	the	structure,	growth	and	produc-
tivity of the Scots pine plantations and thinning activities in them. Available from the Forest 
Research	Institute	of	Bulgarian	Academy	of	Sciences,	Sofia	Research	report.	[In	Bulgarian].

Long J.S., Ervin L.H. (2000). Using heteroscedasticity consistent standard errors in the linear 
regression models. American Statistician 54(3): 217–224.

Marinov	I.	(2008).	Investigation	and	evaluation	of	erosion	in	some	regions	of	South-western	Bul-
garia. DSci thesis. Department of Ecology, Forest Research Institute of Bulgarian Academy 
of	Sciences,	Sofia.	[In	Bulgarian].

Monserud	R.A.	(1984).	Height	growth	and	site	index	curves	for	inland	Douglas-fir	based	on	stem	
analysis data and forest habitat type. Forest Science 4: 943–965.

Nedyalkov	S.,	Rashkov	R,	Tashkov	R.	(1983).	Reference	book	in	dendrobiometry.	Zemizdat,	Sofia.	
p. 305–549. [In Bulgarian].

Pienaar	L.V.,	Shiver	B.D.	(1986).	Basal	area	prediction	and	projection	equations	for	pine	planta-
tions. Forest Science 32(3): 626–633.

Pretzsch H. (2009). Forest dynamics, growth and yield. from measurement to model. Springer-
Verlag,	Berlin	Heidelberg.	p.	387–389,	432–445.

Rauscher	H.M.	(1986).	The	microcomputer	scientific	software	series	4:	testing	prediction	accuracy.	
North Central Forest Experiment Station, U.S. Department of Agriculture - Forest Service, 
Minnesota. U.S. For. Serv. Gen. Tech. Rep. NC-107.

SAS Institute Inc. (2013). SAS/ETS® 12.3 user’s guide. SAS Institute Inc, Cary, NC. p. 1015–1335.
Stankova T., Diéguez-Aranda U. (2012). A tentative dynamic site index model for Scots pine (Pinus 

sylvestris L.) plantations in Bulgaria. Silva Balcanica 13(1): 5−19.
Stankova T., Diéguez-Aranda U. (2013). Simple and reliable models of density decrease with 

dominant height growth for even-aged natural stands and plantations. Annals of Forest Sci-
ence 70(6): 621–630. http://dx.doi.org/10.1007/s13595-013-0303-y.

Stankova T., Shibuya M. (2003). Adaptation of Hagihara’s competition-density theory to natural 
birch	 stands.	Forest	Ecology	 and	Management	 186(1–3):	 7−20. http://dx.doi.org/10.1016/
S0378-1127(03)00260-3.

Stankova T., Shibuya M. (2007). Stand Density Control Diagrams for Scots pine and Austrian 
black pine plantations in Bulgaria. New Forests 34(2): 123–141. http://dx.doi.org/10.1007/
s11056-007-9043-x.

Stankova T., Stankov H., Shibuya M. (2006). Mean-dominant height relationships for Scotch pine 
and Austrian black pine plantations in Bulgaria. Ecological engineering and environmental 

http://dx.doi.org/10.5539/mas.v7n5p32
http://dx.doi.org/10.1016/j.foreco.2011.08.047
http://dx.doi.org/10.1007/s10342-015-0873-3
http://dx.doi.org/10.1007/s10342-015-0873-3
http://dx.doi.org/10.1007/s13595-013-0303-y
http://dx.doi.org/10.1016/S0378-1127(03)00260-3
http://dx.doi.org/10.1016/S0378-1127(03)00260-3
http://dx.doi.org/10.1007/s11056-007-9043-x
http://dx.doi.org/10.1007/s11056-007-9043-x


21

Silva Fennica vol. 50 no. 1 article id 1406 · Stankova · A dynamic whole-stand growth model, derived from…

protection 2: 59−66.
Tewari V.P., Álvarez-González J.G., García O. (2014). Developing a dynamic growth model for 

teak plantations in India. Forest Ecosystems 1: 9. http://www.forestecosyst.com/content/1/1/9. 
[Cited 29 May 2015].

Vanclay J.K. (1994). Modelling forest growth and yield. Applications to mixed tropical forests. 
CAB International, Wallingford, UK.	p.	5–8,	14–31.

Vanclay J.K. (2009). Tree diameter, height and stocking in even-aged forests. Annals of Forest 
Science 66: 702–709. http://dx.doi.org/10.1051/forest/2009063.

Vanclay J.K. (2010). Robust relationships for simple plantation growth models based on sparse 
data. Forest Ecology and Management 259: 1050–1054. http://dx.doi.org/10.1016/j.
foreco.2009.12.026.

Vanclay J.K., Skovsgaard J.P., Pilegaard Hansen C. (1995). Assessing the quality of permanent 
sample plot databases for growth modelling in forest plantations. Forest Ecology and Manage-
ment	71:	177–186.	http://dx.doi.org/10.1016/0378-1127(94)06097-3.

Xue L., Ogawa K., Hagihara A., Liang S., Bai J. (1999). Self-thinning exponents based on the 
allometric model in Chinese pine (Pinus tabulaeformis Carr.) and Prince Rupprecht’s larch 
(Larix principis-rupprechtii	Mayr)	stands.	Forest	Ecology	and	Management	117:	87–93.	http://
dx.doi.org/10.1016/S0378-1127(98)00472-1.

Zeide B. (1993). Analysis of growth equations. Forest Science 39(3): 594–616.

Total of 46 references.

http://www.forestecosyst.com/content/1/1/9
http://dx.doi.org/10.1051/forest/2009063
http://dx.doi.org/10.1016/j.foreco.2009.12.026
http://dx.doi.org/10.1016/j.foreco.2009.12.026
http://dx.doi.org/10.1016/0378-1127(94)06097-3
http://dx.doi.org/10.1016/S0378-1127(98)00472-1
http://dx.doi.org/10.1016/S0378-1127(98)00472-1

	A dynamic whole-stand growth model, derived from allometric relationships
	1	Introduction
	2	Materials and methods
	2.1	Modelling rationale
	2.1.1	Site quality model
	2.1.2	Mean stem volume projection
	2.1.3	Density decrease model
	2.1.4	Mean volume prediction function

	2.2	Data set and data assessment
	2.3	Model examination
	2.4	Model validation
	2.4.1	Prediction errors of the future observations
	2.4.2	Model consistency regarding thinnings


	3	Results
	4	Discussion
	Acknowledgements
	References

