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Highlights
•	 Most similar neighbor imputation was used to estimate forest variables using airborne laser 

scanning data as auxiliary data.
•	 For	selecting	field	reference	plots	the	local	pivotal	method	(LPM)	was	compared	to	systematic	

sampling design.
•	 The	LPM	 sampling	 design	 combined	with	 a	micro	 stand	 approach	 showed	 potential	 for	

improvement	and	has	the	potential	to	be	a	competitive	method	when	considering	cost	effi-
ciency.

Abstract
A	new	sampling	design,	the	local	pivotal	method	(LPM),	was	combined	with	the	micro	stand	
approach and compared with the traditional systematic sampling design for estimation of forest 
stand	variables.	The	LPM	uses	the	distance	between	units	in	an	auxiliary	space	–	in	this	case	
airborne	laser	scanning	(ALS)	data	–	to	obtain	a	well-spread	sample.	Two	sets	of	reference	plots	
were acquired by the two sampling designs and used for imputing data to evaluation plots. The 
first	 set	 of	 reference	 plots,	 acquired	 by	LPM,	made	 up	 four	 imputation	 alternatives	 (varying	
number of reference plots) and the second set of reference plots, acquired by systematic sampling 
design, made up two alternatives (varying plot radius). The forest variables in these alternatives 
were estimated using the nonparametric method of most similar neighbor imputation, with the 
ALS data used as auxiliary data. The relative root mean square error (RelRMSE), stem diameter 
distribution error index and suboptimal loss were calculated for each alternative, but the results 
showed	that	neither	sampling	design,	i.e.	LPM	vs.	systematic,	offered	clear	advantages	over	the	
other. It is likely that the obtained results were a consequence of the small evaluation dataset used 
in	 the	study	(n	=	30).	Nevertheless,	 the	LPM	sampling	design	combined	with	 the	micro	stand	
approach showed potential for improvement and might be a competitive method when consider-
ing	the	cost	efficiency.
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1 Introduction

In forest management and planning, the notion stand is used as both a description and treatment 
unit for a piece of (in several aspects) homogenous forest land. A single treatment (silvicultural or 
harvest actions) is assumed to be applied on the whole stand at a single point of time and stands 
thereby makes up the basic unit in forest planning (e.g., Bettinger et al. 2009). Decision support 
systems	 (DSSs),	 such	as	 the	Swedish	Heureka	 system	(Wikström et al. 2011), can be used to 
simulate and evaluate different possible standwise treatments for each stand separately or jointly 
for	all	stands	within	a	forest	holding.	Recent	studies	(Pietilä	et	al.	2010;	Saad et al. 2014) have 
attempted to test different data acquisition methods where the treatment units, i.e., stands, are based 
on the traditional conception of forest stands. Stand variation in size and shape can be an important 
factor	affecting	the	data	quality	of	the	variables	of	interest.	Highly	accurate	data	regarding	forest	
information are critical for analyzing potential management actions in forest planning (Kangas 
2010). Inaccurate forest data can lead to a decrease in economic gain due to subsequent errone-
ous treatment decisions (Holmström	et	al.	2003). Despite the importance of data quality in forest 
planning, the subject has not received much attention compared to other aspects of forest planning 
and data acquisition (Duvemo and Lämås 2006). Kangas (2010) has emphasized the complexity 
of the subject and suggested methods, such as the Bayesian decision theory, to improve the use of 
the available forest data.

Stand delineation is an important procedure aimed at reducing variety within the delineation 
units by uniting similar forest areas, such as those with similar tree species, tree height, development 
class	or	site	index.	Historically,	forests	have	been	delineated	manually,	either	by	field	survey	or	
aerial photo interpretation. Since stand delineation is performed manually and subjectively, a high 
variation in forest characteristics within stands is often encountered. Nowadays, stand delineation 
can be performed with different automatic segmentation algorithms using remote sensing (Olla 
1990;	Hyvönen	et	al.	2005).	The	use	of	airborne	laser	scanning	(ALS)	data	in	such	procedures	
(Koch et al. 2009) can potentially reduce within stand variation of forest characteristics, thereby 
improving stand data quality. Such an automatic segmentation method was recently developed 
by Olofsson	and	Holmgren	 (2014), in order to reduce within stand variation according to the 
ALS derived variables. The use of ALS data and automatic stand delineation have enabled the 
introduction	of	very	small	forest	stands,	known	as	micro	stands	(Hyvönen	et	al.	2005;	Pippuri	et	
al. 2012), as a potentially improved way to divide a forest into homogeneous areas for use as the 
description unit in management planning. Whereas traditional stands (in Sweden) might range 
between	1–10	ha,	micro	stands	are	typically	the	size	of	0.1	ha.	In	management	planning	process	
micro stands can be aggregated to treatment units. 

Using the micro stand approach, the forest state in each micro stand has to be estimated. 
If	using	the	combination	of	remote	sensing	and	field	survey	the	challenge	is	then	to	allocate	field	
reference	plots	in	an	efficient	manner.	Field	plots	can	be	allocated	in	a	systematic	grid	within	the	
forest	area	but	also,	e.g.,	the	location	of	plots	within	a	stratified	sample	of	(traditional)	stands.	
Using	micro	 stands	 field	 plots	 can	 be	 allocated	 in	 a	 –	 somehow	 selected	 –	 sample	 of	micro	
stands. 

Selecting the units to be sampled is a general problem in sampling. A new sampling method 
called	the	local	pivotal	method	(LPM)	was	proposed	by	Grafström	et	al.	(2012).	LPM	provides	a	
well-spread sample compared to, e.g., systematic and simple random sampling designs when data 
such	as	ALS	data	can	be	used	as	auxiliary	variables.	The	LPM	uses	the	distance	between	units	in	
an	auxiliary	space	to	achieve	a	spatially	balanced	sample.	In	the	present	study,	the	LPM	approach	
was utilized by employing ALS data as the auxiliary variables to achieve a well-spread sample in 
the auxiliary space.
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For estimating stand attributes for each micro stand imputation technique such as the non-
parametric most similar neighbor (MSN) method (Moeur and Stage 1995) utilizing ALS as auxiliary 
data	and	field	reference	plots	is	a	potential	method	(Packalén	and	Maltamo	2007;	Maltamo at al. 
2009). Using this approach, no parametric assumptions are made regarding, e.g., the relationship 
between stand attributes and ALS data. 

The	accuracy	of	data	acquired	from	combining	remote	sensing	and	field	surveys	depends	
on several factors, such as the characteristics of the data from the two sources, respectively, and 
the	method	used	for	combining	them.	For	cost	efficiency	fast	field	surveys	are	advantageous	and	
combining	the	micro	stand	and	LPM	approaches	may	provide	a	faster	field	survey	design	compared	
to	other	sampling	designs.	However	the	time	consumption	for	different	field	survey	designs	was	
not the scope in this study.

The	aim	of	the	study	was	to	test	the	efficiency	of	(i)	the	new	sample	design,	LPM,	combined	
with micro stand approach and then compare it with a (ii) traditional layout of reference plots in 
a systematic grid over the forest area. In both cases (i and ii) the forest variables were estimated 
using the MSN imputation method by employing ALS data as auxiliary information. In (i), the 
allocation of reference plots among the selected micro stands and geographical location of plots 
within	the	micro	stands	were	carried	out	using	the	recently	developed	LPM,	using	ALS	data	as	
auxiliary information. Another aim was to investigate the effect of these approaches on long term 
forest planning (100 years) in terms of suboptimal losses in management decisions. 

2 Materials and methods

2.1 Study area and data

This study was performed using data obtained from the Remningstorp estate located in southern 
Sweden (58°30´N, 13°40´E). This forest holding covers about 1200 ha of productive forest land 
and the forests within the holding have frequently been used for remote sensing research projects. 
The prevailing tree species are Norway spruce (Picea abies (L.)	H.	Karst.),	Scots	pine	(Pinus 
sylvestris L.) and birch (Betula spp.). The dominant soil type is till (i.e., mixture of glacial debris) 
with	a	field	 layer	consisting	of	different	herbs,	blueberry	 (Vaccinium myrtillus L.) and narrow 
leaved grass (e.g., Deschampsia flexuosa	 (L.)	Trin.).	However,	 in	 the	dense	old	spruce	stands,	
the	field	layer	is	in	general	absent.	The	ground	elevation	varies	moderately	from	120	m	to	145	m	
above sea level. The Remningstorp estate is managed for commercial wood production by “The 
Swedish Forest Society Foundation” (Skogssällskapet) and the forest includes development states 
from young to old forest. 

ALS data acquisition was performed by scanning from a helicopter on 29 August and 9 
September	 2010	with	 a	Riegl	LMS-Q560	 system.	The	 area	was	 scanned	 from	 a	flight	 height	
of approx. 400 m above ground level and the pulse density was at least 10 measurements per 
square meter. The laser wavelength was 1550 nm and the beam divergence was 0.5 mrad. A 
parallel scan pattern was used and the maximum scan angle was ±30 degrees from nadir across 
the	flight	direction.

The vertical distance to the ground was calculated for each laser return using a ground 
elevation model and laser metrics were derived twice based on the distribution of these heights 
within each two different raster cell sizes, 10 × 10 m2 and 18 × 18 m2. The metrics were as follows: 
(1)	average	height	(AH),	(2)	standard	deviation	of	heights	(SDH),	(3)	vegetation	ratio	(VR),	(4),	
average	crown	height	(ACH),	(5)	10th	height	percentile	(P10),	(6)	50th	height	percentile	(P50),	
and	(7)	90th	percentile	(P90).	The	metrics	AH,	SDH	and	the	percentiles	were	derived	based	only	
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on	the	laser	returns	that	were	above	a	height	threshold	of	2	m	in	order	to	avoid	any	influence	from	
low	vegetation,	stones,	etc.	The	metric	used	to	describe	the	vegetation	density	(VR)	was	calculated	
by dividing the number of returns above a threshold of 2 m from the ground by the total number 
of returns. The metric for measuring both the canopy height and crown closure, i.e., the average 
crown	height	(ACH),	was	calculated	from	a	canopy	height	model	(CHM).	First,	a	3	×	3	m2 median 
filter	was	applied	on	the	CHM	with	a	raster	cell	size	of	1	×	1	m2	to	fill	in	missing	values.	To	derive	
the	ACH	for	a	10	×	10	m2 and 18 × 18 m2 raster cells, the average height value of all raster cells 
of	the	CHM	inside	the	10	×	10	m2 raster cell was calculated. 

Data	obtained	using	the	LPM	sampling	design	(5	m	radius	plots)	and	systematic	sampling	
design (10 m radius plots) were used as reference data (training data) in different subsets and 
combinations to predict the forest state from the ALS data. Data from 40 m radius plots were used 
to evaluate the predictions as these data were similar in size and characteristics to micro stands 
and were available for a wide range of forest types.

2.1.1 Systematic sampling design

The systematic sample included 10 m radius plots surveyed in 2010 and located in a 200 × 
200 m grid over the major part of the estate, resulting in 263 plots located on forest land. This 
data set was available prior to the present study and used in several other remote sensing research 
projects. The plots were surveyed using the methods and models estimating the state of the forest 
available	 in	 the	Heureka	 system	by	employing	 the	modules	 Ivent	 and	PlanStart	 (Wikström	et	
al. 2011). For plots with a mean tree height less than 4 m or basal-area-weighted mean stem 
diameter at breast height (i.e., 1.3 m above ground) less than 5 cm, only the height and species 
of all saplings and trees were recorded. For the remaining plots, calipering of all trees greater 
than 4 cm in diameter at breast height and sub-sampling of trees to measure height and age were 
performed.	Heights	of	the	remaining	calipered	trees	on	the	plots	were	estimated	using	allometric	
models relating tree height to diameter (Söderberg 1992). Only plots with calipered trees were 
used, i.e., young forest was not included. Furthermore, to eliminate errors due to silvicultural 
activities	performed	or	disturbances	due	 to,	e.g.,	wind	 throw	between	 the	 time	of	field	survey	
and ALS scanning, plots showing extreme deviation from the expected relationship to the ALS 
measurements were removed. In total, 216 plots were used. Table 1 provides a summary of the 
data collected.

2.1.2 LPM sampling design

For	 the	LPM	sampling	design,	 the	 forest	 area	was	first	delineated	 into	micro	stands	based	on	
ALS data using the segmentation algorithm developed by Olofsson	and	Holmgren	(2014) and 

Table 1. Summary	statistics	of	the	datasets	(min;	mean;	max).

Dataset Number of plots Tree height [m] Stem diameter [cm] Stem volume [m3/ha] Age [yr]

Micro	stand	and	LPM	
approach

856* 3.5;19.2;34 4;27.1;67.9 1;284;2058 10;50;168

Systematic design 216** 4.9;18.2;31.6 5.2;24.1;51.9 2;229;655 14;51;160
Evaluation plots 30*** 15.8;24;32.4 20;30.6;42.3 157;360;685 33;60;112

    * 5 m radius
  ** 10 m radius
*** 40 m radius
LPM	=	local	pivotal	method
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raster cells of 10 × 10 m2 as input. The input raster contained three bands with ALS metrics: 
P90,	 VR	 and	ACH.	 Non-forest	 areas	 and	 roads	 were	 excluded	 from	 the	 segmentation	 using	
a raster mask. The raster mask was generated using both the spatial database earlier used for 
forest	management	and	road	vectors	identified	from	aerial	images.	Next,	5	m	radius	plots	were	
allocated	to	a	sub-sample	of	100	micro	stands	selected	using	the	LPM	(Grafström	et	al.	2012). 
Each of these micro stands was visited, but nine micro stands were not surveyed or included 
in the study because of thinning operations after the ALS data acquisition. Therefore, 91 micro 
stands	 in	 total	were	 surveyed	 in	 2013	 and	 used	 in	 this	 study.	The	LPM	 sampling	 design	 has	
been proven to select a well-spread sample in a given space (Grafström	et	al.	2012), i.e., it is 
unlikely that two similar (in ALS space) micro stands will be selected in the sample. In this 
study,	 the	 LPM	was	 applied	 using	 the	 standardized	ALS	metrics	AH,	 SDH,	VR,	ACH,	 P10,	
P50,	 and	 P90	 for	 measuring	 the	 distance	 between	 units,	 i.e.,	 the	 selected	micro	 stands	 were	
spread in the auxiliary data (ALS metrics) space. The probability of selecting a particular 
micro	stand	was	set	proportionally	to	the	sum	of	ACH	for	all	raster	cells	within	the	micro	stand	
because this sum was correlated to the total stem volume. The reason for this selection was to 
ensure	that	a	sufficient	amount	of	reference	data	were	obtained	in	micro	stands	with	a	high	eco-
nomic value. The number of 5 m circular sample plots surveyed in each selected micro stand 
was	selected	proportionally	 to	 the	variation	of	P90	within	 the	micro	stand	 in	order	 to	allocate	
more plots in micro stands with a high variation of tree height. Thus, the number of 5 m plots 
was not necessarily evenly distributed among the micro stands but depended on the variation 
of	P90	in	each	micro	stand.	The	LPM	was	also	utilized	in	a	second	step	to	locate	(geographi-
cally)	 plots	 inside	 each	micro	 stand	 using	 the	 same	ALS	metrics	 as	 used	 in	 the	 first	 step	 to	
ensure that a high variation was captured. The inclusion probability within each micro stand 
was set equally for all raster cells and ALS metrics served as the auxiliary space. The coor-
dinates of the raster cells were considered in one direction along with the ALS metrics in the 
second step of allocation in order to avoid surveying plots located geographically close to each 
other (Grafström	 and	 Ringvall	 2013). Thus the probability to allocate two neighboring plots 
was small. This survey was designed for fast collection of tree diameter data. Thus, all trees 
with a diameter at breast height larger than 4 cm were calipered and the species recorded, but 
no	other	data	were	collected.	Heights	of	 the	calipered	 trees	on	 the	plots	were	estimated	using	
allometric models relating tree height to diameter (Söderberg 1992), in accordance to the sys-
tematic sample plots described in the previous section. The plots (originally 981 plots in total) 
serving as the ALS training data were allocated over the original 100 micro stands. The number 
of plots actually surveyed was 881 because nine micro stands were excluded from study. This 
number was later reduced to 856 as some plots were considered to be outliers when analyzing 
the	field	survey	data	and	the	ALS	data	relationships	(Table	1).

2.1.3 Evaluation plots

The 40 m radius evaluation plots, measured between 2010 and 2013, were allocated subjectively 
in mature and old forest using stand data from the existing forest management plan in order to 
obtain data for several tree species compositions and a range of mean stem volume per hectare. The 
allocation also ensured that each 40 m plot was placed well inside the boundaries of the selected 
stand	in	order	to	avoid	any	influence	of	edge	effects.	In	total,	30	such	plots	were	surveyed	(Table	1).	
As for the data set based on the systematic sample design this data set was also available prior to 
the present study.
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2.2 Imputation of tree lists using ALS data

Based on the ALS data, rasters of estimated forest data were created by imputation of survey data 
(i.e., calipered diameters, tree height measurements and recorded tree species) from the refer-
ence survey plots for each cell in the evaluation plot raster. The raster cell sizes were chosen to 
approximate	the	size	of	the	reference	plot	data	used.	The	plots	of	the	size	5	m	(LPM	sampling	
design) radius were imputed to the raster cells of the size 10 × 10 m2 and the plots of the size 10 m 
(systematic sampling design) radius were imputed to the raster cells of the size 18 × 18 m2. Data 
for each 40 m radius evaluation plot were generated by aggregation from the estimated rasters, 
either 10 × 10 m2 or 18 × 18 m2,	covering	the	evaluation	plot	and	imported	into	the	Heureka	DSS	
as	if	it	were	data	surveyed	on	site.	However,	some	simplifications	were	made:

•	The	actual	tree	species	proportions	of	each	plot	were	used	as	independent	variables	in	the	imputa-
tion in order to produce feasible estimations.

•	Site	index	data	were	taken	from	the	existing	forest	management	plan	for	all	data	used	in	the	study.
•	Basal	area-weighted-mean	stand	age	was	not	assessed	in	the	micro	stand	plot	survey	but	obtained	

from the existing forest management plan.
•	Only	established	forest	(mean	height	higher	than	4	m	and	mean	diameter	larger	than	5	cm)	was	

included	in	the	study;	data	from	sapling	and	young	forests	were	discarded.

Although it is likely that for operational application of the methods developed here, site 
index and tree species data would be available in advance, estimates of tree species proportions 
can be obtained with reasonable accuracy by complementing ALS data with multispectral aerial 
images (Packalén	and	Maltamo	2007).

Imputation of the survey data was performed using a nonparametric method based on the 
MSN distance measure, as commonly used in remote sensing applications (Maltamo et al. 2009). 
This method utilizes a reference dataset where the forest variables Y are known and a set of p 
auxiliary variables X with data available for the reference dataset as well as for all prediction points 
(i.e.,	raster	cells).	Prediction	of	an	unobserved	Y i is made using the data from the reference meas-
urement most similar to the predicted target. In the MSN method, similarity is measured using a 
linear transformation of differences in the auxiliary variables X (Moeur and Stage 1995) (Eq. 1): 

dij2 = Xi – X j( )A Xi – X j( )T (1)

for the matrix A corresponding to a given transformation of the variables X. The matrix A	is	defined	
using canonical correlation analysis of Y and X	aimed	at	finding	the	linear	transformation	of	X 
that explains most of the target variables Y (Eq. 2), 

A = ΓΛ2ΓT (2)

where Γ is the p × 1 vector of canonical loadings and Λ is the p × p diagonal matrix of canonical 
correlation	coefficients.	In	the	present	study,	the	MSN	similarity	measure	was	used	for	imputation	
of	field	measured	reference	plot	data	to	evaluation	plot	raster	cells	of	similar	sizes	as	the	reference	
plot	areas	using	ALS	metrics	as	auxiliary	data.	The	canonical	correlation	model	was	fitted	to	the	
field	measured	forest	variables	basal	area	weighted	mean	tree	height,	basal	area	weighted	mean	
tree diameter and square root of mean stem volume per hectare ( Y ), and the ALS-based metrics 
AH,	SDH,	VR,	ACH,	P10,	P50	and	P90(	X ). The true proportion of pine was also used as an 
additional auxiliary ( X ) variable in order to generate imputed data with appropriate tree species 
compositions. 
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2.3 The seven studied alternatives

Seven	alternatives	were	examined	in	the	study.	The	first	alternative,	termed	the	observed	alterna-
tive,	comprised	the	field	survey	observations	of	the	30	evaluation	plots	with	40	m	radius.	In	the	
second to seventh alternatives, data for the evaluation plots were estimated using the nonparametric 
method MSN based on the reference plots. 

In	the	second	to	the	fifth	alternatives	the	5	m	radius	reference	plots	from	the	micro	stand	and	
LPM	approach	were	used.	The	number	of	reference	plots	was	reduced	from	the	original	856	to	500,	
250 and 91, respectively to test how the sample intensity affected the accuracy. The number 250 was 
chosen as roughly the same number of plots in the systematic design (n = 216). The number 91 is 
equal to the number of reference plot given that one and only one reference plot is allocated in each 
micro	stand	and	500	was	chosen	as	a	multiple	of	250.	For	the	subsets,	the	LPM	sampling	method	
was	used	with	inclusion	probability	of	π1	=	500/856,	π2	=	250/856	and	π3 = 91/856, respectively. 
The	alternatives	are	hereafter	termed	S500,	S250,	S91,	respectively.	The	fifth	alternative	–	termed	
subS91	–	did	also	contain	91	reference	plots	sampled	using	the	LPM,	but	given	the	condition	that	
one plot was sampled from each micro stand.

The sixth and seventh alternatives used 216 reference plots from the systematic grid design 
sampling, the alternatives hereafter termed syst10m and syst5m, respectively. For the sys10m 
alternative, the original 10 m radius plots were used, from which 5 m radius plots were constructed 
and served as reference plots for the syst5m alternative. The use of 5 m radius plots was possible 
because	the	coordinates	of	trees	within	the	plots	had	been	recorded	in	the	field	survey.	Table	2	
provides a summary of the data in the six alternatives.

2.4 Validation of the imputation

Forest variables were estimated from the survey data (i.e., calipered diameters, tree height meas-
urements and recorded tree species) that were imputed to the evaluation plots using ALS data as 
auxiliary data. The imputations were validated using the relative root mean square error (RelRMSE) 
and relative bias (RelBias) for each forest variable. The root mean square error (RMSE) and bias 
were calculated (Eq. 3 and 4):

RMSE =
( ŷi − yi )2

i=1

n
∑

n
(3)

Table 2. Summary	statistics	of	the	different	alternatives	(min;	mean;	max).

Dataset Number of plots Tree height [m] Stem diameter [cm] Stem volume [m3/ha] Age [yr]

S500 500* 3.5;19.2;33.7 4;27.1;62.3 2;287;2058 12;50;131
S250 250* 3.5;19.1;32.3 4;26.9;59.7 2;276;930 13;49;131
S91 91* 3.5;19.3;32.4 4;27.7;59.4 2;301;1510 12;50;131
subS91 91* 3.5;19.6;33.7 4;27.7;62.3 2;303;2058 13;50;100
syst5m 216** 4.4;18;37.1 4.6;23;51.4 3;226;748 14;51;160
syst10m 216*** 4.9;18.2;31.6 5.2;24.1;51.9 2;229;655 14;51;160

    * 5 m radius
  ** 5 m radius extracted from the 10 m radius plots
*** 10 m radius
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Bias =
( ŷi − yi )

i=1

n
∑

n
(4)

where			̂yi denotes the predicted variable and yi denotes the observed variable. The RMSE and bias 
calculations	were	performed	for	the	forest	variables	basal	area	weighted	mean	tree	height	(BWH),	
basal	area	weighted	mean	tree	diameter	(BWD),	mean	stem	volume	per	hectare	(MSV),	basal	area	
(BA) and stand mean age (MA). Next, the RelRMSE and RelBias were calculated (Eq. 5 and 6): 

RelRMSE = 100∗ RMSE
y

(5)

RelBias = 100∗ Bias
y

(6)

where y  denotes the mean of the observed variable of each evaluation plot and the RMSE and bias 
were calculated according to Eq. 3 and 4.

2.5 Accuracy of stem diameter distribution

The accuracy of the estimated stem diameter distributions was assessed using the total variation 
distance index (Levin et al. 2009) computed for each of the evaluation plots (40 m radius) using 
the diameter classes’ absolute differences (e,	Eq.	7).	Overall	there	were	20	diameter	classes,	where	
the width of each diameter class was 2 cm.

e = ej
j=1

20
∑ = 1

2
∗ P(x j )−Q(x j )
j=1

20
∑ (7)

where e j is the error in diameter class j, P( x j ) is the observed relative frequency of diameter class 
j of the observed alternative, and Q( x j ) is the relative frequency of diameter class j in the diam-
eter distribution predicted by the other alternatives, i.e., S500, S250, S91, subS91, syst10m and 
syst5m. The errors of the estimated diameter distributions were multiplied by ½ to scale the error 
index between 0 and 1, where 0 represented a perfect match of the two compared distributions. 
P( x j ) was calculated by dividing the observed number of trees in each class by the observed total 
number of trees in the evaluation plot. Q( x j ) was calculated by dividing the number of predicted 
trees in each class by the total number of predicted trees in the evaluation plot. The evaluation 
plot level error e	was	defined	as	the	sum	of	the	diameter	class	error	e j. The total variation distance 
was used as a measure of the degree of the diameter distribution errors that were independent of 
the total number of trees.

2.6 Calculation of suboptimal losses

 The evaluation plot data for each of the seven alternatives (one observed and six imputed) were 
imported	as	tree	lists	into	the	Heureka	system	(Wikström et al. 2011). The system was used to 
simulate	and	evaluate	different	possible	treatment	for	20	five	year	periods	(i.e.,	100	years).	The	
optimal	management	 strategies	 providing	 the	 highest	Net	 Present	Value	 (NPV)	were	 selected	
for	all	alternatives.	The	two	first	planning	period	management	actions	selected	in	the	imputation	
alternatives were then applied to the forest data for the observed alternative and the subsequent 
NPVs	calculated.	The	differences	between	the	NPV	of	 the	observed	alternative	to	the	NPV	of	



9

Silva Fennica vol. 50 no. 2 article id 1414 · Saad et al. · Local pivotal method sampling design combined with…

the applied programs on the forest information in the observed alternative were considered to be 
the suboptimal losses (Saad et al. 2014).	Only	the	two	first	periods	(10	years)	of	the	management	
actions were used from the imputed alternatives because it was assumed that in the future, new 
and improved information would likely be available (Holmström	et	al.	2003). Information on the 
suboptimal losses can help forest planners to determine whether it is cost effective to change the 
sampling	design,	e.g.,	using	the	LPM	sampling	design	instead	of	the	traditional	systematic	plot	
sampling design.

3 Results

The accuracy validations of the reference plot data imputation to the evaluation plots were presented 
in	terms	of	the	RelRMSE	and	RelBias	values	(Eq.	5	and	6)	for	the	five	key	forest	variables	BWH,	
BWD,	MSV,	BA	and	MA	in	the	six	imputations	alternatives	(Table	3).

The results showed that the bias in most cases was moderate except for BA in the S500 and 
subS91 alternatives, which showed a high positive BA bias. In both the latter cases, there was 
also	a	negative	BWH	bias,	resulting	in	a	moderate	MSV	bias.	High	bias	was	also	reflected	in	the	
RelRMSE values. 

Among	the	LPM	alternatives,	either	S500	or	S250	gave	the	lowest	RelRMSE	for	all	vari-
ables.	S500	gave	the	lowest	values	for	BWH	and	BWD,	whereas	S250	gave	the	lowest	values	
for the other variables. S91 and subS91 performed worse than the best performing (lowest Rel-
RMSE) alternatives S500 or S250 for all variables. Also when comparing with the worst (highest 
RelRMSE) among S500 and S250 the S91 and subS91 alternatives performed worse or close to 
(BWH	and	MSV)	except	for	BA	(S500	26.8%	and	S91	20.5%,	respectively).	When	comparing	S91	
and subS91 (in the latter case, one reference plot in each micro stand), subS91 performed worse 
or	much	worse	than	S91	for	three	variables	(BWD,	MSV	and	BA).	Among	the	systematic	design	
alternatives, Syst10m gave a lower or equal RelRMSE then Syst5m for all variables.

When	comparing	the	LPM	alternatives	with	the	systematic	design	alternatives,	the	latter	
gave	a	lower	RelRMSE	for	three	(BWH,	BWD	and	MA)	out	of	the	five	variables.	When	compar-
ing the approaches with a similar number of plots and the same plot radius, i.e., S250 vs. Syst5m, 
the	RelRMSE	was	roughly	equal	except	for	MSV,	for	which	S250	showed	a	much	lower	value	
(18.6%	vs.	27.3%	for	Syst5m).

Table 3. Summary of the relative root mean square error (RelRMSE) and relative bias (within parenthesis) values, 
for	the	forest	variables	basal	area	weighted	mean	tree	height	(BWH),	basal	area	weighted	mean	tree	diameter	(BWD),	
mean	stem	volume	per	hectare	(MSV),	basal	area	(BA)	and	stand	mean	age	(MA),	indicating	the	accuracy	of	the	air-
borne laser scanning based imputation of the reference plot data to the 40 m radius evaluation plots for the six different 
estimated alternatives. 

RelRMSE	(%)
Alternative BWH BWD MSV BA MA

S500 9.6(–6.8) 8.7(5.7) 24.7(9.9) 26.8(17.1) 21.6(–7.7)
S250 10.8(–7.8) 9.0(4.7) 18.6(–2.1) 16.2(8.1) 20.4(–9.6)
S91 13.6(–9.5) 10.7(3.4) 23.3(–3.1) 20.5(8.5) 28.7(–13.2)
subS91 10.6(–7.0) 11.9(5.8) 38.8(11.9) 38.2(19) 25.0(–7.9)
Syst10m 8.4(–5.6) 8.0(0.0) 23.8(–10.6) 18.3(–8.0) 20.0(–4.0)
Syst5m 10.1(–8.0) 8.7(–4.2) 27.3(–14.9) 18.3(–8.0) 23.1(–6.2)
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Error	indices	(Eq.	7)	of	the	estimated	stem	diameter	distributions	are	presented	in	Table	4.	
For	the	LPM	alternatives,	the	mean	error	indices	increased	with	decreasing	number	of	reference	
plots;	S91	and	subS91	showed	equal	mean	error	indices.	Among	the	systematic	sampling	design,	
Syst10m gave a lower mean error index than Syst5m, and Syst10m also performed better than the 
micro	stand	and	LPM	alternatives.	The	alternatives	with	roughly	the	same	number	of	plots	and	
plot radius, i.e., S250 and Syst5m, gave similar mean error indices. 

NPVs	were	calculated	by	the	Heureka	DSS	using	a	3%	real	interest	rate.	As	described	in	the	
previous section, the suboptimal loss was calculated for each imputation alternative. The suboptimal 
losses	using	the	LPM	sampling	design	were	47,	62,	39	and	28	euros	ha–1 for the S500, S250, S91 
and subS91 alternatives, respectively. The suboptimal losses using the systematic sampling design 
were 61 and 63 euros ha–1 for the syst10m and syst5m alternatives, respectively. The alternative 
subS91 yielded the lowest suboptimal loss but the highest error index of the estimated diameter 
distributions (along with S91) and the highest mean stem volume RelRMSE. 

4 Discussion

In this study, a novel data acquisition approach was used that combines the concept of micro stands 
and	the	LPM	sampling	design	using	ALS	data	as	auxiliary	data.	The	nonparametric	MSN	method	
was then used for the imputation based on two different sets of reference plots and a total of six 
different	imputation	alternatives.	The	allocation	of	reference	plots	among	micro	stands	in	the	first	
set of reference plots and the location of the plots within the micro stands were carried out using 
the	recently	developed	LPM	sampling	design.	 In	both	cases,	ALS	data	were	used	as	auxiliary	
information	(imputation	alternatives	2–5).	The	latter	approach	was	compared	with	a	traditional	
layout of reference plots in a square grid over the forest area, which made up the second set of 
reference	plots	(imputation	alternatives	6–7).	The	data	quality	(Table	3	and	4)	of	the	six	estimated	
alternatives was compared and the suboptimal losses due to inoptimal treatment decisions were 
calculated	using	the	Heureka	DSS.	

According	to	the	results	–	RMSE,	bias	(Table	3),	stem	diameter	distribution	error	indices	
(Table	4)	and	suboptimal	losses	–	none	of	the	sampling	designs,	i.e.,	LPM	vs.	systematic,	showed	
a clear advantage over the other. Both the random and systematic errors showed large variations 
among the imputation alternatives. This was, to some degree, expected because the inference 
method does not utilize weighting (i.e., smoothing of several observations), unlike in the kMSN 
method (k > 1), to reduce the prediction errors. Thus, the few extreme reference observations may 

Table 4. Summary of error indices of the estimated diameter distributions indicating the accuracy of the estimated 
diameter distributions using the two different sampling methods, local pivotal method and systematic, with different 
reference plot intensity. The index value 0 indicates a perfect match of the compared distributions.

Error indices of the estimated diameter distributions - total variation distance index
Alternative Mean Minimum Maximum sd*

S500 0.27 0.12 0.64 0.11
S250 0.29 0.15 0.62 0.1
S91 0.35 0.13 0.69 0.12
subS91 0.35 0.2 0.54 0.1
Syst10m 0.24 0.12 0.48 0.08
Syst5m 0.28 0.15 0.53 0.09

* sd: standard deviation
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have	had	a	very	large	influence.	Among	the	systematic	sample	design	alternatives,	i.e.,	syst10m	
and syst5m, the RelRMSE, stem diameter distribution error index and suboptimal loss were 
smaller for the 10 m radius reference plots than for the 5 m radius plots, indicating higher accuracy 
for	syst10m	as	expected.	Among	the	alternatives	using	the	LPM	sampling	design,	i.e.,	S500,	S250,	
S91 and subS91, the stem diameter distribution error index increased as the number of reference 
plots decreased, indicating decreasing accuracy. This pattern of lower estimation accuracy (as for 
the error index) as the sample size was reduced did not hold for all estimated variables regarding 
the values of the RelRMSE, RelBias (Table 4) and suboptimal loss. Some extreme values might 
have had a large effect on the RelRMSE of the estimated variables owing to the low number of 
evaluation plots (n = 30). If the number of evaluation plots had been larger, the effect of a few 
extreme values on the RelRMSE and RelBias for some imputation alternatives would have been 
smaller. 

The six different imputation alternatives corresponded to different sample designs, number 
of	reference	plots	and	plot	radii.	For	comparing	the	different	sampling	designs,	i.e.,	LPM	vs.	sys-
tematic, the alternatives S250 and syst5m were the most suitable because these alternatives had 
roughly the same number of reference plots and plot radius, i.e., 5 m. The differences between 
the S250 and syst5m alternatives in the stem diameter distribution error indices and suboptimal 
losses	were	very	small.	The	differences	in	the	RelRMSE	were	larger,	especially	for	MSV.	For	
this variable, the RelRMSE was notably lower for the S250 alternative compared to the syst5m 
alternative,	indicating	that	the	LPM	sampling	design	measured	the	volume	more	accurately	than	
the systematic sampling design given approximately the same number and size of reference plots. 

The differences in the suboptimal losses were not very large (259 euros ha–1 to 584 euros 
ha–1), but as the suboptimal losses did not follow the trends in accuracy of the forest variable estima-
tions,	these	figures	is	quite	uncertain.	The	suboptimal	losses	for	each	alternative	were	calculated	by	
observing the individual suboptimal loss of each unit, i.e., the 30 evaluation plots. The proportion 
of	units	contributing	to	the	suboptimal	loss	was	16–23%	in	the	different	alternatives.	This	means	
that	77–84%	of	the	units	in	the	different	alternatives	showed	zero	suboptimal	losses	as	the	same	
treatments were proposed for the imputed alternatives as for the observed alternative. Several units 
gave large suboptimal losses, which consequently had a large effect on the average suboptimal 
loss	for	each	alternative	as	the	number	of	units	(evaluation	plots)	was	low.	Given	a	higher	number	
of evaluation units (say 1000), the extreme values would have had a smaller effect on the average 
suboptimal	loss.	Thus,	the	fluctuations	of	the	suboptimal	losses	among	the	alternatives	probably	
reflect	the	low	number	of	evaluation	plots	used.	

The sample procedures considered in this study were performed once when reducing the 
sample	size	in	the	LPM	design	and	when	selecting	the	sample	in	the	systematic	sample	design.	
Sampling errors (Holmström	et	al.	2003;	Islam et al. 2010) associated with reducing the sample size 
(Maltamo et al. 2009), were not considered and there was no attempt to repeat the procedure as it 
was	deemed	too	laborious	and	time	consuming;	the	expected	time	for	completing	the	calculation	
of the suboptimal losses for repetitions of the procedure was considered unreasonable. 

The	reference	plots	sampled	following	the	LPM	sampling	design	suffered	from	low	accu-
racy	of	the	plot	location	due	to	the	Global	Navigation	Satellite	System	(GNSS)	used,	whereas	the	
plot locations of the reference plots sampled following the systematic sampling design had a high 
GNSS	accuracy.	This	could	of	course	have	had	a	large	effect	on	the	estimations	of	the	RelRMSE,	
stem diameter distribution index error and suboptimal loss. Unfortunately, this effect could not be 
quantified	as	the	positioning	accuracy	was	not	known	in	the	study.	Even	though	the	positions	of	
the	LPM	reference	plots	were	not	accurate,	comparable	results	to	the	systematic	sampling	design	
were	obtained,	which	indicates	that	the	LPM	design	offers	further	potential	that	was	not	realized	
in this study.
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In	practice	a	systematic	sample	design	is	seldom	used	today	and	instead	typically	stratified	
approaches	are	used.	As	a	stratified	approach	includes	several	(subjective)	factors	–	most	of	all	
the	number	of	strata	and	which	variables	to	base	the	stratification	on	–	it	is	less	appropriate	in	a	
research setting like the present study. Further, as mentioned the systematic sample design refer-
ence plots’ were originally designed to be applicable in several different remote sensing research 
projects.	Although	both	sampling	designs,	i.e.,	LPM	and	systematic,	was	performed	in	a	research	
setting	without	any	detailed	measurement	of	time	consumption,	the	LPM	sampling	design	was	
found to be faster compared to the systematic sampling design. If a cost-plus-loss analysis were 
to	be	performed,	the	LPM	sampling	design	would	likely	be	favored	over	the	systematic	sampling	
design. That is because of time savings when moving between the plots, e.g., shorter routes and 
quick	measures.	Thus,	 it	would	 be	 invaluable	 in	 future	 studies	 to	 reconsider	 the	 use	 of	LPM	
design	sampling	with	more	accurate	GNSS	and	compare	it	with	existing	methods.	As	the	different	
alternatives	did	not	show	significant	differences	in	the	obtained	values	for	the	suboptimal	loss,	
RelRMSE	(Table	3,	except	for	subS91	in	MSV	and	BA)	and	error	index	of	the	estimated	stem	
diameter	distributions	(Table	4),	S91	may	be	considered	in	this	case	to	be	the	favorite	alternative;	
the cost of data acquisition in S91 was comparably very low and was capable of being completed 
within a shorter time compared to other alternatives.

For future studies would be of interest to perform a cost-plus-loss analysis in order to test 
whether	the	LPM	sampling	design	is	cost	efficient	sample	design.	The	non	parametric	estimation	
technique, kMSN, could be suitable to utilize weighting if k would be larger than 1, this could lead 
to reduction in the prediction errors. It is recommended to plan proper sample for the future studies 
in order to keep control over all factors that can affect the remote sensing techniques.

Overall, the results of this study show the great potential for improving data acquisition 
methods	by	employing	the	new	sampling	design	LPM	and	micro	stand	delineation	techniques.	
One	reason	for	choosing	the	LPM	sampling	design	is	its	cost	efficiency	compared	to	the	systematic	
sampling design. 
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