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Accurate estimates of the water conducting sapwood area are necessary to scale sapflow 
measurements to tree and stand level transpiration. We tested a non-destructive method, 
electric resistivity tomography (ERT), to estimate the area of conductive sapwood in 9 Pinus 
sylvestris L. trees in lower Saxony, Germany. Tomograms were compared to cross-sections 
stained with benzidine after harvesting. All tomograms displayed a distinct pattern of low 
resistivity at the stem perimeter and high resistivity in the stem centre with a steep increase 
in resistivity in between, assumed to indicate the transition from sapwood to heartwood. The 
tomograms showed a sapwood width 2 cm smaller than the staining method. This indicates 
that staining methods overestimate the amount of active sapwood because when heartwood is 
formed, moisture content decreases before extractive contents reach levels visible by staining. 
The ERT method is a new powerful method for the non-destructive estimation of sapwood 
and heartwood width.
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1 Introduction
Whole tree transpiration estimates using sapflow 
sensors have been widely applied in the past two 
decades. However, scaling sapflow measurements 
to whole tree and stand transpiration rates remains 
problematic, especially in species with deep func-
tional sapwood (Pausch et al. 2000, Cermak et 
al. 2004). While measurements at several depths 
provide information on radial sapflow profiles, 
sapwood area estimates are based on destructive 
post hoc methods, often confined to increment 
cores. Reliable non-destructive estimates of the 
size and distribution of sapwood area at the level 
of sapflow measurements could improve not only 
the scaling, but also the positioning of the sapflow 
sensors. 

Scots pine (Pinus sylvestris L.) has the widest 
geographic range of all tree species native to Eur-
asia and is one of the most important timber spe-
cies worldwide. Its wide distribution and impact 
on site and ecosystem hydrology has resulted in a 
growing number of studies using sapflow sensors 
to estimate tree and stand transpiration (Cermak 
1995, Backes 1996, Sturm et al. 1998, Rust and 
Lüttschwager 1998). Its sapwood is too wide to 
be covered by most of the commercially available 
sapflow sensors and sapwood to heartwood area 
ratios vary considerably, both within and between 
stands. Thus, transpiration estimates could sig-
nificantly gain from information on individual 
sapwood areas. 

In addition, sapwood and heartwood of Pinus 
sylvestris L. are often used for different pur-
poses due to their considerable differences in 
properties. The non-destructive determination 
of sapwood and heartwood could help to gain 
a better understanding of factors that influence 
their proportion and could therefore support a 
more effective use.

The higher moisture content of sapwood com-
pared to heartwood in most conifers is well known 
(Vintilia 1939). While below the fibre saturation 
point electrical resistivity is primarily correlated 
with wood moisture, above the fibre saturation 
point the concentration of mobile ions in the wood 
exerts the largest influence (Lin 1967, Shigo and 
Shigo 1974, Tattar and Blanchard 1974, Dixon 
et al. 1977). Due to the higher water content and 
the higher amount of ions, the sapwood of Pinus 

sylvestris L. has a considerable lower electric 
resistivity than the heartwood. During heartwood 
formation, moisture content decreases before 
extractive contents (e.g. pinosylvin) reach levels 
visible by staining (Bergström 2003). 

Electric resistivity tomography (ERT) is widely 
used in material testing, geophysics and medi-
cine to estimate the distribution of specific elec-
tric resistivity. Since 1998 (Just et al. 1998), the 
method has been used for testing standing trees 
non-destructively, e.g. to detect decay (Dubbel 
et al. 1999, Bieker 2010), red heartwood in 
beech (Weihs et al. 1999, Hanskötter 2004) and 
brown heartwood in ash (Weihs et al. 2005). 
Recent publications show, that even sapflow can 
be detected by the electrical resistivity method 
(Hagrey 2007). 

In this study the use of electric resistivity tom-
ography to detect sapwood area in pine is tested 
and results are compared with area estimates from 
benzidine stained stem discs. Our hypothesis was 
that because of higher moisture content sapwood 
should have a lower resistivity than heartwood. 
The steep decline in wood moisture from sap-
wood to heartwood (Rust 1999, Kravka et al. 
1999) should help to distinguish the two zones.

2 Material and Methods

Nine Pinus sylvestris L. trees (diameter at breast 
height 24 to 49.5 cm, age 69 to 88 years) grow-
ing in a forest near Göttingen (51°27´N, 9°59´E), 
Germany, were used in this experiment. Measure-
ments were conducted on healthy trees without 
visible signs of stem decay within two days in 
September 2006. All but one tree grew in level ter-
rain. Tree no. 6 was placed on a steep hillside.

2.1 Electric Resistivity Tomography (ERT)

A multiplexer with internal power supply 
(GeoTomMK8E1000 RES/IP, GEOLOG Fuss 
und Hepp GbR, Germany) and custom-made 
stainless steel electrodes with a needle diameter 
of 2 mm were used for the measurements. To 
analyse a stem cross-section, 24 electrodes were 
forced through the bark into the outermost wood 
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by hand at constant height (30 cm) above ground. 
A low frequency current (8 1/3 Hz) was applied 
and measured in a dipol-dipol-configuration (Rey-
nolds 1997). The software DC2dTree (Günther et 
al. 2006) was used for tomographic inversion. 
The entire process including the calculation is 
completed within 15 minutes per tree.

2.2 Staining and Tomogram Analysis

Trees were felled and stem cross-sections cut in 
the plane of the tomography were taken to the 
laboratory and stained with benzidine to delineate 
the heartwood/sapwood boundary (Rust 1999). 
This method colours the sapwood red and the 
heartwood yellow. Sapwood width along two 
opposing radii per disc was measured to the near-
est mm.

For the analysis of the accuracy of the tomo-
grams the centre of the narrow green ring in the 
tomograms, corresponding to the steep rise in 
resistivity from sapwood to heartwood, was taken 
as the heartwood/sapwood boundary. Based on 
this, sapwood and heartwood area of the cross-
sections and sapwood width for eight radii per 

tree spaced at 45°-intervals were estimated from 
the tomograms.

All tests were computed with the R statistical 
programming language (v2.9.2., R Development 
Core 2009). Linear models were analyzed with 
the robust package (v0.3-4, Wang et al. 2008).

3 Results

All tomograms display a distinct pattern of low 
resistivity at the stem perimeter and high resis-
tivity in the stem centre (Fig. 1). The transition 
between these zones is rather narrow and rep-
resents a steep increase in resistivity. The 5% 
and 95% quantils of electric resistivities of the 
sapwood of the nine trees were 219 ± 42.5 Ωm 
and 594 ± 55.5 Ωm. The electric resistivities of 
the heartwood ranged from the maximum of the 
sapwood to 1737 ± 393.4 Ωm.

Sapwood width from the tomograms compared 
well with that obtained by staining (R² = 0.87, p 
< 0.0001, Fig. 2). Mean sapwood width from 
staining was 8.1 cm ± 0.6 cm and 6.1 ± 0.5 for 
the tomograms.

Fig. 1. Representative ERT tomogram of Pinus sylves-
tris L. Blue indicates low electrical resistivity, red 
indicates high electrical resistivity.

Fig. 2. Sapwood width of Pinus sylvestris L. measured 
with ERT and benzidine staining. Linear regres-
sion and 95%-confidence interval, n= 18; grey line 
indicates 1:1.
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The sapwood area calculated from the mean 
of 8 individual radial measurements in the tomo-
grams did not differ significantly from the mean 
sapwood area estimated from the tomograms 
(p = 0.23). There was, however, a large variation 
(Fig. 3): estimates from one linear measurement 
ranged from 43 per cent to 170 per cent of sap-
wood area as estimated by tomography.

The inner zone of high resistivity is not homo-
geneous, though. In the centre of most of the 
tested trees the there is an area of relatively low 
resistivity. This area coincides with the pith of 
the trees (Fig. 4).

4 Discussion
The sapwood width measured with the staining 
method was about 28% ± 3% higher than that 
measured by ERT. This is even more than the dif-
ference between computer tomography and stain-
ing of 17% found by Rust (1999). Therefore it is 
likely that ERT-results display the physiological 
active sapwood, whose width is over-estimated 
by staining. But the sharp boundary between low 
and high electric resistivity is not just an effect of 
the higher water content in the sapwood. Other 
parameters related to heartwood formation like 
resin content (Tattar and Blanchard 1974) and 
pit closure (Du 1991) increase electric resistivity 
as well. 

The strong differences in wood moisture con-
tent between sapwood and heartwood that can be 
found in pine and other conifers allow the accurate 
estimation of the different zones. However, most 
central European hardwoods do not have such 
strong contrasts between sapwood and heartwood, 
which might limit the possibilities of ERT. 

The location of the pith of the trees corre-
sponded closely to the spot of relatively low elec-
tric resistivity in the tomograms (Figs. 1 and 4), 
confirming results of Shigo and Shigo (1974), 
who found a good correlation between relative 
low electric resistivity and the pith of a stem.

Even the decentral pith in tree no. 6, which 
was placed on a steep hillside, was depicted in 
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Fig. 3. Frequency distribution of the ratios of sapwood 
area calculated from single linear estimates of sap-
wood width and area estimates from tomograms.

Fig. 4. Tomogram and stem cross section with decentral pith of Pinus sylvestris L.
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the tomogram (Fig. 4) which indicates that ERT 
is able to show reaction wood.

The growth rings next to the pith are made of 
juvenile wood, whose anatomical and physical 
properties differ considerably from the properties 
of mature wood: specific gravity is lower, mois-
ture content higher, fibres are shorter, cellulose 
content is considerably lower (Knigge and Schulz 
1966), lignin content (Zobel and Sprague 1998) 
and earlywood percentage are higher than in the 
surrounding mature wood. 

A variation of electrolyte concentration from 
the stem centre to the heartwood/sapwood border 
might also explain the relative low electric resis-
tivities around the pith. Helmisaari and Siltala 
(1989) found increasing concentrations of Ca, Mg, 
Mn and Zn towards the pith of Pinus sylvestris L. 
while concentrations of K and P decreased. Bieker 
and Rust (2010) could show that increasing con-
centrations of K and Mg decrease electric resis-
tivities in the heartwood of Quercus robur while 
wood moisture content remained constant. 

Further investigations are needed to clarify the 
factors causing the relative low electric resis-
tivities around the pith of Pinus sylvestris L. and 
other conifers. The variation of wood moisture 
content in stem cross-sections of different species 
and the influence of electrolytes that could be 
found for oak trees indicate that tomograms have 
to be interpreted carefully and species specific 
influences have to be considered. 

Estimates of sapwood area, which are necessary 
for the up-scaling of sap flow measurements to 
higher levels, often are one of the main sources 
of errors (Hatton et al. 1995, Köstner et al. 1998, 
Bovard et al. 2005). With sufficient sampling, 
in our case eight linear measurements per tree, 
sapwood area can be accurately estimated using 
linear methods. That many measurements, how-
ever, render the tree useless for further sapflow 
and also many other measurements. Estimates 
of whole-tree transpiration based on fewer or 
just one linear measurement are prone to large 
errors (Fig. 3). 

Although the strong correlation between wood 
moisture content and electric resistivity allows the 
exact localisation of sapwood, the extrapolation 
from single sapflow measurements to tree or stand 
level is not possible, because of the large radial 
and circumferential variability of sapflow, even 

within areas of similar wood moisture content 
(Cermak et al. 2004). But with non-destructive 
measurements of sapwood area, sapflow sensors 
can be placed in parts of the stem that are most 
suitable. Installing sensors partly in heartwood 
can be avoided and representative points of meas-
urement can be selected.

Thus there are many applications for a fast 
and non-destructive method for the detection of 
sapwood area in experimental plant physiology, 
e.g.:
– Guide the positioning of sapflow sensors (Nadezh-

dina et al. 2002)
– Scaling of sapflow density or velocity to tree and 

stand level
– Calculation of specific hydraulic conductance 

(Rust 1999, Cruiziat et al. 2002)
– Monitoring of heartwood formation
– Monitoring of heartwood/sapwood relationships
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