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Models for large areas (global models) are often biased in smaller sub-areas, even when the 
model is unbiased for the whole area. Localization of the global model removes the local 
bias, but the problem is to find homogenous sub-areas in which to localize the function. 
In this study, we used the eCognition Professional 4.0 (later versions called Definies Pro) 
segmentation process to segment the study area into homogeneous sub-areas with respect to 
residuals of the global model of the form height and/or local Getis statistics calculated for the 
residuals, i.e., Gi

*-indices. The segmentation resulted in four different rasters: 1) residuals of 
the global model, 2) the local Gi

*-index, and 3) residuals and the local Gi
*-index weighted 

by the inverse of the variance, and 4) without weighting. The global model was then local-
ized (re-fitted) for these sub-areas. The number of resulting sub-areas varied from 4 to 366. 
On average, the root mean squared errors (RMSEs) were 3.6% lower after localization than 
the global model RMSEs in sub-areas before localization. However, the localization actu-
ally increased the RMSE in some sub-areas, indicating the sub-area were not appropriate 
for local fitting. For 56% of the sub-areas, coordinates and distance from coastline were not 
statistically significant variables, in other words these areas were spatially homogenous. To 
compare the segmentations, we calculated an aggregate standard error of the RMSEs of the 
single sub-areas in the segmentation. The segmentations in which the local index was present 
had slightly lower standard errors than segmentations based on residuals.
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1 Introduction
Growing stock properties such as height, volume, 
and form height are costly, time-consuming, and 
sometimes impossible to measure in field survey-
ing. The height of only a fraction of all the trees is 
normally measured, and the volume and the form 
height are estimated using models. Such a model 
can be either parametric or non-parametric, and, 
in addition, can be either a local or a global one. 
“Global” refers to the whole of the area under 
consideration as a single unit, no matter how large 
that unit may be. A model is called global if the 
same model is fitted over the entire area. A local 
model, however, has at least one parameter which 
is estimated only for one particular sub-area.

The estimates of the global model may be 
unbiased over the whole area, but for one or more 
specific sub-areas they could be badly biased 
(e.g. Korhonen 1993). For example, there may 
be unexplained spatial variation in the depend-
ent variable due to one or more variables that 
for some reason or other cannot be included in 
the model. The question is how to figure out 
sub-areas in which this unexplained variation is 
homogeneous, i.e. the most appropriate size and 
location of sub-areas for localizing the global 
model. There are several alternatives for how the 
localization could be carried out. In this study, 
we first segment the entire study area and then 
re-fit the original regression model individually 
to each sub-area. We do not add new variables to 
the model; only remove statistically insignificant 
variables from the original form height model.

Delineation of proper localization sub-areas can 
be problematic if localization is carried out by 
local fitting of the models only at certain points 
or small areas. There are an infinite number of 
different solutions to this problem. Selecting the 
optimal ones is, in principle, possible, but not 
feasible in practise. However, the sizes of the sub-
areas should be large enough, to allow enough 
observations for local fitting of the model, and 
the sub-areas should not be too large, as larger 
sub-areas become increasingly heterogeneous. 
If the sub-areas are fully homogeneous, it is 
enough to adjust the level of predictions in each 
sub-area with a simple correction coefficient. 
The alternative is to use methods which do not 
need segmentation into reasonably homogene-

ous regions. These can be variance-based, e.g. 
kriging (Cressie 1991, Köhl and Gertner 1997), 
mixed models including some local-level random 
effect/s (Kangas and Korhonen 1995), or non-
parametric such as knn imputation methods (Siro-
nen et al. 2008) with respect to the form height 
in the study area. Compared to these methods, 
localization of a parametric model by local fitting 
or a local correction coefficient is simple to imple-
ment, once the segmentation of the global area to 
homogeneous sub-areas is carried out.

The local indicators of spatial association 
(LISA) measure the degree of clustering of simi-
lar values in the neighbourhood of the calcula-
tion points, called pivots. The first LISAs were 
introduced in the 1990s by Anselin (1995) (local 
Moran’s Ii and local Geary’s ci) and Getis and 
Ord (1992, Ord and Getis 1995) (Gi and Gi

*). 
Both Geary’s ci and Moran’s Ii detect departures 
from spatial randomness but are calculated differ-
ently and so yield different numerical results. Gi 
and Gi

* are commonly called “hot spot analysis” 
and indicate where there are spatial clusters of 
variable values with either high or low z-scores 
within the whole dataset. These indices have 
recently been used in many scientific disciplines, 
for example epidemiology and regional and urban 
sciences. In forestry, indices have been used to 
characterize within-stand structure (Wells and 
Getis 1999), competition between single trees 
(Shi and Zhang 2003, Wulder et al. 2007), for 
forest damage detection (Weishampel et al. 2007) 
and model analysis (Zhang et al. 2005, Wulder 
et al. 2007).

In an earlier study (Räty and Kangas 2007), we 
tested the suitability of LISAs such as Moran’s 
Ii, Geary’s ci, and Gi and Gi

* for delineation 
of homogenous sub-areas from residuals of the 
global model. The Moran’s Ii and Geary’s ci could 
show only a couple of statistically significant 
clusters which were small in size whereas both 
Getis statistics, Gi and Gi

*, did indicate several 
clusters dividing the study area into both positive 
and negative sub-areas (see Räty and Kangas 
2007, Fig. 4). In the second study (Räty and 
Kangas 2008), we divided the whole study area 
using a recursive partitioning algorithm (follow-
ing classification and regression trees (CART) 
introduced by Breiman et al. 1984) using the 
Gi

*-index and/or residuals and spatial coordinates 
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as dividers. The idea in CART is to find the most 
profitable divisions among the given variables 
(spatial coordinates), which minimizes the devi-
ance in the dependent variable (the Gi

*-index and/
or residuals). The result of the dividing process 
can be presented as a tree, but since the dividers 
were coordinates the division could also be drawn 
over a map. Although CART was successful, 
the results from this method did not differ from 
division of the study area into the eleven for-
estry administrative centres (see Räty and Kangas 
2008, Fig. 2a), which were used as a baseline 
for the assessment of the method. The sub-areas 
that CART delineated were rectangular in shape, 
where they should have been more flexible and 
variable in both size and geometry.

In this study, we segment the study area using 
eCognition 4.0 Professional® (also known as 
Definiens Pro), which is designed to cluster and 
segment satellite and aerial images but accept all 
kinds of raster data layers as well (eCognition... 
2009). The software uses general object-oriented 
image analysis, in which the initial segmenta-
tion is based on primary features, such as digital 
value (Benz et al. 2004). An object is created 
by progressively merging pixels using a bottom 
up region-merging technique which is controlled 
by a heterogeneity variable. Heterogeneity is a 
combination of colour and shape variables and 
is limited by a scale parameter, a threshold value 
for the optimization process in region-merging, 
acting for instance as a stop criterion. The initial 
segmentation routine of the software, which we 
use, has been employed in segmenting the data in 
various papers (e.g., Guindon et al. 2004, Bock 
et al. 2005, Yu et al. 2006, Johansen et al. 2007, 
Van Coillie et al. 2007, Straatsma and Baptist 
2008, Triepke et al. 2008, Mustonen et al. 2008). 
The decision variables in the present study are 
the same as in the CART-study, the residuals and 
the Gi

*-index with combination to the spatial 
position.

The aim of this study is to evaluate 1) the locali-
zation sub-areas formed by the multiresolution 
segmentation, and 2) to compare these segmenta-
tions with segmentations formed by CART. The 
latter segmentations have been presented in detail 
in our previous study and here we introduce the 
results briefly (Räty and Kangas 2008, Table 8). 
Having the segmentations done we also wanted 

3) to test whether the properties of the local 
data, such as the range and the variation of the 
variables in each sub-area, contributed to the 
success of localization. We compared the values 
for model outputs and the residuals when they 
are localized, with the same values when they 
are not localized.

2 Materials

Our data is sample tree (Pinus sylvestris) data 
from the ninth National Forest Inventory of Fin-
land (NFI9) (Fig. 1, Table 1a). The trees were 
selected from a plot by angle gauge (BAF = 2). 
We modelled a measure proportional to the form 
height (f), hereafter simply called form height 
(Eq. 1).
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where diameter at breast height (d), and volume 
(v) are from the tree data and the total basal area 
(BA) from the plot data. In Eq. 1 are three geo-
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Fig. 1. The study area in Southern Finland.
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graphical measures: XC- and YC-coordinates (Eq. 
2), and the distance from the coastline, RDIST 
(Eq. 3) calculated as:
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where X and Y are the geographic coordinates in 
kilometres, and DIST is the straight-line Euclid-
ian distance from the coastline in kilometres, 
which are all in Kartastokoordinaattijärjestelmä 
(KKJ), a national Gauss-Krüger map projection 
system used in Finland.

The main interest is in the residuals of this 
global model and later in the residuals of the 

fitted local models. A residual is the difference 
between the true value ( f ) and the fitted value 
( f̂ ) (Eq. 4):

εi i if f= − ˆ ( )4

In earlier studies, we have used LISAs in the 
localization of regression models (Räty and 
Kangas 2007, 2008). Here we used the same 
local Gi

*-index (Eq. 5) (Getis and Ord 1992, Getis 
and Ord 1996),
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where εj is the residual of the global model (Eq. 4), 
wij are binary weights, and the neighbourhood is a 
20-km circular (see Räty and Kangas 2007 for the 
neighbourhood selection), i.e., observation j has 
unit weight if it is less than 20 km distant from 
pivot i; otherwise it is zero (see Anselin 1995). In 
the Gi

*-index, pivot i also belongs to neighbour-

Table 1b. The frequency distributions of diameter and stand basal area for the Scots pine (Pinus sylvestris) sample 
trees data.

 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45 45–50 50–55 55–60 60–65 65–70

d [cm] 1952 3575 4145 3419 2681 1924 987 369 90 24 7 1 1
BA [m2/ha] 950 2184 5116 4750 2601 1990 494 289 61 9 11 - -

Table 1a. Basic properties of the Scots pine (Pinus sylvestris) sample trees: 
diameter at breast height (d), diameter at 6 metres height (d6), height (h), 
volume (v), basal area (BA), measure proportional to the form height (f), 
and actual form height (fh).

 Min 1stQ Med Mean 3rdQ Max

d [cm] 5 14 19 20.55 27 67
d6 [cm] * 11 16 16.4 22 51
h [dm] 20 105 146 150 193 352
v [dm3] 3.7 80 204 331 479 2882
BA [m2/ha] 1 16 21 21.15 27 60
f [dm3/cm2] 0.148 0.413 0.543 0.553 0.677 1.305
fh [m] 1.9 5.3 6.9 7 8.6 16.6

* 2561 of the sample trees were less than six metres high.
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hood j. We used the Z-standardized version of the 
index, ZGi

*, hereafter Gi
*-index or simply G* in 

tables (Eq. 6),

ZG
G G

G
i

i i

i

*
* *

*
( )=

−  
 

E

SD
6

where E[Gi
*] is the expected value, which is 

the mean of the Gi
*-indices, and SD[Gi

*] is the 
standard deviation.

3 Methods

In preliminary preparations, we interpolated the 
point data (single trees) of residuals and Gi

*-
indices into grids which hereafter we call (data) 
“layers” with ArcMap® inverse distance weight-
ing (IDW) where the missing pixel values were 
calculated as a weighted sum of the neighbours 
and the weights were the inverses of the distances 
to the power of two between five nearest observa-
tions and the pixel (Longley et al. 2005). We then 
passed these layers to eCognition Professional 
4.0® (Definiens Imaging) for multiresolution seg-
mentations (Benz et al. 2004, eCognition... 2009). 
In addition, we formed two additional layers as 
combinations of the former two, namely residuals 
and the local Gi

*-index with and without weight-
ing by the inverse of the variance. 

We produced segmentations for each of the 
four layers (the abbreviation is in parentheses) 
by changing the number of sub-areas indirectly 
via the scale parameter, whose values are shown 
under the name of the each individual segmenta-
tion after the abbreviation in Table 2. This proce-
dure led into several segmentations. The number 
of segmentations of the layer is mentioned after 
the content of the segmentation in the following 
list:
1) Residuals of the global model (RES), six segmen-

tations
2) Gi

*-index (G*), 11 segmentations
3) Residuals and Gi

*-index in layers (Res;G*), seven 
segmentations

4) Weighted residuals and Gi
*-index: here the layers 

were weighted by the inverse of the layer variances 
(Weight), six segmentations

Increasing the scale parameter decreased the 
number of sub-areas. The parameter values were 
not pre-determined since the effect of the scale 
parameter was not consistent. We used the scale 
parameter analysis in eCognition to determine 
the values individually for each of the segmenta-
tions. All other decision variables were at their 
defaults: the shape factor had the value of 0.1 
and smoothness/compactness 0.5. The first refers 
to the weight given to the shape of the sub-area 
delineated versus that given to the digital value in 
the layer. Value 0.1 here means that the delinea-

Table 2. For all sub-areas made: the number of sub-
areas (DIV) in them, the name of the segmentation 
(SEG), and descriptive statistics of the number of 
trees in sub-areas (Observations).

Div Seg Observationsi

  Min Med Mean  Max

366 G*10 10 43 52 219
265 G*13 10 62 72 360
177 G*17 14 89 108 567
120 G*22 14 137 159 567
84 G*29 17 191 228 990
62 G*38 17 263 309 1156
35 G*50 17 404 548 2462
25 G*65 51 670 767 2462
17 G*87 189 817 1128 2886
6 G*103 299 1124 3196 12380
4 G*130 299 2357 4794 14160
     

150 Weight10 11 99 127 990
89 Weight14 11 191 215 990
54 Weight20 12 308 354 1626
24 Weight27 24 510 798 3797
9 Weight36 431 2336 2129 6008
5 Weight56 431 2453 3833 10900
     

140 Res10 11 110 136 552
73 Res14 20 191 262 2129
39 Res20 80 401 491 2218
22 Res27 80 535 870 3105
15 Res35 152 1393 1277 3105
10 Res47 719 1842 1915 3529
     

291 Res;G*10 10 52 65 253
192 Res;G*13 11 82 99 643
120 Res;G*18 11 135 159 643
78 Res;G*26 11 173 245 812
43 Res;G*35 11 319 445 1774
23 Res;G*48 72 673 833 2389
16 Res;G*60 162 662 1198 3328
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tion depended mainly on the digital value, which 
was appropriate for our purposes, since our homo-
geneity information was in the layer and we had 
no interest in limiting the shapes of the sub-areas. 
The second parameter was for the smoothness of 
the borderline versus compactness of the objects 
delineated. Its value of 0.5 was a compromise; we 
did not favour either of these two parameters.

We allowed the program to do its initial seg-
mentation of the study area without any limita-
tion, and then localized the model (Eq. 1) into the 
resulting sub-areas. We rejected sub-areas with 
less than ten observations from the localization 
since the regression function used had nine vari-
ables and a constant, so that with ten observations 
the original function had no degree of freedom 
at all. This elimination removed altogether 128 
sub-areas from a total of 2682 sub-areas from 14 
segmentations for a total of 30 segmentations. 
However, this limit could have been higher since 
30 or more observations are usually recommended 
for fitting regression. However setting the limit up 
to 30 would have raised the number of rejected 
sub-areas up to 472, or18% of all sub-areas. This 
is why we kept the limit to ten observations.

The re-fitting of the global form height model 
(Eq. 1) was carried out with the stepping function 
with the penalty criteria (stepAIC), which can 
step both backward and forward to the localized 
model in the process of the variable selection. 
This function is available in the statistical soft-
ware R (Venables and Ripley 2002). Each variable 
in a localized regression model had to reach the 
p = 0.05 level (statistically significant). The suc-
cess of the localization was measured by the root 
mean squared error (RMSE):

RMSE
df

bias2= = +=
∑ε

σ
i

i

n
2

1 2 7( )

where ε i is the residual of the global model (Eq. 4), 
and df is the degrees of freedom. The RMSE can 
be expressed also as a square root of the sum of 
the squared bias and variance, σ 2 (Eq. 7). This 
RMSE was calculated for both the situation before 
localization and after it in the sub-areas. The bias 
was zero for the localized functions since the model 
was fitted to the local data available. The bias is 
the mean (Eq. 8) of residuals (Eq. 4)

bias = =
∑εi
i

n

n
1 8( )

We made two comparisons with the localized 
model RMSEi,loc:
1) comparison with the global model RMSE 

(RMSEglo = 0.1027 dm3/cm2) (Eq. 9), and
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2) comparison with the global model RMSEi,glo in 
sub-area i (Eq. 10).
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where loc is the localized function and glo is the 
global function for a sub-area i. The first com-
parison above shows the changes in respect to the 
global level and the latter the actual change in that 
sub-area under localization in percentages.

One way to assess the success of localization 
is to look at which variables were included in 
the localized function (X-, and Y-coordinates, 
and distance from coastline, RDIST). If spatial 
variables were included in the localized func-
tion, the segmentation failed on the criterion of 
spatial homogeneity, i.e., the sub-area had spatial 
variation left.

Besides the segmentation algorithm, the suc-
cess of localization may also depend on the prop-
erties of the local data used for local fitting. The 
accuracy of the regression model depends in many 
ways on the design matrix X (see Draper and 
Smith 1981). Here we assume that the goodness 
of the data for model fitting into a sub-area can 
be measured by the balance of the data, the range, 
and variance of the variables in the sub-areas. By 
balance, we mean that the distribution of inde-
pendent variables (d, BA) is uniform (Table 1a). 
To test balance, we calculate Shannon’s entropy 
index:

H p pi i
i

= −∑ ln ( )11
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where p is the proportion of the number of trees 
in a particular category, e.g. diameter class or 
basal area class, to the total number of the trees 
in a sub-area. For the whole dataset Shannon’s 
entropy index is 1.96 for the diameter and 1.91 
for the basal area (Table 1b). The entropy for 
uniformly distributed data, which has exactly the 
same number of trees and is divided into as many 
classes as the present data, would be 2.56 and 
2.69 respectively. We compare entropy (Eq. 11) 
with the local RMSEs by calculating correlations 
between them.

To study the effect of balance further, we 
divided the sub-areas into classes according to 
the Gi

*-index values (Table 3). If Gi
* + σ < 0, the 

area was classified as negative. If Gi
* – σ > 0, the 

sub-area was classified as positive. The sub-areas 
fitting neither criterion were classified as neutral. 
We calculated correlations between the localized 
RMSEs of the class and the Shannon’s entropy 
index for the diameter and properties of the vari-
ables in the sub-area.

To compare different segmentations across the 
whole area, we calculated an aggregate estimate 
of the standard error for the area as a weighted 
sum of squared RMSEs for all points within the 
area, i.e., mean squared errors (MSEs), seaggr:

se MSEaggr =
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=∑
∑1 12
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1n
n

i
i

m i i
i

m
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where m is the number of sub-areas in a seg-
mentation and ni is the number of observations 
in sub-area i.

4 Results
For the localized models the RMSEs had a median 
and mean 3–4% lower than the global RMSE of 
0.1027 dm3/cm2 (Eq. 1) (Table 4). The minimum 
RMSEs were 39–42% of global model values 
whereas the maximum RMSE was one and a 
half times the global model value (ΔRMSE). The 
minimum, mean and median RMSEs all increased 
when the number of sub-areas decreased. For the 
maximum RMSEs, the effect was the reverse, the 
RMSE decreasing as the number of sub-areas 
decreased. The localized RMSEs (ΔRMSEi) were 
also 3–4% lower (mean and median) than the 
RMSE before localization in the sub-areas, but the 
variation in these values was 9.4% (–8.5 to 0.9%) 
when the range for the ΔRMSE was 14.7% (–10.9 
to 3.8%). In other words, in small sub-areas both 
the greatest benefits and the drawbacks of locali-
zation are the most probable.

Attaining spatial homogeneity in sub-areas was 
one target. The percentage of localized functions 
without spatial variables in the sub-areas varied 
from 0 to 75. At first, the percentage increased as 
the number of sub-areas increased, rising above 
50% after 40 sub-areas and reaching its maximum 
of 60%, between 100 and 200 sub-areas. Finally, 
the percentage lacking spatial variables saturated at 
the level of 55% (Fig. 2a). The number of variables 
in a localized function decreased as the number 
of sub-areas increased (Fig. 2b), but the change 
was slight. The localized function had three vari-
ables after 50 sub-areas and two variables after 90 
sub-areas. The number of spatial variables in all 
localized functions dropped from a maximum of 
three to zero after 50 sub-areas (Fig. 2c). We have 
studied here the median values for the variables 
and thus there may be some localized functions at 
any number of sub-areas which have some spatial 
variables left (Fig. 2d). Therefore it is not possible 
to create fully homogenous sub-areas with the data 
layers and segmentation criteria used.

Our hypothesis was that the uniformity of the 
distribution of variables (balance) has an impact 
on the localization and, as a measure of this bal-
ance, we calculated Shannon’s entropy index for 
diameter and basal area distributions in the sub-
areas. For these two indices and for the ranges 
and variances of the diameter and basal area, 
we calculated the correlations to the localized 

Table 3. The classification of the sub-areas into three 
classes: negative, neutral, and positive, according 
to the signs of the mean of Gi

*-index (Mean) and 
its standard deviation (SD) in the sub-area.

Class Mean Mean-SD Mean+SD

Negative – – –
Positive + + +
Neutral – – +
Neutral + – +
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model RMSEi,loc in sub-areas (Table 5a). For 
the diameter, both Shannon’s entropy index and 
the variance had from medium to large positive 
correlation with RMSEi,loc, i.e., the variance and 
the entropy index were large for large RMSEs. 
One would expect that both correlations would 
be negative.

In the all three classes of sub-area classifica-
tion (Table 3), the entropy index showed medium 
strength positive correlation with localized 
RMSEi,loc (Table 5b). The evenness in distribution 
of the diameters has therefore no positive impact 
on the localization result in the studied case. Two 

correlations were large and positive: that of the 
localized RMSEi,loc with global RMSEi,glo and 
that of the change in localization ΔRMSEi (Eq. 
9). If we look at the localized models and their 
variables with this same classification into posi-
tive, negative or neutral, we can see differences 
between the models (Table 6). In neutral sub-
areas, where the mean Gi

*-index did not differ 
significantly from zero, the localized models had 
more variables in general and the occurrence 
percentages for all variables in the models were 
higher (except for YC2) than for the models in 
the two other classes. The largest differences 

Table 4. The ratio (in percent) of localization RMSE to the global model RMSE and to the global model RMSE 
in the same sub-area.

Seg RMSE ΔRMSE/[%] ΔRMSEi/[%]

 Min Med Mean  Max Min Med Mean  Max Min Med Mean  Max

Res10 0.0308 0.0996 0.0997 0.1712 –70 –3.0 –3.0 67 –74 –3.6 –3.3 97
Res14 0.0569 0.1008 0.1008 0.1366 –45 –1.8 –1.8 33 –34 –3.3 –4.4 13
Res20 0.0730 0.0992 0.0994 0.1260 –29 –3.4 –3.3 23 –17 –2.9 –3.4 10
Res27 0.0789 0.0954 0.0968 0.1139 –23 –7.1 –5.8 11 –17 –2.7 –4.4 10
Res35 0.0822 0.0952 0.0979 0.1139 –20 –7.3 –4.7 11 –17 –1.7 –4.2 0
Res47 0.0837 0.0988 0.0990 0.1139 –19 –3.8 –3.6 11 –5 –1.6 –1.8 0

G*10 0.0141 0.0915 0.0942 0.2563 –86 –10.9 –8.3 150 –89 –7.3 –7.7 201
G*13 0.0176 0.0953 0.0964 0.2504 –83 –7.2 –6.1 144 –77 –5.6 –5.4 201
G*17 0.0598 0.0975 0.0998 0.2504 –42 –5.1 –2.8 144 –53 –4.2 –3.6 96
G*22 0.0617 0.0990 0.1011 0.2504 –40 –3.6 –1.5 144 –53 –3.0 –2.1 96
G*29 0.0626 0.0987 0.0999 0.1533 –39 –3.9 –2.7 49 –53 –3.0 –2.2 96
G*38 0.0626 0.0982 0.1003 0.1533 –39 –4.4 –2.3 49 –53 –3.2 –1.8 96
G*50 0.0790 0.0992 0.1013 0.1533 –23 –3.4 –1.4 49 –30 –2.0 0.9 96
G*65 0.0790 0.0986 0.0988 0.1237 –23 –4.0 –3.8 20 –14 –2.6 –1.8 12
G*87 0.0794 0.1013 0.1004 0.1237 –23 –1.4 –2.2 20 –14 –1.8 –1.7 12
G*103 0.0794 0.1002 0.0942 0.1032 –23 –2.5 –8.3 0 –14 –3.3 –5.6 0
G*130 0.0794 0.1002 0.0954 0.1020 –23 –2.5 –7.1 –1 –14 –6.0 –6.7 0

Res;G*10 0.0057 0.0937 0.0937 0.2359 –94 –8.8 –8.8 130 –95 –7.9 –8.5 64
Res;G*13 0.0463 0.0980 0.0994 0.2359 –55 –4.6 –3.2 130 –58 –4.1 –4.2 55
Res;G*18 0.0523 0.1020 0.1006 0.1483 –49 –0.7 –2.0 44 –48 –1.9 –2.6 54
Res;G*26 0.0523 0.0986 0.0981 0.1435 –49 –3.9 –4.4 40 –48 –3.0 –4.4 18
Res;G*35 0.0523 0.0983 0.1000 0.1435 –49 –4.3 –2.7 40 –28 –2.1 –2.3 12
Res;G*48 0.0797 0.1010 0.1030 0.1435 –22 –1.6 0.3 40 –14 –1.2 –0.3 12
Res;G*60 0.0797 0.0990 0.1007 0.1236 –22 –3.6 –2.0 20 –14 –1.7 –0.1 12

Weight10 0.0232 0.0966 0.0963 0.1516 –77 –6.0 –6.3 48 –76 –4.8 –7.3 22
Weight14 0.0232 0.0969 0.0968 0.1357 –77 –5.7 –5.7 32 –76 –3.7 –6.6 22
Weight20 0.0232 0.0990 0.0982 0.1327 –77 –3.6 –4.4 29 –76 –3.2 –6.1 11
Weight27 0.0595 0.0981 0.0977 0.1310 –42 –4.4 –4.9 28 –56 –2.5 –5.1 4
Weight36 0.0905 0.1031 0.1034 0.1163 –12 0.4 0.7 13 –6 –1.9 –1.8 2
Weight56 0.0952 0.1066 0.1062 0.1163 –7 3.8 3.4 13 –2 –1.1 –1.3 –1
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Fig. 2. The relationship between a) percentages of localized functions which have no spatial variables, b) number 
of variables in localized function, c) number of spatial variables in all localized functions, and d) number of 
spatial variables in those localized functions versus number of sub-areas in segmentations. The line in both 
figures is the locally fitted trend line.

were in the occurrences of the basal area (BA) 
and diameter (d and d 2) variables, which were 
considerably higher for neutral sub-areas than 
in the two other classes, i.e., in neutral sub-areas 
the differences in form height were explained by 
tree and stand variables more often than in posi-
tive or negative sub-areas. In other words, there 
was more heterogeneity in form height in neutral 
classes than in the other two classes. This is a 
logical result since a sub-area belonging to the 

neutral class can be by definition either a cluster 
of near zero values or mixture of miscellaneous 
Gi

*-indices having their mean near zero.
Evaluating the segmentations could be done 

via aggregate standard errors. The minimum was 
seaggr = 0.0967 dm3/cm2 when the residual layer 
was segmented using the scale parameter value 
14 (Res14) (Table 7); i.e., the residual layer was 
split into 73 sub-areas. There were altogether 
14 segmentations that had a seaggr below the 0.1 
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Table 5a. Correlations between RMSE of localized func-
tion and following six measures: Shannon’s entropy 
index (H) for diameter (d) and basal area (BA), 
ranges (Range) and variances (Var) of diameter 
and basal area in the sub-areas.

Seg H Range Var

 d BA d BA d BA

Res10 0.38 0.38 0.31 0.19 0.26 0.03
Res14 0.43 0.19 0.18 0.22 0.40 0.12
Res20 0.65 0.32 0.33 0.22 0.59 0.05
Res27 0.64 0.51 0.45 0.36 0.58 –0.04
Res35 0.73 0.44 0.42 0.46 0.69 0.00
Res47 0.90 0.67 0.44 0.62 0.90 –0.09

G*10 0.31 0.19 0.15 0.14 0.17 0.12
G*13 0.40 0.11 0.18 0.17 0.25 0.14
G*17 0.40 0.05 0.15 0.06 0.33 0.06
G*22 0.35 –0.07 0.05 0.02 0.28 0.03
G*29 0.39 0.07 0.16 0.18 0.31 –0.10
G*38 0.31 0.10 0.12 0.19 0.16 –0.12
G*50 0.29 –0.23 –0.11 –0.04 0.30 –0.18
G*65 0.76 0.36 0.22 0.35 0.67 0.02
G*87 0.70 0.52 0.14 0.37 0.59 0.14
G*103 0.78 0.62 0.46 0.74 0.64 0.06
G*130 0.73 0.53 0.70 0.97 0.66 –0.12

Res;G*10 0.42 0.19 0.20 0.18 0.14 0.04
Res;G*13 0.35 0.16 0.15 0.12 0.19 0.09
Res;G*18 0.55 0.30 0.33 0.16 0.37 0.00
Res;G*26 0.54 0.38 0.35 0.39 0.33 0.04
Res;G*35 0.66 0.33 0.30 0.22 0.62 –0.09
Res;G*48 0.72 0.44 0.10 –0.10 0.70 –0.34
Res;G*60 0.78 0.47 0.18 0.17 0.73 –0.26

Weight10 0.59 0.34 0.47 0.31 0.36 0.06
Weight14 0.71 0.46 0.62 0.40 0.46 0.02
Weight20 0.68 0.36 0.51 0.48 0.44 –0.21
Weight27 0.50 0.41 0.25 0.72 0.13 0.12
Weight36 0.85 0.31 0.28 –0.14 0.87 –0.50
Weight56 0.87 –0.32 –0.27 –0.48 0.87 –0.05

Table 5b. Sub-areas were classified into three classes: 
negative, neutral, and positive according to the Gi*. 
Here is the number and total area they represent 
reported. In the second half of the table are correla-
tions (Cor) between RMSE of localized function 
(RMSEi,loc), and Shannon’s index for diameter 
(H(d)), situation before localization (RMSEi,glo), 
and change in RMSE in the localization (ΔRMSEi) 
for the classes.

Area Number Area Cor H(d) RMSEi,glo ΔRMSEi
class  [km2]

Negative 997 1662 RMSEi,loc 0.28 0.42 0.71
Neutral 574 4752  0.59 0.70 0.58
Positive 983 1538  0.48 0.58 0.73

Table 6. Variables in the regression models after localization when the data is divided into three classes: negative, 
neutral and positive, according to the Gi

*-index values and deviation in the sub-areas. The number in the 
Table is the percentage of the localized models where the variable occurs.

Gi
* d d2 BA XC YC XC2 YC2 XCYC RDIST

Negative 90.9 34.0 40.0 28.4 29.7 13.9 14.6 11.2 4.9
Neutral 96.7 58.4 59.8 32.6 32.8 16.9 12.4 16.9 10.8
Positive 91.9 40.9 47.5 24.7 26.6 12.5 13.7 9.6 3.5
All 92.6 42.6 47.3 27.9 29.2 14.1 13.8 11.5 5.7

d = Diameter at breast height YC = Y-coordinate
BA = Total basal area RDIST = Euclidian distance from coastline
XC = X-coordinate

dm3/cm2 level. All four layers based on residual 
and/or Gi

*-index alone or together were present 
in that group and segmentations had from nine to 
265 sub-areas. Four residual layer segmentations 
are among five with the highest aggregated errors, 
however. The maximum seaggr, 0.1031 dm3/cm2, 
was reached with a residual layer split into 22 
sub-areas by scale parameter value 27 (RES27). 
Among the ten highest aggregate errors for seg-
mentations, there were segmentations from all 
four layers having from six to 62 sub-areas.

5 Discussion

We have segmented the study area for smaller 
localization sub-areas by different methods. By 
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changing the variable layers on which the seg-
mentation was based and (by changing region 
merging criteria) the number of the sub-areas, we 
ended up having 30 different segmentations for 
the study area with 4 to 366 sub-areas (Table 2). 
As in earlier research (Räty and Kangas 2008), 
the Gi

*-index turned out to be more efficient as 
the area divider than the residuals of the global 
model. The changes in RMSEs for the Gi

*-index 
segmentations were larger, i.e., the localized 
RMSEs were smaller (Table 4), as were the 
aggregate standard errors in general (Table 7). 
This implies that a variable, in this case the local 
Gi

*-index, which averages the residuals over a 
larger neighbourhood, reveals the trends hidden 
in the residuals.

A known deficiency of LISAs is that they 
cannot identify clusters of variable values near 
zero or mean value of the variables over the 
entire layer (Tiefelsdorf and Boots 1997). In this 
study the mean is zero for residuals since the 
fitted regression model has no bias. For localiza-
tion area delineation, this is not a good feature 
because an index value near zero can mean either 
a homogenous or heterogeneous surrounding. The 
classification of sub-areas according to Gi

*-index 
into three classes, negative, neutral, and posi-
tive (Table 3), showed differences in the RMSEs 
and the changes in RMSEs in the localization 
(Table 5b). The “neutral” indices are those with 
values around 0, which might be expected to 
illustrate the difficulties of LISAs. Firstly, there 
were about twice as many both negative and 
positive sub-areas as neutral ones, and the neu-
tral sub-areas were three times larger than the 
others in all segmentations (Fig. 3). This is partly 
due to the number of sub-areas in the segmenta-
tions. When the number decreased, the sub-areas 
became larger, lost homogeneity and were clas-
sified as neutral. There will thus be segmenta-
tions where all sub-areas area classified as neutral 
(Weight36, Weight56, RES47), or where one of 
the three classes is missing (G*103, G*130) or 
is small in size compared to the others (RES35) 
(Fig. 4). If these sub-areas are excluded from the 
calculations, the mean area for neutral sub-areas 
drops to less than twice that of the others.

Secondly, looking at the sub-areas with a 

Table 7. The aggregate standard errors for the segmen-
tations.

Seg Div seaggr

Res10 140 0.1002
Res14 73 0.0967
Res20 39 0.0988
Res27 22 0.1029
Res35 15 0.1023
Res47 10 0.1025
G*10 366 0.1009
G*13 265 0.0998
G*17 177 0.0983
G*22 120 0.1016
G*29 84 0.0986
G*38 62 0.0991
G*50 35 0.0986
G*65 25 0.0994
G*87 17 0.0983
G*103 6 0.1006
G*130 4 0.1010
Res;G*10 291 0.1014
Res;G*13 192 0.1025
Res;G*18 120 0.1016
Res;G*26 78 0.0997
Res;G*35 43 0.1018
Res;G*48 23 0.1019
Res;G*60 16 0.0981
Weight10 150 0.1004
Weight14 89 0.0988
Weight20 54 0.1004
Weight27 24 0.0997
Weight36 9 0.0998
Weight56 5 0.1018

Table 8. The RMSEs for segmentations with recursive 
partitioning, CART (Räty and Kangas 2008).

CART Div RMSEi seaggr

 Min Med Mean Max

4 127 0.0652 0.1014 0.0995 0.1414 0.0992
5 50 0.0775 0.102 0.1006 0.1292 0.0980
4P1 38 0.0775 0.1001 0.0994 0.1227 0.0997
5P1 24 0.0775 0.0987 0.0977 0.1227 0.1024
3 23 0.0541 0.0997 0.0983 0.1503 0.0980
5P2 20 0.0778 0.1001 0.0995 0.1227 0.1012
2 16 0.0562 0.0988 0.1017 0.1275 0.0974
4P2 15 0.0786 0.0985 0.0992 0.1145 0.1019
5P3 12 0.0786 0.0995 0.1001 0.1128 0.1017
1 11 0.0936 0.1074 0.1049 0.1270 0.0989
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Gi
*-index near zero reveals that the correlations 

between the values for Shannon’s entropy index 
performed on tree diameter as an underlying vari-
able and the localized RMSEi,loc, and between 
localized RMSEi,loc and original RMSEi,glo are 
higher in sub-areas classifi ed as either positive 
or negative Gi

*-index (Table 5b), than for the 
sub-areas in the neutral group. The fi rst correla-
tion suggests that the balance in data (i.e., even 
distribution of diameters) does not lead to lower 
RMSEs in the models localized to sub-areas. 
The second implies that the localized RMSEi,loc 
is similar to the original global RMSEi,glo in that 

an area with an originally high RMSE stays high 
in respect to the other localized RMSEs, whereas 
an originally low RMSE is low in respect to the 
other localized RMSEs. This is a logical result; 
the Gi

*-index near zero by defi nition means that 
there is nothing that could be fi xed by re-fi tting 
the model containing exactly the same variables 
as the original one. The correlation between the 
Shannon’s entropy index and the number of dis-
tribution classes in the local data was large and 
positive. The disadvantage of Shannon’s entropy 
index is that the natural logarithm of zero is unde-
fi ned and therefore the index cannot be defi ned 

Fig. 4. Two sub-areas, RES;G*60 (16 sub-areas, left) and G*87 (17 sub-areas, right), drawn over map. 
The sub-areas are classifi ed according to Gi

*-index in negative, neutral, and positive classes.

Fig. 3. The proportion of positive (dash line) and negative (solid line) sub-areas mean areas to neutral 
ones as percentages.
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for empty distribution classes and we had to 
omit the empty classes from the calculations. 
The original data here had 13 diameter classes 
(Table 1b), but for the single sub-areas there were 
from 4 to 12 classes; i.e., none of the sub-areas 
had objects in all available classes. All Shan-
non’s entropy indices would have been undefined 
had they been calculated without our constraint. 
Therefore Shannon’s entropy index is not appro-
priate to measure balance; the actual number of 
classes used in the calculations should somehow 
be included in the index. 

Thirdly, the RMSEs alone do not necessar-
ily show the relative importance of the various 
variables in the data is following the localization. 
Earlier in this study we draw percentages of the 
models which have no spatial variables and the 
length of the localized models (Fig. 2a, b). Tree 
and stand variables were included more often 
than spatial variables in the localized models. 
The closer look at the variables in the localized 
models (Table 6) showed that the heterogeneity 
in form height in the neutral sub-areas was larger 
than in positive or negative sub-areas. When the 
segmentations with mainly neutral sub-areas were 
removed, the remaining neutral class became 
similar to the other two classes with respect to 
form height.

Wulder and Boots (1998) suggested that Getis 
statistics could be used for image segmentation. 
Mallinis et al. (2008) used LISA measures and 
classification and regression trees (CART) in the 
classification phase after the initial segmentation 
with eCognition. We have tested these methods 
separately (Räty and Kangas 2008) (Tables 4, 
7, 8). With fewer than 30 sub-areas, the RMSEs 
were at the same level for both methods, but 
where more than 30 sub-areas were produced; 
the maximum RMSEs of CART tended to be 
higher than those for segmentations of the same 
size arrived at in the current research. At the same 
time, the minimum and median RMSEs for the 
current research’s sub-area were lower than for 
the CART-sub-area. On the other hand, there 
was no difference between methods in the aggre-
gate standard errors, where the methods were 
equivalent. In comparison to CART, sub-areas 
created by our current division procedure are 
more variable in shape and size. For an example, 
see Fig. 4, which compares the sub-areas created 

by the current research’s method, using different 
input layers, but with the same number of sub-
areas in each).

In three of the four segmentations the layer 
is interpolated from a point data of the local 
indicators which are calculated from a 20-km 
neighbourhood. One data point in a dataset actu-
ally represents properties of its surroundings and 
the indicators next to each other are correlated if 
their neighbourhoods overlap. We use the indi-
cator only for segmentation purposes to show 
the changes in the values in the layer and do 
not use them in any calculations. Therefore the 
above mentioned two properties are not crucial 
for the work, however their existence is good to 
realize. The indicators were calculated only for 
the variable of interest, i.e. the form height of a 
tree or actually for the residuals of the globally 
fitted form height model, since we wanted to find 
homogeneous sub-areas for it. The other variables 
related to the model are not taken into account in 
any steps of the segmentation. Their values and 
properties are used for the model localization 
and studied afterwards. The method is not meant 
to be able to form unchangeable sub-areas over 
time. The sub-areas segmented are unarguably 
valid only for this data, variable, and model. 
However, as the differences between CART and 
the current study were quite small, most prob-
ably the same sub-areas are applicable for many 
different tree-level variables. The method, on the 
contrary, is adoptable for other datasets, variables, 
and models. It would also be possible to use a 
weighted combination of RMSEs of several dif-
ferent models as a reference point, and consider 
several models at the same time. 

To conclude, our purpose was to use the eCog-
nition Professional 4.0 software to segment our 
study area using various inputs and segmentation 
parameters, and to document and analyze the 
effects of this segmentation on the localized form 
height regression models. The minimum local 
RMSEs are, after all, promisingly low, implying 
that the method did identify uniform sub-areas. 
The maximum local RMSEs are high, however. 
The methods for improving the estimates are a 
subject for future study. This could be as simple 
as, for example, adding variables already avail-
able in the inventory data (e.g., site index, site 
fertility, and temperature sum), or digital terrain 
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models to the segmentation method and/or the 
regression model. Judging the segmentations we 
found that a segmentation containing a layer of 
Gi

*-index had a lower aggregate standard error 
that the segmentation based only on the residu-
als. When we classified the sub-areas into three 
classes according to the mean Gi

*-index value and 
its variance in the sub-area, we discovered that 
those sub-areas whose mean Gi

*-index differed 
from zero i.e. which were classified as either 
positive or negative, differed from neutral ones, 
whose mean Gi

*-index were near zero. Since 
neutral sub-areas were more heterogeneous than 
the negative and positive sub-areas, a possible 
application could be to use the method presented 
in this paper to delineate positive and negative 
sub-areas and then to localize the models only to 
these sub-areas. 
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