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Intensity Normalization, and Sensor Type 

Ilkka Korpela, Hans Ole Ørka, Matti Maltamo, Timo Tokola and Juha Hyyppä

Korpela, I., Ørka, H.O., Maltamo, M., Tokola, T. & Hyyppä, J. 2010. Tree species classification using airborne 
LiDAR – effects of stand and tree parameters, downsizing of training set, intensity normalization, and 
sensor type. Silva Fennica 44(2): 319–339.

Tree species identification constitutes a bottleneck in remote sensing-based forest inventory. In passive 
images the differentiating features overlap and bidirectional reflectance hampers analysis. Airborne 
LiDAR provides radiometric and geometric information. We examined the single-trees-level response 
of two LiDAR sensors in over 13 000 forest trees in southern Finland. We focused on the commercially 
important species. Our aims were to 1) explore the relevant LiDAR features and study their dependen-
cies on stand and tree variables, 2) examine two sensors and their fusion, 3) quantify the gain from 
intensity normalizations, 4) examine the importance of the size of the training set, and 5) determine 
the effects of stand age and site fertility. A set of 570 semiurban broad-leaved trees and exotic conifers 
was analyzed to 6) examine the LiDAR signal in the economically less important species. An accuracy 
of 88−90% was achieved in the classification of Scots pine, Norway spruce, and birch, using intensity 
variables. Spruce and birch showed the highest levels of confusion. Downsizing the training set from 
30% to 2.5% of all trees had only a marginal effect on the performance of classifiers. The intensity 
features were dependent on the absolute and relative sizes of trees, especially for birch. The results 
suggest that leaf size, orientation, and foliage density affect the intensity, which is thus not affected 
by reflectance only. Some of the ecologically important species in Finland may be separable, since 
they gave rise to high intensity values. Comparison of the sensors implies that performance of the 
intensity data for species classification varies between sensors for reasons that remained uncertain. 
Both range and gain receiver normalization improved species classification. Weighting of the intensity 
values improved the fusion of two LiDAR datasets. 
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1 Introduction
The conventional way of measuring trees is giving 
way to applications that combine in situ obser-
vations and remote-sensing (RS) data. In this 
process, the introduction of airborne LiDAR was 
a breakthrough (Næsset 2002). LiDAR permits 
accurate three-dimensional (3D) probing of the 
vegetation and terrain, which cannot be done reli-
ably in passive RS data. Prior to the LiDAR era, 
3D methods were never used in practice, while 
method development in imagematching-based 
reconstruction of canopy surface and crowns 
was actively pursued (Korpela 2000, Miller et 
al. 2000, Gong et al. 2002). Since 2002, LiDAR 
has been used in Scandinavia by private com-
panies, not only for area-based forest inventory 
but also for single-tree remote sensing (STRS). 
Trees constitute distinct targets; however, STRS 
requires high sampling densities and individual 
crowns are not always detectable in LiDAR or 
images (Persson et al. 2002, Korpela 2004). In 
area-based RS, the forest is described by LiDAR 
point-cloud features that characterize the structure 
and density of the canopy and the species admix-
ture (Næsset 2002). An in situ training set is used 
for the estimation of imputation models. If tree 
positions are not needed, the area-based technique 
may well be more cost-efficient than STRS. The 
techniques can be combined in a hybrid forest 
inventory system. 

Tree species information is crucial for eco-
nomic, ecological, and technical reasons. Errors 
made in tree species identification can result in 
prominent bias in the estimates of stem biomass 
and dimensions, because the allometric depend-
encies are species-specific (Korpela and Tokola 
2006). Species inaccuracy in the inventory data 
may lead to nonoptimal management decisions 
(Holopainen and Talvitie 2006). STRS research 
suggests that discrete-return (DR) LiDAR data 
can potentially be used for tree species discrimi-
nation. Species recognition in 1−4-return data was 
examined by Brandtberg et al. (2003), Holmgren 
and Persson (2004), Brandtberg (2007), Ørka et 
al. (2007, 2009), and Kim et al. (2009). Flying 
altitudes of 100−1200 m and footprint diameters 
of 10−37 cm were reported. Both geometric and 
noncorrected intensity features were applied. 
Holmgren and Persson (2004) extracted LiDAR 

points within a crown and computed 20 features. 
They achieved an accuracy of 95% in separating 
562 samples of two conifers, Scots pine (Pinus 
sylvestris L.) and Norway spruce (Picea abies (L.) 
H. Karst.) in Sweden. Crown base height (CBH), 
variation in intensity, and the mean intensity of 
returns near the estimated crown surface were the 
strongest features. The LiDAR system (TopEye) 
had a built-in range correction of the intensity 
data. Brandtberg (2007) provided an elaborate 
discussion of the LiDAR-crown interactions. He 
obtained an accuracy of 64% in the classification 
of three broad-leaved species of West Virginia, 
using height (h) and intensity distribution met-
rics. Ørka et al. (2007) examined species identi-
fication in southern Norway for 224 samples of 
birch (Betula L. spp.), European aspen (Populus 
tremula L.), and Norway spruce. The LiDAR 
data were divided into echo types: first, only, and 
last. The mean and standard deviation (SD) of 
intensity were computed for these echo catego-
ries. The classification accuracy was 60−74%, 
depending on the number of variables. Coniferous 
and deciduous trees differ in near-infrared (NIR) 
reflectance in optical data, but the differences in 
LiDAR intensity (λ = 1064 nm) were marginal. 
Ørka et al. (2009) examined 412 spruce and birch 
trees of all relative size classes in an unmanaged 
forest. The distribution moments and percentiles 
of the raw intensity (Iraw) and the point-height 
distribution were extracted for each crown. Tree 
height influenced the LiDAR features, of which 
52 were explained by species in analysis of cov-
ariance (ANCOVA). The classification accuracy 
was 64% for the nondominant trees and 88% 
for the dominant trees. The features varied with 
the echo type and tree height. Combination of 
optical data with LiDAR improved the species 
classification results of single trees in Persson et 
al. (2004), Heinzel et al. (2008), and Holmgren et 
al. (2008). In Holmgren et al. (2008), accuracies 
of 84−96% were achieved in the classification of 
1711 mature pine, spruce, and deciduous trees 
in 14 plots. The accuracy varied for different 
combinations of image and LiDAR variables. The 
LiDAR data were acquired from a flying altitude 
of 130 m (50 pulses per m2) and the DMC aerial 
images from 1200 m (60-cm red-green-blue-NIR 
(RGBNIR) pixels), which are extremely costly 
for practical applications. Korpela et al. (2008) 
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examined airborne LiDAR and 1-km RGBNIR 
data in species classification in seedling stands. 
Range-normalized intensity aided in the detection 
of the competing vegetation, but the accuracy in 
the classification of seedlings, competing veg-
etation, and abiotic material was only 60−80%. 
Large-leaved shrubs and trees showed the highest 
intensity. Under mire-type conditions Korpela et 
al. (2009) classified 10 × 10-m plots according to 
the dominant species, using area-based LiDAR 
features. The height distribution features, which 
characterized the habitats, surpassed the range-
normalized intensity metrics in explanatory power 
of the species admixture. 

Full-waveform (FW) LiDAR data were exam-
ined in Reitberger et al. (2006, 2008) and Höfle et 
al. (2008). Waveform data give detailed descrip-
tion of the backscattered pulse. An increase in 
point density is achieved by waveform decompo-
sition (Wagner et al. 2006). This is advantageous 
for tree detection and additional structural details 
are available for species determination (Reitberger 
et al. 2008). Echo width and amplitude were used 
to characterize tree species. Amplitude is believed 
to correspond to intensity in DR sensors. Höfle et 
al. (2008) used calibrated FW data for discrimi-
nation of European larch (Larix decidua Mill.), 
English oak (Quercus robur L.), durmast oak 
(Q. petraea (Matt.) Liebl.), and European beech 
(Fagus sylvatica L.). Echo width separated larch 
from the broad-leaved trees, but oak and beech 
showed similar responses in backscatter cross-
section and echo width. 

The illuminated area, bidirectional reflectance 
distribution function (BRDF) of the illuminated 
targets, and incidence angles, i.e. the target geom-
etry, are the main factors affecting intensity (Höfle 
et al. 2008). In addition, the variation in laser 
power (mainly due to changes in the pulse repeti-
tion frequency at different flying altitudes) and 
the receiver settings affect the intensity observed 
as does atmospheric attenuation and the scanning 
range (Ahokas et al. 2006, Kaasalainen et al. 
2007). This implies that the retrieval of canopy 
reflectance must be ill-posed, even in calibrated 
data (targets larger than the footprint), and that 
the radiometric LiDAR features will exhibit sub-
stantial tree-level variation, due to differences in 
the illuminated area (foliage density), reflectance 
(of illuminated scatterers), and the geometry of 

the scatterers (leaf orientation). This implies that 
species determination in LiDAR needs to be based 
on the analysis of distribution characteristics that 
are derived from a multitude of pulses. 

Scots pine, Norway spruce, downy birch 
(Betula pubescens Ehrh.), and European white 
birch (Betula pendula Roth) constitute 96.5% 
of the stem volume in Finland (Tomppo et al. 
2001). However, in image-based species iden-
tification, separation between pine, spruce, and 
birch has proven difficult, due to the overlapping 
spectral features (Haara and Haarala 2002). Shad-
ing, occlusion, bidirectional reflectance, and the 
varying phenology of trees cause signal variation 
(Korpela 2004, Korpela et al. 2008, Packalen and 
Maltamo 2007). The branching patterns of crowns 
are utilized in structure-based classification, but 
this leads to high data costs, since very-high reso-
lution near-nadir data are required (Brandtberg 
1999). Korpela (2004) used 3D treetop position-
ing followed by image-based crown modeling, 
leading to the sampling of spectral values in 
several views. The features characterizing self-
shading enhanced the spectral classification accu-
racy of pine, spruce, and birch to 85%. In view of 
the difficulties and limitations inherent in passive 
optical data, LiDAR offers an alternative data 
source for tree species classification. However, 
many aspects of LiDAR-based species classi-
fication remain unexplored, mainly due to the 
lack of large experiments with variation in forest 
parameters. Empirical studies are needed, even 
though LiDAR simulators are being developed 
for the task (Morsdorf et al. 2007). We used an 
extensive dataset consisting of 13 890 trees in 118 
plots and two LiDAR campaigns to investigate 1) 
the important LiDAR features used for the sepa-
ration of the three main tree species in Finland, 
2) the performance of two sensors, the Leica 
ALS50-II (Leica Geosystems AG, Heerbrugg, 
Switzerland) and the Optech ALTM3100 (Optech 
Inc., Vaughan, Ontario, Canada) and sensor fusion 
3) range- and receiver gain normalization of inten-
sity in these sensors, 4) importance of the size of 
the training set, 5) possible effects of age and site 
fertility in the LiDAR signal and classification 
results, and 6) the ability of LiDAR to separate 
ecologically important, rare tree species.

We confined our study to single-tree species 
identification of individual crowns representing 
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dominant, codominant, and intermediate trees that 
are visible to the sensor.

2 Material and Methods

2.1 Study Area and LiDAR Data

The experiments were carried out near the 
Hyytiälä forest station in southern Finland 
(61°50´N, 24°20´E). The rotation periods are 
typically 80−130 yr and trees on mineral soils 
attain levels of h of 21−33 m, depending on 
site fertility. Scots pine and Norway spruce pre-
dominate and form both mixed and pure stands. 
The birch stands are younger than 40 yr, due to 
previous periods of conifer-favoring silviculture. 
Isolated birches are found in coniferous stands. 
Mineral soils with gentle slopes prevail and the 
elevation is 135−198 m above sea level (a.s.l.). 
Lakes, open mires, spruce mires, and pine bogs 
cover the basins. The mires are largely drained 
and the state-owned forests are managed for com-
mercial forestry. The study area extends 2 × 6 km 
and encompasses a large number of permanent 
forest plots both in managed and pristine forests, 
mineral and peat soils, and pristine and drained 
mires. Aerial images from 1946 to 2009 were 
available, as were the results of four LiDAR 
campaigns after 2004. We used LiDAR data from 
2006 and 2007 (Table 1). Both campaigns had an 
average pulse density of 6−8 per m2 and a 1064 
nm wavelength The LiDAR data were stored 
in 207-byte binary records that contained the 
full-pulse geometry, including the position and 
attitude of the LiDAR for accurate range calcula-
tions. The ALTM3100 postprocessing software 
supported this feature (comprehensive format), 
but the ALS50 data required additional post-
processing to include the trajectory data. 

The raw intensity (IRaw) observations in both 
LiDAR datasets were normalized for the range 
R, using a reference (average) range, RRef 
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The R- and AGC-normalized intensity values 
of the ALS50 were normalized to match the 
ALTM3100 data for data fusion by a simple 
multiplication

I IFus Ran= ⋅0 5578 3. ( )

The targets, including gravel, asphalt, an oat field, 
grass, ground lichens, and shrubs, were used for 
finding the parameters in Eqs. 1−3 (Korpela 2008). 
We had IRaw and IRan data for the ALTM3100 and 
IRaw and R and AGC-normalized IRan data for the 
ALS50 sensor. For the combined sensor consist-
ing of ALTM3100 and ALS50 data, there were 
IRaw, IRan, and IFus intensity variables. 

2.2 Reference Trees

Over 15 000 reference trees in 117 plots were 
measured during 2002−2008 in Hyytiälä. Prior 
to 2006, a tacheometer was used for the position-
ing of trees. In 2006−2008, a photogrammetric-
geodetic procedure was applied (Korpela et al. 
2007). In it, treetops are first positioned, using 
ray-intersection in multiple aerial images or by 
a monoplotting procedure that employs images 

Table 1. Characteristics of the LiDAR datasets.

Instrument ALTM3100 ALS50-II
Date July 25, 2006 July 4, 2007
Pulse frequency 100 kHz 115.8 kHz
Scanning frequency 70 Hz 52 Hz
Footprint 25−28 cm 17−18 cm
Flying altitudes, 

nominal
1000 m a.s.l. 930 m a.s.l.

Scanning angle ± 14° ± 15°
Air humidity, 2 m 48−52% 60−75%
AGC (Automatic 

Gain Control)
- 8 bits
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and LiDAR (Fig. 1). These trees serve the role 
of fi eld control points for the positioning of other 
targets, using trilateration and/or triangulation. 
Trees in stands with h values below 6−8 m were 
mapped, using kinematic or Network RTK satel-

lite positioning (Wanninger 2005). All trees were 
recorded for species, diameter-at-breast height 
(DBH) and crown status, and 30−100% of the 
trees per plot were measured for CBH and h. 
The plots were fi xed in size, circular, rectangu-
lar, or free in shape and 0.04−1.8 ha in area. In 
2002−2003, crown width (dcr) was measured in 
nearly 1000 35−140-yr-old trees. To study LiDAR 
use in rare tree species, 580 semiurban trees 
were mapped in August 2007 near the Hyytiälä 
forest station; this set is referred to as semiurban 
trees. The status of all trees at the time of the 
LiDAR campaigns was visually verifi ed, using 
large-scale aerial images taken in August 2006 
and June 2007, and the treetop positions were 
updated with the monoplotting technique (Fig. 1). 
Some broken, fallen, or cut trees were rejected 
during this work and dead standing trees were 
reclassifi ed. Only trees that were discernible in 
the images and/or visualized LiDAR data were 
included in the tree set. Most suppressed and 
intermediate trees with a relative height (hrel) of 
below 0.6 were rejected. In all, 13 317 forest trees 
and 570 semiurban trees were contained in the 
sets of discernible trees. 

For each tree we computed the best available 
h observation, which was the fi eld measure-
ment if made in 2006−2008. For the other trees, 
LiDAR treetop positioning was applied and for 
the unseen trees, plot-level regression curves were 
applied. For each tree the hrel was determined, 
using a local dominant height. The site-type for 
each plot or subplot was determined, using maps 
initially drawn in the fi eld. Site fertility in six 
classes was derived from the site type descrip-
tion (Table 2). The mean age and age variation 

Fig. 1. Principle of the monoplotting method for treetop 
positioning. A treetop is pointed in one image by 
the operator, which usually is the backlit view, if 
available. This establishes a camera ray and the 
distance to the fi rst LiDAR point intersected by 
the 0.5–1-m-wide camera tube is forced to coincide 
with the camera ray, keeping the distance to the 
camera unchanged. The mean underestimation of 
Z was 0.33 m in 465 trees measured in the fi eld in 
2007. The XY accuracy is better than 0.4 m. The 
rate was 200−300 measured trees per hour. 

Table 2. Number of living pine, spruce, and birch forest trees in site fertility and age classes. For example, 
fertility class 2 included the Oxalis-myrtillus (OMT) site type of mineral soils, the eutrophic, paludifi ed 
alder-spruce forest, and the herb-rich drained mire. Similarly, the Calluna type (CT), drained dwarf-
shrub type, as well as rocky or paludifi ed Vaccinium sites (VT) were included in fertility class 5. 

Site/age < 30 30−55 55−70 70−90 90−110 > 110 Sum

OMT-2 170 194 225 - 26 109 724
MT-3 129 4645 2113 522 783 1026 9218
VT-4 729 1204 77 156 111 53 2330
CT-5 - 5 - 251 336 - 592
ClT-6 - - 15 25 25 - 65
Sum 1028 6048 2430 954 1281 1188 12 929
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were estimated, using fi eld measurements, aerial 
images of 1946–2009, and forest management 
documentation. In estimating the age for each 
tree we allowed some random variation around 
the plot mean age in naturally regenerated stands. 
The proportion of crown overlap was estimated 
for each tree by computing the overlap of neigh-
boring pine, spruce, and deciduous crowns as 
overlapping circles to characterize competition 
by neighbors of different species. The distribu-
tion of trees according to age and site fertility is 
in Table 2. The distributions are not in balance. 
Only 1.5% of all trees had hrel below 0.5. Thus, 
the study applies to the dominant, codominant, 
and intermediate trees, which range from 2 m to 
38 m in h (Table 3). 

2.3 Extraction of LiDAR Features for the 
Reference Trees

Extraction of LiDAR data and derivation of fea-
tures were incorporated in a crown-modeling 
procedure, in which a curve of revolution was 
fi tted to the LiDAR points near the treetop (Kor-
pela 2007). To collect the LiDAR returns from a 
particular tree is an ill-posed task, especially in 
the lower parts of crowns where neighboring trees 
overlap. Fig. 2 illustrates the problem in a spruce 
stand. First, 871 fi eld measurements were used 
for estimating species-specifi c regression models 
that predict dcr, using DBH and h as predictors. 
The regression estimate of dcr was multiplied by a 
factor of 1−1.4, depending on stand density, which 
was visually determined in aerial images and was 
transformed into an initial approximation (over-

estimate) of the crown model. A three-parameter 
curve of revolution was fi tted to the LiDAR point 
cloud of combined sensors, using a weighted 
least squares (WLS) adjustment (regression). In 
it, LiDAR points were treated as observations of 
crown radius and observations that fell outside 
the crown envelope were weighted more (WLS 
weights = 1/σ2). The accuracy (σ) of the outer 
points was 0.44 m, while σ = 1 m for the other 
points. WLS reduces the inherent underestimation 
of the crown envelope in this kind of modeling. 
The length of the crown model was fi xed and 
CBH was always 40% down from the top. This 
is clearly a limitation in our analysis; e.g. young 
and open-grown spruce trees have much deeper 
crowns. LiDAR points inside or within 1 root-
mean-squared-error (RMSE) of the envelope were 
saved for feature computations. Echoes lower 
than 40% from the top were excluded. 

Both sensors were capable of extracting 1−4 
echoes from the refl ected pulse. Minimum range 

Table 3. Mean and (SD) of tree variables in living pine 
(4982), spruce (6066), and birch (1881) forest trees. 
Echoes refers to the number of fi rst-or-only returns 
in the crown, both sensors combined.

Var Pine Spruce Birch

DBH, cm 19.8 (6.4) 20.2 (8.0) 15.1 (6.7)
h, m 17.3 (4.0) 18.1 (5.8) 16.4 (5.4)
dcr, m 3.0 (0.70) 3.3 (0.8) 3.0 (1.2)
Age, yr 58 (25) 68 (29) 46 (25)
Echoes 83 (53) 92 (72) 84 (83)

Fig. 2. Map of LiDAR pulses, which have echoed from 
an h of below 20 m and have been back-projected 
to a mapping surface 20 m aboveground. The map 
is from a 25−30-m-high spruce stand (70 × 70 m). 
The large openings in the periphery are caused by 
large pine and birch crowns. We refer to the dots as 
pseudoechoes. The ALTM3100 data from 2006 are 
in green and blue dots that also depict the ALS50 
data. There are six overlapping LiDAR strips, and 
XY matching is reasonable between sensors and 
strips. 
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differences or blind zones of 3 m and 3.5 m are 
required in the ALTM3100 and ALS50 sensors, 
respectively. We labeled the echoes as belonging 
to the groups fi rst-of-many, only, fi rst-or-only, 
and/or all. The near-surface echoes formed a sepa-
rate class (± 1 RMSE from the crown surface). 
The relative distance from the treetop, 0−0.4, was 
calculated for each echo. The 40% deep crown 

was vertically divided into layers u1−u4. Distribu-
tion moments and deciles (d#) were computed for 
the intensity variables. Deciles and density deciles 
(dd#) were computed for the height distributions. 
The dd# were calculated by dividing the range 
in h into 10 equal intervals and by taking the 
cumulative proportion of echoes, starting from 
the treetop. A total of 60 intensity features were 
available for each of the 12 sensor × echo-type 
combinations, in addition to 20 common height 
variables, giving 740 variables (Tables 4a and 
4b).

The average number of fi rst-or-only echoes in 
a crown was 88 in the combined sensor (Fig. 3, 
Table 3). There were on average 38 ALTM3100 
and 50 ALS50 echoes per crown. Trees higher 
than 9−10 m could produce more than one echo, 
considering the nominal range discrimination dis-
tances of 3 m and 3.5 m in the sensors used. In 
a 28-m-high spruce-pine stand, we used 49 000 
range differences and observed distances of 2.1 
m and 3.1 m in the ALTM and ALS sensors, 
respectively. Some of the observed second, third, 

Table 4a. Names of the LiDAR variables consist of fi ve parts: #1_#2_#3_#4_#5. For example, comb_fo_cr_mean_
IRaw is the mean raw intensity computed, using fi rst-or-only echoes by combining both sensors. 

Part Explanation

#1 Sensor: altm = ALTM3100; als = ALS50-II; comb = Both, combined
#2 Echo type: on = only; fi  = fi rst-of-many; fo = fi rst-or-only; al = all
#3 Delineation: cr = full crown; su = near-surface points only;

Vertical: u1 = upper 10%; u2 = 10−20%; u3 = 20−30%; u4 = points in 30−40% of the tree
#4 Type of statistics: mean, sdev, skew, kurt = distribution moments; 

dd# and d# = density deciles, deciles; p = proportion; n = number
#5 Variable: IRaw = raw intensity data; IRan = range- or range- and AGC-normalized intensity; 

IFus = ALS50 normalized to ALTM3100; h = height (0 = top, 1 = butt) 

Table 4b. Features computed for each sensor (altm, als, comb) × echo-type (on, fi , fo, al).

(Delineation) × (Statistic) × (Variable) n Description

(cr) × (mean, sdev, skew, kurt) × (IRaw, IRan, IFus) 12 Intensity moments in the whole crown
(su) × (p), (cr) × (n) 2 Proportion and number of points 
(su) × (mean, sdev, skew, kurt) × (IRan) 4 Intensity moments near the crown surface
(u1, u2, u3, u4) × (mean) × (IRaw, IRan, IFus) 12 Intensity means in vertical crown layers
(cr) × (d1,...,d10) × (IRaw, IRan, IFus) 30 Intensity deciles in the whole crown
(cr) × (dd1,...,dd10) × (h) 10 Height density deciles, comb × al data
(cr) × (d1,...,d10) × (h) 10 Height deciles, comb × al data

Fig. 3. Number of all ALTM3100 and ALS50 echoes in 
a crown (N) as function of DBH (cm). 
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and fourth returns were undoubtedly caused by 
oblique (± 15°) pulses hitting neighboring trees. 

2.4 Classification Tools

We used the linear discriminant analysis (LDA), 
k-nearest neighbor (k-NN), k-most similar neigh-
bor (k-MSN), and random forest (RF) algorithms 
in the classification trials. LDA is a parametric 
method in which a linear combination of fea-
tures that best separates the classes is sought. 
We used the lda-function of the MASS package 
in R with equal prior probabilities (Venables and 
Ripley 2002). We did not test the multivariate 
normality of the data. The data were outlier-free, 
making LDA applicable. LDA was used in single-
tree species classification in LiDAR (Holmgren 
and Persson 2004; Brandtberg 2007; Ørka et al. 
2009). The nonparametric k-NN method has been 
used in multisource forest inventories to combine 
different data sources (Tomppo et al. 2008). In 
k-NN, normality assumptions are not needed. We 
used the DISCRIM procedure in SAS software 
(SAS Institute Inc., Cary, NC, USA) with k = 7, 
Mahalanobis distance, and equal priors. A non-
parametric method with increasing popularity in 
forest applications is RF (Breiman 2001). RF is a 
development of classification and regression trees 
that grows a large number of such trees (several 
hundred to several thousand trees) on randomly 
selected features and identifies the class by a 
majority vote among these trees. RF was used 
for classification of forest structure (Falkowski 
et al. 2009) and mire types (Korpela et al. 2009) 
in LiDAR. To obtain comparable results with 
LDA and k-NN with equal priors, a balanced RF 
procedure was applied (Chen et al. 2004). In bal-
anced RF the number of samples from each class 
in each tree grown was set equal to the number of 
objects in the smallest class. RF trials were car-
ried out with the R-package randomForest (Liaw 
and Wiener 2002). We used the mean decrease 
in Gini index for feature selection. The k-MSN 
method is a nearest neighbor algorithm variant 
that uses canonical correlation analysis between 
dependent and independent variables to produce 
a weighting matrix. The MSN distance metric is 
then derived from the weighting matrix (Moeur 
and Stage 1995). Finally, estimates for validation 

data are calculated from k nearest neighbors that 
according to independent variables are similar 
to the target of prediction, employing a weight-
ing based on the inverse of the MSN distance. 
We used the k-MSN method for classification. 
Weighted sums of k = 9 nearest neighbors of dif-
ferent tree species were calculated and the one 
with the greatest value was chosen as a tree 
species estimate. The k-MSN approach is often 
applied, since it can easily utilize information 
on large numbers of independent variables (e.g. 
Packalén and Maltamo 2007).

3  Results 

3.1 Analysis of Individual LiDAR Features

The mean intensity of first-or-only returns was 
lower than the mean intensity of only echoes 
(Fig. 4). The first returns represent multireturn 
pulses with enough energy after the first reflection 
to produce subsequent scattering and registered 
echoes. The vertical dampening of the intensity 
down the crown was notably stronger in the first-
or-only echo class than in only echoes (Fig. 4). 
In birch, there was little dampening of intensity 
in the only echoes, which may indicate that the 
foliage was homogenous in vertical. In pine and 
spruce the dampening may be explained by the 
lower needle density near the crown base, or by 
vertical changes in the structure and reflectance of 
the scatterers. Transmission losses are also a pos-
sible explanation. The topmost shoots in spruce 
crowns are often covered by epiphytic lichens 
(e.g. the tube lichen Hypogymnia physodes (L.) 
Nyl.), which may partly explain the high levels of 
backscatter in the upper crown (Fig. 4). 

The height deciles (Fig. 5) or density deciles were 
not very strong explanatory variables. In analysis of 
variance (ANOVA), the species explained merely 
10% and 12% of the variation in the 70th and 80th 
height percentiles, respectively. 

The intensity of first-or-only returns for the 
combined sensor was highest in Norway maple 
(Acer platanoides L.), which has large, favo-
rably oriented, almost horizontal leaves (Table 
5). Goat willow (Salix caprea L.) and European 
mountain-ash (Sorbus aucuparia L.) have similar 
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leaf orientation and their mean intensities were 
65−90% that of maple, depending on the growing 
conditions. In the Betulaceae family, gray alder 
(Alnus incana (L.) Moench) and European alder 
(Alnus glutinosa (L.) Gaert.) showed higher inten-
sity values than did B. pendula and B. pubescens. 
The size and orientation differences of leaves 
likely explain this difference, although actual dif-
ferences in refl ectance cannot be ruled out. The 
mean intensity of Populus tremula was close to 
that of Betula (spp.) under both forest conditions 
and for the semiurban trees near the Hyytiälä 
forest station. Both species have small leaves 
with high inclination angles. Siberian fi r (Abies 
sibirica Ledeb.) had the highest intensity of the 
conifers tested. The relatively wide needles form 
dense, nearly planar surfaces around the shoots in 
this species. The semiurban Siberian larch (Larix 

sibirica Ledeb.) trees were younger than the forest 
trees, which all grow in an 85-yr-old stand on 
semifertile soil. This may explain the large differ-
ence in mean intensity between the two groups. 
Pine had a clearly lower intensity than spruce in 
forest trees, but in open-grown trees on fertile soil, 
there was no difference between pine and spruce. 
The mean intensity of spruce was close to that 
of aspen. The dataset contained dead defoliated 
trees, which showed an approximately 40−60% 
lower intensity than living trees. The trees that 
were labeled as deteriorated (N = 43) in the fi eld 
also showed 10−20% lower average intensity 
than normal trees, suggesting that intensity may 
be useful for the coarse measurement of needle 
density or mass, even at the tree level. We also 
tried clustering techniques (k-means, hierarchi-
cal clustering, and principal component analysis) 
with the semiurban tree data, but the resulting 
grouping was not easy to interpret and explain by 
morphological features in these species. 

We tested the dependencies of intensity variables 
on tree age and h. In spruce, the mean intensity 
of fi rst-or-only crown echoes was 5−8% lower 
for the tallest trees than for 5−10-m-high trees. 
However, the feature comb_fo_u1_mean_IFus, 
which is the mean intensity in the top 25% of the 
crown, showed no trends. The echoes from the 
lower parts of the crown caused the dependence. 
In pine, a contrasting trend was seen, since the 
tallest pines had a 5−10% higher intensity than the 
shortest and youngest trees (R2 = 0.033). In pine, 
the trend was caused by the echoes in the topmost 
part of the crown; comb_fo_u1_mean_IFus was 

Fig. 4. Per-species mean intensity (comb_##_al_u#_IFus) of fi rst-or-only (left) and only echoes (right) in four 
vertical 10% deep crown layers. 

Fig. 5. Average height deciles of pine, spruce and birch 
(comb_al_cr_d#_h). 
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10−15% higher in the tallest pines (R2 = 0.054). 
Again, the intensity of the echoes from the lower 
part of the crown was not correlated with h. The 
dependencies were similar with the age variable. 
In birch, the intensity of the fi rst-or-only echoes 
in the crown was 20−30% lower for the tallest 
trees (R2 = 0.180) and the trend was strongest in 
the echoes that had refl ected from the upper half 
of the crowns. A likely explanation is the lower 
leaf density of old/large birch trees that have wide 
crowns. In general, the intensity metrics are cor-
related with size/age, especially in birch, and these 
dependencies vary according to the vertical layers 
in a crown.

We also examined the correlation between hrel 
and the intensity variables. In pine, the dominant 
trees had an approximately 5% higher intensity 
than the intermediate trees (R2 = 0.03). The echoes 
from the lowest parts of the crown showed clearly 

Table 5. Mean intensity of fi rst-or-only returns in a crown. Combined sensor. comb_fo_cr_mean_IFus.

Species Forest trees Semiurban trees

 N Mean SD N Mean SD

Broad-leaved
Acer platanoides L. 1 90.0 - 33 78.2 11.6
Alnus glutinosa (L.) Gaertner 67 65.6 9.7 16 59.6 12.9
Alnus incana (L.) Moench 22 57.3 16.2 89 62.8 12.1
Betula pubescens Ehrh., B. pendula Roth – living 1878 54.9 10.6 101 50.8 11.8
Betula L. spp. – dead standing 6 22.8 8.9 - - -
Fraxinus excelsior L. - - - 2 83.7 7.5
Populus tremula L. 34 49.1 11.0 65 55.1 11.3
Prunus padus L. - - - 1 84.4 -
Quercus robur L. - - - 2 73.6 7.4
Salix caprea L. 21 61.8 11.5 67 73.0 11.4
Sorbus aucuparia L. 48 70.3 14.8 31 72.6 14.7
Tilia cordata Mill. - - - 9 65.9 6.4
Ulmus glabra Huds. - - - 8 58.3 10.2

Conifers
Abies sibirica Ledeb. 7 64.6 5.4 45 72.6 9.6
Larix sibirica Ledeb. 41 45.9 6.2 17 64.3 8.6
Picea abies (L.) H. Karst – living 6062 51.8 6.2 32 50.7 6.3
Picea abies – dead standing 95 31.4 7.7 - - -
Picea omorika (Pancic) Purk. 3 59.5 3.4 - - -
Pinus cembra L. - - - 9 56.4 5.4
Pinus contorta Douglas ex Louden - - - 2 47.5 5.4
Pinus sylvestris L. – living 4982 41.7 5.6 39 48.9 6.9
Pinus sylvestris – dead standing 25 26.4 9.8 - - -
Pseudotsuga menziesii (Mirb.) Franco 6 55.2 3.6 1 66.3 -
Thuja occidentalis L. - - - 1 74.6 -

Fig. 6. Dependency of the relative height (hrel) and 
mean intensity in the top of the crown (comb_fo_
u1_mean_IFus) in birch.
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higher mean intensity in the dominant trees 
(R2 = 0.08), probably due to the relatively deeper 
crowns of the dominant trees. No correlation 
was observed for spruce. In birch, the intensity 
of the dominant trees was 15−20% higher than 
in the intermediate trees (R2 = 0.08). The effect 
was caused by the uppermost echoes in the crown 
(Fig. 6). This analysis suggests that the intensity 
features need to be computed in vertical layers 
and perhaps treated differently, depending on the 
relative size of the tree. 

In pine, the proportion of competing crown 
coverage by neighbors of other species was corre-
lated with the mean intensity of the crown surface 
echoes (R2 = 0.04). A 10% higher intensity was 
observed for pines with overlapping crowns of 
broad-leaved or spruce trees than in competition-

free pines, suggesting that under dense forest 
conditions the extraction method used is unable 
to correctly fi lter the LiDAR points for each tree. 
Effects by other factors, such as site fertility, could 
have also produced the observed dependency. 

The intensity deciles separate the three species, 
as illustrated in Fig. 7. For example, in ANOVA, 
59.1% of the variation in the 9th decile was 
explained by the species.

3.2 Effects of the Size of the Training Set, 
Stand Age, and Site Fertility

We used RF for selecting the 10 most important 
LiDAR features, which we applied in k-MSN 
classifi cation trials. Those features utilizing the 
fi rst-or-only observations had the least missing 
data and also performed better than the all echoes. 
It should be noted however, that the separate 
use of features computed from the fi rst-and-only 
returns, which reduced the number of test cases 
by 50−75%, resulted in higher classifi cation per-
formance, using RF in all sensor combinations. 
The number of test cases was, however, reduced 
by 50−75%, due to missing data. Only intensity 
features were selected by RF (Table 6). 

Using random sampling, the living pine, spruce, 
and birch trees were sampled into 100 training 
and validation sets at levels of 2.5%, 5%, 15%, 
and 30% (Tables 7−9). The overall classifi cation 
accuracy with k-MSN was 87.8−88.9% (Table 7). 
The downsizing had only a minor effect. Most of 

Fig. 7. Intensity deciles (comb_fo_cr_d#_IFus) for pine, 
spruce, and birch. 

Table 6. Mean decrease in Gini importance ranking of the fi rst-or-only LiDAR variables by Random Forest. We 
used combined sensors and IFus data with living pine, spruce, and birch. The R2 values were obtained in 
ANOVA by explaining the variation of the feature with the tree species. 

Feature R2 Explanation

comb_fo_cr_d9_IFus 0.591 90th percentile of intensity distribution
comb_fo_cr_d10_IFus 0.574 Maximum intensity distribution
comb_fo_cr_d8_IFus 0.535 80th percentile of intensity distribution
comb_fo_cr_d7_IFus 0.482 70th percentile of intensity distribution
comb_fo_u4_mean_IFus 0.418 Mean intensity 30−40% down from the top
comb_fo_cr_d6_IFus 0.432 60th percentile of intensity distribution
comb_fo_cr_mean_IFus 0.451 Mean intensity in crown 
comb_fo_cr_sdev_IFus 0.295 Standard deviation of intensity distribution
comb_fo_cr_skew_IFus 0.089 Skewness of intensity distribution
comb_fo_u3_mean_IFus 0.376 Mean intensity 20−30% down from the top 
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the confusion occurred between birch and spruce, 
while pine was classified most reliably at 92.5%. 
Even with 300 trees in the training set (2.5%), 
the accuracy was 87.8% in the validation set of 
11 700 trees. 

The accuracy was lowest in the youngest and 
oldest trees (Table 8). Nearly 50% of the trees 

younger than 30 yr were birches, which partly 
explains the low accuracy in that age class. In 
addition, the young trees were smaller and thus 
had smaller numbers of LiDAR hits per tree. The 
accuracy was lowest in the most barren fertility 
class (Table 9). However, only two plots and 65 
trees belonged to this class. 

Table 7. Mean and (SD) of classification accuracy percentage and kappa in 100 trials with randomly 
sampled training and validation sets, using k-MSN classification with the 10 features in Table 
6.

Training data All, % Kappa Pine Spruce Birch

30% of trees 88.9 (0.3) 0.813 (0.004) 92.7 88.5 78.8
15% of trees 88.8 (0.2) 0.812 (0.004) 92.5 88.4 78.8
5% of trees 88.4 (0.4) 0.806 (0.007) 92.3 87.8 79.0
2.5% of trees 87.8 (0.9) 0.795 (0.015) 92.2 86.8 78.4

Table 8. Mean classification accuracy in age classes in 100 trials with randomly sampled training and 
validation sets, using k-MSN classification with the 10 features in Table 6.

Training data < 30 30−50 50−70 70−90 90−110 110−130 ≥ 130

30% of trees 72.4 88.8 93.0 91.1 90.6 83.2 85.5
15% of trees 72.0 88.7  92.9 91.1 90.4 83.1 85.2
5% of trees 71.4 88.4 92.7 90.7 90.1 82.7 84.6
2.5% of trees 70.6 87.7 92.3 89.8 89.4 82.3 83.9

Table 9. Mean classification accuracy in site fertility classes in 100 trials with randomly sampled 
training and validation sets, using k-MSN classification with the 10 features in Table 6.

Training data OMT-2 MT-3 VT-4 CT-5 ClT-6

30% of trees 88.5 89.2 86.6 92.9 82.0
15% of trees 88.6 89.1 86.5 92.9 81.8
5% of trees 87.8 88.8 86.2 92.4 81.5
2.5% of trees 87.0 88.3 85.6 91.2 79.4

Table 10. Mean and (SD) of classification accuracy percentage and kappa in 100 trials with randomly 
sampled training and validation sets. Division between training and validation sets was done 
according to age and site fertility. 

Training data All, % Kappa Pine Spruce Birch

30% of < 55-yr-old trees 88.0 (0.2) 0.798 (0.004) 91.6 87.2 80.1
30% of trees in fertility classes 2 and 3 87.8 (0.2) 0.752 (0.007) 98.5 68.9 67.1
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We also applied divisions according to the site 
fertility and age variables (Table 10). The accu-
racy in the trees older than 55 yr was 88% when 
k-MSN was trained with a sample consisting of 
30% of trees younger than 55 yr. However, when 
the validation set (to be classified) was formed 
by trees in the three most barren fertility classes, 
while training with 30% of the trees in the two 
most fertile classes, low classification accuracy 
was obtained for spruce and birch. Here, the 
optimal (yield) site fertility classes of spruce and 
birch were used for training. The birch trees in 
the barren sites were on average 15 yr younger 
and the mean h was 10.5 m in comparison to 17.4 
m in the training set. This may explain the poor 
performance, since the intensity features were 
correlated with tree size in birch. Similar imbal-
ances of tree variables also applied to spruce. 
Thus, due to the imbalanced data, we cannot 
conclude for certain whether site fertility is a 
strong factor affecting the LiDAR signal. Also, a 
reliable separation of the effects by site fertility 
and tree size is impossible. 

3.3 Comparison of sensors and analysis 
of sensor fusion, range, and AGC 
normalization

We applied the k-NN, LDA, and RF classifi-
ers with 13 intensity variables computed from 
the first-or-only returns to test the differences 

between sensors and to examine the gain from 
intensity normalization (Table 11). 

Intensity normalization (Eqs. 1, 2) for the effect 
of varying range improved the classification per-
formance in the ALTM3100, ALS50, and com-
bined data (Tables 12, 13). It should be noted that 
the ALS50 data were normalized for the effects of 
the AGC and range (Eq. 2). The AGC compensa-
tion may have enlarged the dynamic range of the 
ALS50 sensor, since IRan improved the classifica-
tion accuracy by 6−8%, while the gain was 2% 
in the ALTM3100. The ALS50 also performed 
better than the ALTM3100 with IRaw. 

The ALS50 data were captured 100 m lower than 
the ALTM3100 data and the footprint diameter 
was 17−18 cm or 240 cm2 in comparison to the 
25−28-cm or 550-cm2 footprint of the ALTM3100. 
In theory, the smaller footprint may lead to an 
improved signal-to-noise ratio in the intensity 
measurement. The classification performance was 
better with the combined data and the IFus intensity 
observations (weighting of sensors) than the IRan 
data. The average number of first-or-only echoes 
in a crown was 37.5 for the ALTM3100 and 50.5 
for the ALS50 data. The ratio of the ALTM3100 
and ALS50 echoes varied considerably among the 
trees and plots, which is explained by the LiDAR 
data capture in narrow overlapping parallel and 
perpendicular strips. The assumption that IFus would 
compensate for the sensor differences, when the 
contribution of the sensors varies, was thus sup-
ported by the results (Tables 12, 13).

Table 11. Intensity variables used for testing sensor differences. In the variable names X 
refers to the sensor and Yyyy to the intensity variable: IRaw, IRan, and IFus.

Variable Description

X_fo_cr_mean_IYyyy Mean intensity of crown returns 
X_fo_cr_sdev_IYyyy Standard deviation of crown returns  
X_fo_cr_skew_IYyyy Skewness of crown returns 
X_fo_cr_kurt_IYyyy Kurtosis of crown returns 
X_fo_u1_mean_IYyyy Mean intensity, topmost 10% of the tree
X_fo_u2_mean_IYyyy Mean intensity, topmost 10−20% of the tree
X_fo_u3_mean_IYyyy Mean intensity, topmost 20−30% of the tree
X_fo_u4_mean_IYyyy Mean intensity, topmost 30−40% of the tree
X_fo_cr_d2_IYyyy 2nd decile of intensity distribution, whole crown
X_fo_cr_d4_IYyyy 4th decile of intensity distribution, whole crown
X_fo_cr_d6_IYyyy 6th decile of intensity distribution, whole crown
X_fo_cr_d8_IYyyy 8th decile of intensity distribution, whole crown
X_fo_cr_d9_IYyyy 9th decile of intensity distribution, whole crown
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Table 12. k-NN classification results with 13 intensity variables (Table 11) in the first-or-
only data. The number of trees was 10 982, 11 104, and 11 908 for the ALTM3100, 
ALS50, and combined sensors, respectively. (ASE) is the asymptotic standard error of 
the simple Kappa coefficient. The 95% confidence limits are ± 2 × ASE. Leave-one-
out cross-validation.

Sensor / intensity  All, % Kappa (ASE) Pine Spruce Birch

ALTM3100 – IRaw 73.2 0.629 (0.006) 87.6 73.8 58.1
ALTM3100 – IRan 75.3 0.668 (0.006) 88.8 77.8 59.3
ALS50 – IRaw 78.2 0.645 (0.006) 88.8 71.0 74.7
ALS50 – IRan 85.0 0.770 (0.005) 93.6 82.1 79.4
COMB – IRaw 83.1 0.731 (0.006) 87.7 81.2 80.5
COMB – IRan 88.4 0.814 (0.005) 91.2 87.3 87.0
COMB - IFus 88.7 0.828 (0.005) 92.3 88.6 85.3

Table 13. k-NN, LDA, and RF classification results with 13 intensity variables (Table 11) 
in first-or-only data. The number of trees was 10 337, with 3750 pines, 5385 spruces, 
and 1202 birches. These trees had data for all of the 7 × 13 variables. Leave-one-out 
cross/validation in k-NN/LDA and out-of-bag (oob) error estimate in RF. 

Sensor / intensity All, % Kappa Pine Spruce Birch

 k-NN 

ALTM3100 – IRaw 73.4 0.639 88.6 75.3 56.1
ALTM3100 – IRan 76.0 0.681 89.3 79.5 59.2
ALS50 – IRaw 78.4 0.644 88.3 71.8 75.0
ALS50 – IRan 85.1 0.774 93.4 83.4 78.4
COMB – IRaw 83.1 0.715 90.0 78.0 81.2
COMB – IRan 89.0 0.816 93.7 86.5 87.4
COMB - IFus 89.4 0.840 93.7 89.2 86.0

 LDA

ALTM3100 – IRaw 77.1 0.628 88.9 72.7 60.0
ALTM3100 – IRan 78.9 0.656 90.5 75.2 59.8
ALS50 – IRaw 79.6 0.664 88.7 73.8 77.0
ALS50 – IRan 87.4 0.785 91.5 86.6 77.7
COMB – IRaw 82.2 0.703 89.2 77.8 79.8
COMB – IRan 88.5 0.805 91.7 87.5 83.0
COMB - IFus 90.0 0.830 92.2 90.3 81.7

 RF

ALTM3100 – IRaw 81.7 0.690 88.4 82.9 55.2
ALTM3100 – IRan 83.5 0.720 89.7 84.9 57.6
ALS50 – IRaw 82.6 0.706 86.7 81.7 74.0
ALS50 – IRan 88.5 0.804 92.3 88.4 77.4
COMB – IRaw 85.1 0.750 88.3 83.3 83.2
COMB – IRan 89.3 0.819 91.5 88.5 86.4
COMB - IFus 90.8 0.844 93.8 90.4 83.5
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The RF method resulted in the best classi-
fication performance, although the differences 
between classifiers were marginal. 

The results of the k-NN classification with 
combined sensor and IFus variable, which resulted 
in an overall accuracy of 88.7% (Table 12), were 
analyzed at the tree and plot levels. The mean 
values of hrel were 0.88 and 0.91 in the errone-
ously and correctly classified trees, respectively. 
The mean proportions of crown coverage by 
neighboring trees were 45% and 37%, respec-
tively. In logistic regression (GENMOD proce-
dure in SAS 9.13) DBH, h, hrel, crown overlap, 
and number of echoes explained the binary clas-
sification result. These results imply that close 
neighbors affected the classification as well as 
the relative and absolute tree size. The classifica-
tion accuracy was 90%, 85.3%, and 61.7% in the 
three classes of crown status: normal, defective, 
and deteriorated. The lowest plot-level accuracy 
(52%) was observed in a 20-yr-old pine-spruce-
birch plot with 246 1−9-m-high trees with an 
average of 23.2 first-or-only echoes per tree. A 
low accuracy of 67% was observed in a very 
dense, unmanaged 35-yr-old birch plot, where 
the living crowns were narrow and short and had 
an average of 30 echoes per tree. The RMSE of 
crown modeling did not explain the classification 
success, which implies that the point-extraction 
method (Section 2.3) did not affect the results. 

4 Discussion

4.1 Confines of the Study

LiDAR is a widely recognized tool for position-
ing and measurement of many forest parameters. 
We examined the potential use of LiDAR in 
tree species recognition, in the context of STRS, 
which provides an upper bound for the accuracy 
achievable in area-based methods. The limits of 
our study are several. Our experiment was exten-
sive in the quantity of trees and different tree- and 
stand-level factors that could have affected the 
performance of the LiDAR data. Our reference 
data were, however, unbalanced in the main fac-
tors of interest: site fertility and age. This could 
have skewed the results and affected our interpre-

tation, despite our awareness of the dangers. We 
undertook two comparable LiDAR campaigns; 
however, variation in important LiDAR param-
eters (Hopkinson 2007, Næsset 2009), such as the 
pulse density, pulse-repetition frequency, or flying 
altitude was lacking. Here the results applied to 
a 1-km flying altitude only, and we expect that 
inferior classification results will be obtained for 
higher flying altitudes. We did not try to estimate 
the CBH in LiDAR, which is a strong separat-
ing factor between pine and spruce, as shown in 
Holmgren and Persson (2004). However, reliable 
estimation of CBH in dense canopies or in the 
presence of understory trees can be difficult. We 
used LDA, RF, and nearest neighbor classifiers 
to control the differences and made few attempts 
to tune the classifiers for an optimal, best-case 
performance. However, our classification results 
represent an optimistic STRS scenario, because 
we collected the point clouds per tree, using 
manual positioning of treetops and knowledge of 
the DBH of the tree when crown modeling was 
applied. In practice, tree detection and segmen-
tation tasks should be carried out automatically, 
which likely would reduce the species classifica-
tion accuracy. In addition, we neglected aspen 
in the classifications, because it is so rare in 
the study area. Aspen constitutes 1.5% of the 
stem volume in Finland (Tomppo et al. 2001), 
although it can locally be an important species 
where fertile soils prevail. Our results suggest 
that the intensity features for aspen deviate from 
those of birch, although these species are often 
combined in classification studies (Holmgren et 
al. 2008, Vauhkonen et al. 2009). 

4.2 Features with Explanatory Power in 
Species Classification

The results indicated that the use of intensity of 
first-or-only echoes is optimal and is explained 
by the fact that these echoes represent the high-
est reflections that are less affected by intracrown 
transmission losses. The use of only returns leads 
to a reduced number of available measurements. 
However, if the LiDAR settings are altered, e.g. 
due to higher flying altitude and pulse-repetition 
frequency, the proportion of single-echo pulses 
can be much higher than here (Hopkinson 2007, 
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Næsset 2009). First-and-only echoes differ con-
ceptually and the only echoes had higher intensity 
values than the first echoes (Ørka et al. 2009). 
Hence, we cannot conclude that first-or-only 
echoes are generally a better choice. However, 
our results suggest that a strategy in which three 
separate feature sets are computed, using the first-
and-only returns separately and in combination, 
may be reasonable. We did not test the propor-
tions of the echo types as explanatory variables, 
since they may be sensitive to LiDAR settings. 
The proportions were used as explanatory vari-
ables in Holmgren et al. (2008). 

Feature selection by RF resulted in 10 inten-
sity variables. Similar results were obtained in 
ANOVA of individual features. However, we did 
not make an exhaustive test of all 740 variables 
in each combination of sensor and echo type. The 
features derived from the height distribution were 
inferior to intensity features. However, our crown-
modeling procedure (Section 2.3, Korpela 2007) 
may have affected the point-height distribution 
such that the explanatory power became less. The 
mean intensity values in the four vertical layers of 
the living crown showed high explanatory power 
and interesting associations with the absolute and 
relative sizes of the tree, especially for birch. This 
may explain the higher confusion in birch in all 
classification trials. The mean intensity of the 
near-surface echoes was not strong variable. Our 
results differ from those of Holmgren and Persson 
(2004), who used a surface model approach. The 
upper percentiles (60th−90th) were crucial fea-
tures. The maximum intensity was an important 
feature in Brandtberg et al. (2003) and Ørka et 
al. (2009), while the percentiles were not tested 
in these studies.

4.3 What is Intensity Signal Measuring in a 
Tree?

The intensity of DR sensors is believed to cor-
respond to the maximum backscatter amplitude. 
Intensity is a measure of reflectance for well-
defined surfaces that are larger than the foot-
print (Kaasalainen et al. 2007). However, canopy 
reflections give rise to more variable echoes, the 
structures of which are available in FW data and 
undoubtedly contain information unavailable in 

DR data (cf. Höfle et al. 2008). The footprint or 
volume that contributes to an echo in the canopy 
may also contain different scatterers, e.g. bark, 
needles, cones, flowers, epiphytes, and twigs, all 
of which vary in reflectance. Our results suggest 
that the leaf size, orientation, branch structure, 
and foliage density may determine the intensity in 
DR sensors. It is, however, impossible to separate 
these factors. Broad-leaved species such as Acer 
platanoides, Salix caprea, and Sorbus aucuparia 
with large and/or horizontal leaves in a dense and 
compact configuration had the highest intensity. 
The depth and density of the foliage layer in these 
species may have also contributed to the high 
intensity. This may explain the difference between 
conifers such as Abies sibirica, Picea abies, and 
Pinus sylvestris. The intensity difference observed 
in intermediate/codominant and dominant birches 
and the dependence on absolute size in birch may 
be a result of differences in crown architecture. 
We also observed reduced intensity for echoes 
in the lower parts of the crown. This may be 
explained by untraceable transmission losses or 
by the lower needle density 20−40% down from 
the treetop. Our results suggest that part of the 
intraclass variation in the intensity metrics may 
be due to differences in needle mass and vigor. 
We did not have increment measurements to test 
whether intensity metrics would explain intertree 
variation in growth.

4.4 Intensity Normalization for Noise 
Removal and Sensor Fusion

In our study area the elevation range of the tree-
tops was 70 m, 147−217 m a.s.l. The flight paths 
were mostly flown within ± 5% of the nominal 
flying altitude, 1000 m and 930 m a.s.l for the 
ALTM3100 and ALS50 sensors, respectively. 
The effect of the topography and variation in 
the flying altitude was approximately ± 4.5% in 
the sensor-to-target range. Similarly, the effect 
of the scan angle was ± 3.5%. Thus, the range 
normalization altered the intensities ± 20% ≈ 
(1−0.08)2.5. Range normalization improved the 
classification accuracy in both sensors, although 
in the ALS50 we did not separate the AGC and 
range normalization. Both should be seen as nec-
essary noise removal and preprocessing steps. 
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Range normalization has, however, been omit-
ted in most of the earlier research dealing with 
tree species or vegetation classification, except 
for studies based on the TopEye sensor, which 
has built-in range correction. Thus, the results 
obtained in these studies mostly underestimate 
the true potential. We did not optimize the power 
factors of 2.4 and 2.5 in Eqs. 1 and 2, which 
were obtained using nontree targets by mini-
mization of per-target variance (Korpela 2008). 
Range compensation is an ill-posed task and we 
believe that our results could be improved by 
searching for the optimal, sensor-, and species-
specific parameters for the task. In addition, no 
specifications for the functioning of the AGC by 
the sensor manufacturer of the ALS50 were avail-
able during the experiment and our model for the 
AGC normalization was experimental and derived 
by the method of reverse engineering. The digital 
number (DN) values of the AGC in 8 bits were 
mostly in the range of 118−138, which resulted in 
approximately ± 30% correction of the intensity. 
In all, the intratree variance of range- and AGC- 
normalized intensity values was 57% that of raw 
data in the ALS50. 

We applied sensor fusion to increase the data 
per tree, particularly to support the crown-mode-
ling procedure. In practice, the fusion of data from 
different LiDAR sensors or sensor settings can 
occur, e.g. when the weather does not favor the 
use of laser scanning and the equipment is taken 
elsewhere. One requirement would be a good 
geometric match between the datasets and we 
propose pseudoecho maps (Fig. 2) for the evalu-
ation of the XY match, which can be complex 
under forest conditions if artificial linear struc-
tures (power lines, buildings, etc.) or sharp edges 
(e.g. paludified shores) are not available. LiDAR 
data that contain the trajectory are needed for the 
maps. The combined sensor data consisted of 
the per-tree sum distributions of two campaigns. 
Assuming that the LiDAR settings were unaltered 
in both sensors during the campaigns and the sam-
pling densities per sensor did not vary spatially, it 
would have been possible to combine the datasets 
without weighting of the intensities. However, 
since our data showed considerable variation in 
the pulse density (the number of echoes per crown 
in the two sensors had an R2 of 0.33) between the 
two sensors, we attempted to weight the ALS50 

intensity observations. This improved the stability 
of the distribution features and slightly improved 
the classification results. We used natural and arti-
ficial targets for intensity normalization, assuming 
that the backscatter properties had not changed 
between campaigns. 

4.5 Comparison of the ALTM3100 and 
ALS50-II Sensors

The best classification performance was obtained, 
using both the ALTM3100 and ALS50 data 
together. The overall classification accuracy was 
88−90% for pine, spruce, and birch, depending on 
the classifier, feature set, and validation method. 
The accuracy was almost at the required level of 
95%, which is considered sufficient for STRS 
applications (Korpela and Tokola 2006). A high 
number of echoes per tree presumably improved 
the accuracy by reducing the random noise in 
the features used. Surprisingly, the Leica ALS50 
outperformed the Optech ALTM3100, since in 
the ALS50 both the AGC and range corrections 
were needed and in the Optech only the range 
correction. The 20% higher sampling rate of the 
ALS50 data may explain the difference, because 
the distribution metrics are more stable. The 50% 
smaller footprint area of the ALS50 may also 
have resulted in a better signal-to-noise ratio. Our 
results suggest substantial differences in the inten-
sity data between the ALS50 and ALTM3100, 
especially after range- and AGC normalization. 
The same performance gap was observed in the 
classification of reindeer lichens (Cladina (Nyl.) 
Nyl. spp.), using the same first-or-only data (Kor-
pela 2008). However, the differences in the sys-
tems may be campaign-dependent, since intensity 
recording is seldom optimized. More studies are 
needed to confirm the results.

4.6 Effects of Age and Site Fertility

Some of the intensity variables were dependent 
on tree size and/or age, especially for birch. These 
observed effects may be due to changes in the 
crown architecture, which are related to the age 
and speed of growth in trees. However, in the clas-
sification test where age was used for splitting the 
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data into training and validation sets, we observed 
no reductions in classification performance. In a 
similar test, using site fertility for the division, the 
accuracy of spruce and birch was reduced when 
the training set was formed by the most fertile 
sites, which are favored by these species. Thus, 
site fertility may affect trees such that it is seen 
in the intensity signal.

4.7 Size of the Training Set

We were surprised that reduction in the training 
set to 2.5% (300) of the trees reduced the k-MSN 
classification accuracy of pine, spruce, and birch 
to merely 1% of the level achieved, using 30% 
(3600) of the trees in the training set. On the other 
hand, similar results were obtained at plot level, 
using even fewer than 100 training observations 
(Maltamo et al. 2009). In the case of reduced data 
sets we applied k-MSN for classification, in which 
among chosen neighbors there can be wrong tree 
species but the estimate can still be correct. This 
emphasizes the fact that the number of observa-
tions in certain classes can be lower in training 
data and differs from the approach of Packalén 
and Maltamo (2007), in which each wrongly 
chosen neighbor automatically adds RMSE. Our 
results show that a rather small amount of in situ 
training data for STRS and species recognition 
is sufficient, if it represents well the different 
age classes. 

4.8 Ecologically Important Species

The classification of aspen may prove difficult 
because the intensity metrics overlapped with that 
of spruce and birch (cf. Ørka et al. 2007, Säynäjoki 
et al. 2008). However, Salix caprea, Alnus incana, 
and Alnus glutinosa could potentially be separable 
based on the high intensity values associated with 
these species. A simple geographic information 
system (GIS)-thresholding technique, using the 
upper intensity deciles and height data combined 
with a clustering operation, could perhaps unmask 
the rare occurrences of these species. 

4.9 Suggestions for Future Research

We omitted CBH and crown length as predic-
tors, which would likely aid in the classification 
of spruce (Holmgren and Persson 2004). The 
use of complex crown shape metrics could also 
lead to an improvement (Holmgren et al. 2008, 
Vauhkonen et al. 2009). However, there are practi-
cal constraints that limit the available sampling 
rates and/or flying altitudes of LiDAR. Similarly, 
the CBH estimation methods should be tested 
comprehensively in a challenging forest environ-
ment. We did not examine the orthogonality of the 
LiDAR and image features. However, Persson et 
al. (2004), Heinzel et al. (2008), and Holmgren 
et al. (2008) showed that auxiliary image features 
may improve the species classification accuracy 
of dominant, photovisible, sunlit crowns. The use 
of NIR image features may provide an aid for the 
classification of birch, which is differentiated 
poorly in LiDAR data. Co-use of images and 
LiDAR adds to the costs and the focus should 
be on studies that examine the importance of the 
flying altitude and sampling density. The inten-
sity data in DR LiDAR probably misses some of 
the explanatory power that is contained in FW 
data, which has not thus far been examined in 
Scandinavian forests. An excellent scenario for 
forest applications would be if DR sensors were 
developed to register the on-the-fly echo charac-
teristics, which are extracted in postprocessing 
of FW data. The topographic LiDAR sensors 
that are currently used in forest applications are 
primarily optimized for elevation modeling. The 
range normalization parameters (Eqs. 1, 2) were 
not optimized in our study and this constitutes a 
future topic. Based on our preliminary results, the 
backscatter features may explain needle mass and 
growth at the tree level, which is an unexplored 
topic. 

5 Conclusions 

An accuracy of 88−90% was achieved in the spe-
cies classification of individual pine, spruce, and 
birch trees in DR LiDAR intensity data. Spruce 
and birch showed the lowest classification accu-
racy. The intensity features were dependent on the 
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absolute and relative size of trees, especially for 
birch, which likely explain the lowest accuracy of 
birch. Among the classifiers tested, RF resulted in 
the highest classification performance. Our results 
suggest that leaf size, orientation, and foliage 
density affect mostly the intensity data, which is 
not a measure of target reflectance. Some of the 
rare and ecologically important species in Fin-
land could be separated, since their foliage gave 
rise to high intensity values. Comparison of the 
ALS50-II and ALTM3100 sensors suggests that 
the smaller footprint or the enhanced dynamic 
range of the ALS50-II may explain the better 
classification results, using intensity data. Range 
normalization, i.e. compensation for the two-way 
losses in the target-to-sensor path, improved the 
accuracy of species classification and constitutes 
a necessary data-processing step. Normalization 
for the receiver’s AGC affected the intensity data 
favorably in the ALS50-II sensor. Fusion of two 
LiDAR datasets with 1-yr temporal mismatch and 
different instruments was improved by normaliza-
tion of the intensity datasets, using natural targets 
for finding the parameters. 
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