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for one clone
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• Deployment-type significantly altered relationships between crown variables and competition 

was more asymmetric in mixed plots compared to monoclonal.

Abstract
Competitive interactions in clonal forestry are not well understood and this needs to be addressed 
to develop better deployment strategies. Eight juvenile Sitka spruce (Picea sitchensis (Bong.) 
Carriére) clones were grown in monoclonal and clonal mixtures in a field experiment for three 
years to assess the effects of genetic diversity on shoot growth, above- and below-ground biomass 
partitioning and crown characteristics. Shoot elongation was measured throughout the growing 
season, while diameter was measured twice annually in May and December. After the third year, 
crown silhouette area was estimated from digitised images for one ramet per plot and ramets were 
then destructively harvested. Deployment × clone interactions were observed for tree height and 
diameter with reductions observed in mixed plots. Mixed plots had significantly greater height 
and diameter heterogeneity and more asymmetrical competition than monoclonal plots. Results 
from this study demonstrate that stem growth can be significantly altered when clones are planted 
in multi-clonal mixtures but for most clones, deployment-type will not significantly reduce their 
productivity.
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1 Introduction

Sitka spruce (Picea sitchensis (Bong.) Carrière) is the main commercial forest species through-
out Britain and Ireland, 25% and 52% respectively, and a minor species of commercial value in 
Denmark and France (Treacy et al. 2000; Lee et al. 2013). In Britain and Ireland, improvement 
programmes have been initiated mostly to increase productivity or wood quality (Gill 1987; Lee 
et al. 2013; Thompson 2013; Cameron 2015). Recent advances in alternative propagation tech-
niques, such as somatic embryogenesis (SE), allow wide-scale use of specific clones which may 
further improve forest productivity for Sitka spruce compared to conventional tree breeding and 
propagation techniques (Park 2002; Hartmann et al. 2011 ).

Clonal forestry offers the ability to select individuals based on their inherent genetic traits or 
ideotype, choosing or excluding specific clones to create a desired stand environment (Park 2002). 
However, there remain some technical and management difficulties and uncertainties with the 
deployment of clonal trees, limiting the benefits of clonal forestry. The central question concerning 
clonal forestry is how deployment-type affects tree performance. Clones may be deployed in two 
main deployment-types, i.e. multi-clonal mixtures (a stand composed of several clones intimately 
mixed) or monoclonal clonal plots (a stand composed of one clone) (Sharma et al. 2008a; Gould 
et al. 2011). Previous studies have outlined the advantages of either deployment-type (Libby 1987; 
DeBell and Harrington 1993).

Clonal tests typically focus on identifying superior individuals using single-tree plots with 
little regard for the potential effect of competition (Gould et al. 2011). However, deployment-type 
and genetic differences between neighbours influence the competitive environment and differing 
biomass partitioning strategies and phenology could affect stand productivity. For example, clones 
which have later budbreak or relatively short growth seasons could be at a competitive disadvantage 
in mixed stands (Michael et al. 1988)

The competition process within a stand can be seperated into environmental and genetic 
effects and their interactions (Foster et al. 1998). Previous studies have generally assessed these 
effects using trees grown from seed complicating the separation of genetic effects from environ-
mental effects (Brassard et al. 2011; Domisch et al. 2015). However using clonal material these 
effects can be more readily separated and increases the ability to exploit genotype × environment 
interactions than family forestry (Aspelmeier and Leuschner 2006).

Environmental effects of competition can be increased through higher planting density, 
encouraging a rapid onset of competition, providing insights into how individuals perform under 
competitive pressures. Close spacing can make early selection more effective (Franklin 1979). 
Previously, authors used different distances to encourage competitive interactions, e.g. 30, 60 and 
90 cm (Campbell et al. 1986) and 1, 3, 5, and 7 inches (Campbell and Wilson 1973).

 Genetic diversity is an important driver in individual and community level processes and 
can influence stand productivity (Lankau and Strauss 2007). Thus, by manipulating the genetic 
composition of a stand, the effect of inter- and intra-clonal competition can be determined and the 
effect of increasing or decreasing genetic diversity on stand productivity can be compared. Increased 
genetic diversity decreases competition for the same resources, affecting site and stand productivity 
(Boyden et al. 2008). Selecting clones with divergent resource acquisition and biomass partitioning 
strategies may reduce niche overlap and competition while increasing resource-use and site utilisa-
tion efficiency (Mason et al. 2012). However, when neighbouring plants are closely related or from 
the same clone, competition may be reduced due to kin selection, resulting in significantly lower 
production than in a stand composed of different clones (Boyden et al. 2008; Lepik et al. 2012) .

To ensure appropriate clonal mixtures are devised, and others avoided, it is important to 
determine how intergenotypic competitive interactions affect performance in traits of interest 
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(Staudhammer et al. 2009). Certain mixtures of clones or specific planting combinations (i.e. 
mixed mosaics of clonal blocks or row plots) could result in postitive, negative or neutral effects 
on productivity (Adams et al. 1973). To date, the effect of deployment-type on clonal performance 
of conifer and broadleaf species remains poorly understood and consistent relationships between 
productivity and deployment-type have not been found between either clones (Sharma et al. 2008a) 
or seedlings (Gould et al. 2011). Thus, further studies are required to make firm conclusions and 
recommendations.

Previous studies have focused primarily on short rotation species, particularly Populus and 
Salix spp. and in general contradicting results have been reported. Higher volume, mean height and 
diameter have been reported for five Populus clones when deployed in clonal mixtures compared to 
monoclonal plots (Markovic and Herpka 1986). Similarly, Dawson and McCracken (1995) observed 
higher biomass yields in Salix clones when deployed in clonal mixtures compared to monoclonal 
plots. However, Benbrahim et al. (2000) found that deployment-type did not affect productivity 
in Populus clones but observed stem height was more uniform in monoclonal plots than in mixed 
plots. Furthermore, in the same study, it was observed that juvenile Populus clones that performed 
well initially were not the best performers over an extended period of time.

Although the majority of experiments conducted on the effect of deployment-type to date have 
concentrated on broadleaved species, several studies have focused on conifer species. Zhou et al. 
(1998) observed increased productivity in monoclonal plots of Chinese fir (Cunninghamia lanceo-
late (Lambert) Hooker) compared to mixed plots, while Sharma et al. (2008b) found no difference 
in productivity in relation to deployment-type in radiata pine (Pinus radiate D. Don). In contrast, a 
study using half siblings of Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) observed, on average, 
increased productivity in mixed in comparison to monoclonal deployments (Clair and Adams 1991). 
Williams et al. (1983), who examined family differences, found greater stem height growth and stem 
volume in monoclonal plots of loblolly pine (Pinus taeda L.) compared to mixed plots.

To the authors’ knowledge, no information exists regarding the impact of contrasting 
deployment-types on productivity of different Sitka spruce clones. This study was established as a 
closely spaced experiment using eight juvenile Sitka sprue clones in mixed and monoclonal plots 
to determine if stem growth, above- and below-ground biomass partitioning and crown morphol-
ogy were influenced by deployment-type.

2 Materials and methods

2.1 Plant material

An experiment with eight elite (numbered 1 to 8) one-year old clones of Sitka spruce was estab-
lished at the National Tree Improvement Centre, Kilmacurra, Co. Wicklow, Ireland (52°93´N, 
06°14´E, 133 m a.s.l.) in April 2013. According to long-term meteorological observations from 
the on-site weather station (Met Éireann), the mean annual temperature is 9.9 °C with mean annual 
precipitation of 1178 mm. All eight clones used were from the Irish tree improvement programme 
and displayed superior stem height growth and were propagated using somatic embryogenesis 
(Thompson 2013) (Table 1). Several weeks after early-stage somatic embryo structures were evi-
dent, plants were transferred into individual plugs with a peat pearlite (2:1) containing 250 g L−1 
fertilizer (Osmocote®, Everris International B.V.) and 5 g L−1 insecticide (suSCon Green, Crop Care 
Australais Proprietary Ltd.). The trees were transferred to a high humidity greenhouse in March 
to acclimatise for approximately a month and were then moved to polytunnels for approximately 
two weeks prior to planting.
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2.2 Experimental design

The experiment was established in April 2013. The experimental site had been previously used for 
nursery beds. The soil was uniform throughout and was classified as a sandy loam with approxi-
mately 7.3% clay, 14.1% silt, 78.6% sand and 9.2% organic matter. Prior to establishment, the site 
was ploughed to a depth of approximately 13 cm and treated with glyphosate (Roundup, Monsanto) 
at a rate of 5L ha−1. The experiment was designed with two factors, deployment-type and clone, 
replicated in five blocks. Each block contained a total of 20 ramets per clone planted in ten 60 cm 
× 50 cm plots: eight monoclonal plots containing only ramets of each clone and two mixed plots 
containing all clones randomly mixed.

A random assortment of ramets from all clones used in the experiment was planted around the 
perimeter of each block to create a buffer to reduce edge effects. A secondary buffer, using ramets 
of the same clone as the measurement clone, was included in each monoclonal plot to exclude any 
potential competitive influences between plots composed of different clones. Furthermore, only four 
ramets of each clone in monoclonal plots were used for data analysis to create a balanced design.

All blocks were hand planted at 0.1 m between rows and within rows. Only defect-free 
ramets within ± 1 SD of the overall population mean were selected.

2.3 Observations and measurements

Over three growing seasons (2013, 2014 and 2015), shoot height was measured monthly and diam-
eter at base was measured twice annually on the central four ramets in each plot. In January 2015, 
one randomly selected ramet per deployment-type for each clone was destructively sampled (n = 5). 
Ramets were cut at the base and a soil monolith measuring 0.20 × 0.20 × 0.20 m was excavated 
from the base of each ramet. Soil monoliths were placed in individual plastic bags containing water 
for 24 hours to loosen soil particles. Roots were then carefully hand washed to remove moss, soil 
and stone particles. Roots were then dried at 80 °C for 48 h and weighed (Adam Equipment model 
PW 124, Adam Equipment, South Africa).

Crown silhouette area (CSA), an index of displayed leaf area, was then calculated for each 
destructively harvested ramet to determine displayed leaf area using the methodology described in 
King et al. (2008). Each ramet was photographed twice at right angles perpendicular to the stem 

Table 1. The number assigned to each Sitka spruce 
clone planted in the experiment, numbered 1–8. Four 
clones (1, 3, 5, 8) had common parents, another clone 
(clone 7) shared a parent with these four clones and 
clone 2. The remaining two clones (clones 4 and 6) 
were unrelated to any other clones in this experiment. 
Clones were propagated using somatic embryogenesis 
with seeds from controlled crosses of elite parents used 
in the Irish tree improvement programme.

Clone Number Cross

1, 3, 5, 8 230 × 519
2 377 × 574
4 286 × 542
6  27 × 306
7 377 × 519
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(north–south and east–west orientation) with an object of know size included in each photograph 
against a white background using a Nikon D70s SLR (Nikon Inc., Melville, New York). To enhance 
contrast between trees and background, exposure values (eV) were set at –1.0 eV (Stovall et al. 
2013). Photographs were then analysed using ImageJ (ImageJ, U.S. National Institutes of Health, 
Bethesda, Maryland, USA).

Photographs were converted from JPEG to binary images and the background removed, 
leaving only the stem, crown and the object of known size. CSA was calculated by comparison 
with the object of known area included in each photograph. Values from the two photographs per 
ramet were averaged giving CSA in units of m2.

Branches, ≥ 1.5 cm in length, were counted and ramets were separated into foliage, branches 
and stem. Needle length, width and thickness of five randomly selected needles removed from 
the mid-section of a north orientated branch in the top whorl of each ramet was measured using a 
digital callipers. Each component was then dried as previously described for the roots.

2.4 Data analysis

To determine if initial height and diameter influenced final height and diameter, an ANCOVA model 
was fitted using PROC MIXED in SAS 9.3 (2011, SAS Institute Inc., Cary, NC, USA) using initial 
values as covariates and final values were used as dependants, with clone as the grouping variable. 
The following model (1) was used to determine relationships:

Y xij x ij e= + −( ) +µ β 2 (1)

where μ is the overall mean of the response of Y; β is the effect of xij on x2ij or the overall slope, 
xij is initial value of the ith clone; x2ij is the overall mean of the covariate; e is the error term.

To assess if clones differed in growth rates, mean clone values for height and diameter for 
each growing season were then compared using standard analysis of variance procedures (ANOVA). 
To determine the effect of deployment-type, clone and deployment × clone interactions on relative 
height, diameter growth and biomass partitioning during each growing season PROC MIXED was 
used. The performance of clones were then separated into monoclonal and mixed plots by contrast-
ing the performance of eight clones (7 df), the mixture effect, i.e. monoclonal versus mixed (1 df), 
and interaction between the clones and the mixture effect (7 df). The analysis of clonal performance 
in mixtures assumes that each of the clones planted in mixtures be regarded as a single treatment. 
Where significant differences were observed Student-Newman-Keuls (SNK) post-hoc tests were 
used to determine which means were significantly different at P ≤ 0.05. This analysis is similar 
to methods which have previously been used to compare the performance of different species in 
pure and mixed plots (e.g. Mason and Connolly 2013, 2016) and meets the general conditions, as 
outlined by Mead et al. (2012). The following model (2) was used:

Y eijk i j k ik ik j= + + + + ( )( ) + ( )µ α β γ αγ , ( )2

where Yijk is mean height or diameter or height CV or diameter CV or biomass of a particular 
component of ith clone, jth block and kth mode of deployment, μ is overall mean, αi is ith clone, β is 
jth block, γ is kth mode of deployment, (αγ)ik is the interaction of ith clone and kth mode of deploy-
ment and eijk is error.

Additionally, relationships between crown morphology and other traits were also tested to 
determine if deployment significantly affected them. Linear regression was used to test a variety 
of morphological measurements to determine relationships between crown and stem traits.
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3 Results

3.1 Impact of clone and deployment-type

Stem height, stem diameter, and biomass partitioning across deployment-type and years are pre-
sented in Table 2. In general, most significant differences occurred between clones in stem height 
with fewer differences found in stem diameter. Effects of deployment-type, clone and their interac-
tions on measured variables differed significantly at various stages throughout the experiment but 
most differences did not remain at the end of the experiment. Detailed results are presented below.

3.2 Deployment effect on absolute height and diameter

Initial height or diameter values were not found to significantly influence final values for any 
clone. In May 2013, clone height varied from 17.6 cm (clone 7) to 23 cm (clone 6) (Table 3). No 
significant differences in stem height were observed in 2013 between clones or deployment-type.

In May 2013, stem diameter at base ranged from 2.5 mm (clone 8) to 3.6 mm (clone 2) 
(Table 3). Significant diameter differences were observed between several clones, specifically 
between clones 5 and 8 and most others in either deployment-type. Differences between deploy-

Table 2. ANOVA summary for sources of variation and P-values with significant differences in 2013, 
2014 and 2015. NS = > 0.05, * = < 0.05, ** = < 0.01 and *** = < 0.001. CV = coefficient of variation.

P-value
Source of variation Clone (C) Deployment (D) C × D

Year – 2013
Absolute stem height, May * NS NS
Absolute stem diameter, May NS NS NS
Absolute stem height (CV), May NS * NS
Absolute stem diameter (CV), May NS * NS
Relative stem height, July * NS NS
Relative height, mid-July * NS NS
Relative height, August ** NS NS
Relative stem height, September NS * NS
Relative stem diameter, December NS ** NS
Year – 2014
Relative stem height, May *** NS NS
Relative stem height, mid-May *** *** NS
Relative stem height, June ** *** NS
Relative stem height, mid-June ** *** NS
Relative stem height, July NS ** NS
Relative stem height, mid-July NS * NS
Year – 2015
Absolute stem height, August * * *
Absolute stem diameter, May * * *
Absolute stem height (CV), August NS * NS
Absolute stem diameter (CV), May NS * NS
Branch biomass * NS NS
Total above-ground biomass * NS NS
Relative stem height, June NS NS *
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Table 3. Absolute stem height (May 2013 and August 2015) and diameter at base (May 2013 and 2015) for eight 
juvenile Sitka spruce clones planted in monoclonal and mixed plots (n = 5) and mean values for all ramets in each 
deployment-type (n = 10). Data shown are mean values and corresponding coefficient of variation (CV). Values show-
ing the same letter are not statistically significant (P ≤ 0.05). 

Clone Deployment
Type

Diameter
’13 (mm)

Diameter
’15 (mm)

Height
’13 (cm)

Height
’15 (cm)

1 Monoclonal 3.0b (14a) 6.1ab (15a) 19.9a (12a) 56.5a (15a)
Mixed 2.7bc (13a) 5.9b (18a) 20.8a (16a) 55.3ab (19a)

2 Monoclonal 3.3ab (9a) 6.5ab (9a) 20.4a (11a) 57.2a (9a)
Mixed 3.6a (13a) 7.1a (12a) 20.1a (17a) 51.6abc (13a)

3 Monoclonal 3.2ab (18a) 6.4ab (9a) 20.6a (17a) 55.0ab (9a)
Mixed 3.0b (18a) 6.4ab (9a) 18.8a (15a) 50.9abc (9a)

4 Monoclonal 3.2ab (16a) 5.8b (11a) 20.8a (17a) 47.1bc (11a)
Mixed 2.8bc (16a) 6.3ab (18a) 20.6a (18a) 49.8abc (18a)

5 Monoclonal 2.6c (16a) 7.0a (10a) 21.1a (17a) 51.8ab (16a)
Mixed 2.8c (17a) 5.9b (11a) 18.8a (18a) 43.8c (18a)

6 Monoclonal 3.3ab (15a) 6.3ab (6a) 23.0a (12a) 47.9bc (7a)
Mixed 3.0b (12a) 6.0ab (12a) 21.8a (18a) 49.8abc (16a)

7 Monoclonal 3.1b (14a) 5.9b (7a) 19.1a (12a) 43.1c (7a)
Mixed 2.8bc (17a) 6.4ab (16a) 17.6a (17a) 50.2abc (16a)

8 Monoclonal 2.6c (15a) 5.7b (11a) 18.9a (15a) 49.6abc (12a)
Mixed 2.5c (14a) 5.8b (11a) 17.7a (14a) 45.2bc (11a)

Mean monoclonal values 3.1a (15b) 20.5a (15b) 6.1a (10b) 50.5a (11b)
Mean mixed values 2.9a (22a) 19.7a (19a) 6.1a (20a) 49.1a (18a)

ment-type for height and diameter were observed in CV with significantly greater CV in mixed 
plots than in monoclonal plots.

Stem height of clone 5 was significantly lower in mixed plots than in monoclonal plots in 
August 2015 (Table 3). Several other differences were observed between clones in both deployment-
types with the largest differences occurred between clone 2 (57.2 cm) in mixed plots and clone 7 
(43.1 cm) in monoclonal plots.

 Diameter at base of clone 5 was also significantly affected by deployment-type in May 
2015. Ramets of this clone had significantly larger diameters in monoclonal plots than mixed plots 
and had significantly narrower stems than several other clones in either deployment-type with the 
largest difference occurring with clone 2 (7.1 cm).

Differences between deployment-type persisted until the end of the experiment with sig-
nificant differences in height and diameter CV recorded in mixed plots than in monoclonal plots.

3.3 Relative height and diameter

The majority of height growth in both deployment-types occurred between May and June in both 
years, 29 to 44% in 2013 and 17 to 38% in 2014 and height growth had stopped by October (Fig. 1a 
and b). Mixed plots had significantly lower relative height than monoclonal plots in September 
2013 and from mid-May to August 2014. Several clones differed in relative height in July and 
August 2013 with the most productive clones, clone 1, 2 and 3, having significantly greater rela-
tive height than the least productive clone, clone 8. Clone 1 also had significantly greater relative 
height than clone 5 in August 2013. Clone 3 had significant greater relative height than clone 2 
from mid-May to mid-June 2014. Clone 4 had significantly greater relative height than clone 2 in 
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Fig. 1. Stem height relative to final height over the three years (2013, 2014, 2015) of the experiment for eight juvenile 
clones of Sitka spruce in (a) monoclonal and (b) multi-clonal mixtures. Letters above dates indicate statistically signifi-
cant (P ≤ 0.05) differences between clones (C), deployment type (D) and clone × deployment type (C × D).

Fig. 2. Stem diameter at base relative to final stem diameter at base over the three years (2013, 2014, 2015) of the 
experiment for eight juvenile Sitka spruce clones in (a) monoclonal and (b) multi-clonal mixtures. A statistically sig-
nificant (P ≤ 0.05) difference between deployment type (D) occurred in December 2013.

mid-May 2014 only. In June 2015, significant deployment-type × clone interaction was recorded 
for clones 5 and 8, which had significantly greater relative height in monoclonal plots and mixed 
plots respectively.

Between 39 to 51% of diameter growth occurred in the first growing season for all clones 
(Fig. 2). In December 2013, relative diameter was significantly higher in monoclonal plots relative 
to mixed plots, but this difference was not maintained later in the experiment.
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3.4 Biomass distribution

In January 2015, clone 2 had significantly greater total above-ground biomass than all other clones 
(Table. 4). In general, all clones allocated the lowest percentage of biomass to branches with clones 
7 and 8 allocating significantly less biomass to branch growth in 2015 than clone 2. No significant 
differences were observed in mean or proportional values for foliage (3.92 g ± 0.58; 26 to 35%), 
stem (3.53 g ± 0.59; 22 to 31%) or root (4.05 g ± 0.64; 25 to 37%) biomass in 2015.

3.5 Relationships between height growth, biomass and crown morphology

Several relationships between crown traits were highly significant (P < 0.001; Fig. 3). Deploying 
ramets in monoclonal plots significantly reduced regression coefficients (P < 0.001) and the strength 
of relationships between total biomass and between crown silhouette area (CSA) and branch number 
and CSA declined by up to 30%.

Highly significant positive relationships were observed for total height and 2014 height 
increment (Fig. 4a), shoot biomass and stem biomass (Fig. 4b), foliage biomass and branch biomass 
(Fig. 4c) and shoot biomass and CSA (Fig. 4d). The relationship between 2014 height increment 
and total height reflected the large increase in height growth that occurred in 2014. The significant 
positive linear relationship observed between foliage biomass and branch biomass, indicated that 
more foliage biomass is produced by ramets with larger and heavier branches (Fig. 4c). Shoot 
biomass had a significant positive linear relationship with CSA (Fig. 4d).

Table 4. Biomass partitioning of eight juvenile Sitka spruce clones in January 2015. 
Data shown are mean values ± 1 SE (standard error). Means showing the same letter 
are not statistically significant (P ≤ 0.05). n = 10.

Biomass Partitioning
Year Clone Branch (g) Total above-ground biomass (g)

2015 1 1.23 ± 0.2ab 12.89 ± 1.5b
2 1.88 ± 0.3a 17.26 ± 1.0a
3 1.27 ± 0.3ab 12.98 ± 1.4b
4 1.33 ± 0.3ab 12.24 ± 0.6b
5 1.71 ± 0.4ab 11.77 ± 2.0b
6 1.50 ± 0.3ab 12.83 ± 1.6b
7 1.11 ± 0.3b 11.22 ± 1.9b
8 1.16 ± 0.3b 12.08 ± 1.7b
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Fig. 3. Relationship between (a) branch biomass and stem biomass, (b) total biomass and crown silhouette area (CSA) 
and (c) branch number and CSA for all Sitka spruce ramets planted in monoclonal and clonal mixtures in January 2015. 
Symbols indicate deployment-type. Lines represent linear regressions for each deployment type; solid lines = monoclo-
nal plots, dashed lines = mixed plots. ** = P < 0.01; ***= P < 0.001. Each point represents a ramet.
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Fig. 4. Relationship between (a) shoot height increment in 2014 and total stem height in 2014, (b) shoot and stem 
biomass (c) foliage and branch biomass and (d) shoot biomass and crown silhouette area for eight Sitka spruce ramets 
planted in monoclonal and multi-clonal mixtures in January 2015. Lines represent linear regressions, *** = P < 0.001. 
Each point represents a ramet.

4 Discussion

4.1 Influence of deployment-type on stem growth

Perhaps the most pertinent question in clonal forestry is determining how deployment-type affects 
tree performance. The close spacing used in this experiment was intended to accelerate compe-
tition between ramets, encouraging faster phenotypic expression and enabling morphological 
responses to intra- and inter-clonal competitive pressures to be determined earlier (Adams et al. 
2008; Gould et al. 2011). Although mean stem diameter was not affected by deployment-type, 
stem height was lower in mixed plots than monoclonal plots in 2014. Furthermore, the height and 
diameter of clone 5 was significantly reduced in mixed plots. These results suggest that for some 
clones, deploying them in mixtures could reduce their growth and their performance could be less 
predictable which might result in a reduction of mean stand productivity. These results partially 
agree with other longer-term studies on conifers and broadleaves (Benbrahim et al. 2000; Sharma 
et al. 2008b), which found that deployment-type did not affect overall growth or productivity, but 
individual clonal performance differed with deployment-type.

Increased size heterogeneity in mixed plots could be attributed to increased growth of the 
more productive clones at the expense of the slower growing clones. DeBell and Harrington (1997) 
and Sharma et al. (2008b) recorded higher coefficients of variation in mixed plots compared to 
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monoclonal plots for diameter at breast height and stem height. In the current study, significantly 
greater coefficient of variation of absolute height and diameter was found in mixed plots com-
pared to monoclonal plots on several occasions during the study. This result might be related to 
the assumption that in monoclonal plots all ramets are equally competitive, while in mixed plots, 
competitive ability varies and the less competitive clones would be dominated by more competi-
tive clones (Sharma et al. 2008b).

Clones which grew faster at an earlier stage could achieve a size advantage in mixed stands 
once canopy closure occurred, further increasing their ability to dominate their neighbours. 
Sharma et al. (2007) demonstrated that clones of Pinus radiata, which had slow initial growth 
after planting, would be at a competitive disadvantage and their growth would be suppressed once 
competition became intense. Assessing intra-annual growth provides important information on how 
competitive interactions developed and how differences in growth may affect annual growth rate. 
Several clones in the current study were found to have different intra-annual growth patterns and 
one clone demonstrated significantly reduced height growth in mixed plots. Determining when 
each clone has its peak growth, and thus their peak resource demands, forest managers can influ-
ence site productivity by mixing clones which have different temporal demands (Lindgren 1993). 
Temporarily varying resource demands by planting clones in mixtures could reduce competition 
between individuals and increase overall stand productivity through more efficient resource use.

Furthermore, size differences at the time of establishment could affect a tree’s ability to 
compete efficiently with its neighbours (South and Mason 1993). Even slightly greater stem height 
or vigour at the time of establishment could increase a tree’s ability to capture light, and over time, 
gain an advantage over smaller neighbours perpetuating their dominance and their neighbours sup-
pression (Oliver and Larson 1990). Although non-significant differences were recorded between 
ramets at the beginning of the experiment, these did not affect individual height or diameter growth 
responses in either deployment-type.

Changes in inter-annual growth patterns have been observed for many tree species during 
stand development, increasing the uncertainty of applying results from juvenile trees to mature 
stands (Adams et al. 2008). However, very young trees have shown similar growth responses 
to mature trees in previous studies of Sitka spruce and Douglas fir (Campbell and Wilson 1973; 
Gill 1987). Furthermore, decreasing spacing causing a corresponding increase in competitive 
interactions, did not alter the growth response of seedlings relative to mature trees of Douglas fir 
(Campbell and Wilson 1973). Thus, by increasing planting density and accelerating the competition 
process, it may be possible to predict growth and competitive responses at an earlier age without 
compromising selection accuracy.

These results demonstrate the importance of considering competitive conditions when devis-
ing clonal mixtures. Ignoring such interactions and growth responses could result in inappropriate 
mixtures which may decrease stand productivity, depending on deployment-type, site and genetic 
composition (Adams et al. 2008). Thus, productivity gains may be over-estimated for some clones 
by excluding competitive interactions during the screening and subsequent planting process. Con-
sidering the limited duration, age and number of clones used in this study, it is plausible that the 
significant variation in growth rates which occurred between clones would further increase stand 
heterogeneity in mixed plots over time without silvicultural intervention.

4.2 Crown architecture and biomass partitioning

Crown shape or structure can dictate a tree’s competitive ability (Alves and Santos 2002). Asym-
metric competition for light can impact stand structural dynamics, dictating competitive interac-
tions between trees of different sizes (Umeki 1997). Trees grown in uniformly aged stands will, 
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over time, separate into several crown classes depending on crown size and architecture. Most 
clones in the current experiment exhibited similar crown characteristics and biomass partitioning 
strategies in January 2015; however, clone 2 had significantly greater branch biomass, total bio-
mass and CSA than several other clones during the experiment. The biomass partitioning strategy 
observed in clone 2 resulted in it allocating more biomass to aboveground components, increas-
ing its competitive ability at an important stage of stand development when competition for light 
was the main limiting factor for growth in mixed stands. Conversely, if soil resources (i.e. water 
and nutrients) are limited increased root biomass, particularly fine root biomass, might be a better 
competitive strategy (Berendse and Moller 2009). However, fine root surface area for roots between 
0.2–0.4 mm have been shown to be negatively affected in Sitka spruce clones when deployed in 
mixed plots (Donnelly et al. 2016).

At the end of the experiment, competition between individuals in mixed plots was more 
asymmetrical than in monoclonal plots, which could ultimately affect stand composition and over-
all productivity in mixed plots (Alves and Santos 2002). This suggests that increased inter-clonal 
competition may be due to differences in growth, biomass partitioning and phenology between 
clones (Michael et al. 1988; Jonsson and Óskarsson 2007). This is supported by results from the 
regression analyses, which showed that competitive environment altered the relationships between 
crown variables. However, an individual’s height and/or its biomass partitioning strategy was more 
important in determining its growth in mixed than in monoclonal plots.

Genetic and environmental variation plays a critical role in shaping crown architecture, 
influencing growth rates and biomass partitioning. The young age of material and limited dura-
tion of this experiment may restrict the extrapolation of these findings to older trees. Additionally, 
relatively few clones were studied and therefore results may not apply to all available clones. Thus, 
more in-depth studies are required to assess deployment effects using older material at several sites 
through the full planting range of Sitka spruce to see if differences remain over time. The sporadic 
differences observed between clones over the study highlight the difficulty in assessing such young 
clones. Although it would be preferential to assess clones at a mature stage such prolonged trials 
are restricted by logistical and financial limitations. Furthermore, frequent changes over time in 
mature clones have previously been reported in both mixed (Zsuffa 1975; Ares 2002) and mono-
clonal plots (Debell and Harrington 1997) of Populus clones.

5 Conclusion

Deployment-type resulted in different competitive pressures affecting growth and biomass parti-
tioning. A significant deployment × clone interaction occurred for one clone in 2015 for absolute 
stem height and diameter. Additionally, inter-clonal competition increasing within- and between 
clone variability in tree growth which could affect the contribution of individual clones to plot 
productivity over time. Deployment-type significantly altered relationships between crown vari-
ables and competition was more asymmetric in mixed plots relative to monoclonal plots. Thus, 
predicted gains in productivity may not be realised for certain clones when deployed in mixtures 
if competitive interactions are excluded from clonal trials. It is plausible that the significant vari-
ation observed between growth rates would further increase stand heterogeneity in mixed plots 
over time without silvicultural intervention, negatively affecting stand uniformity and productivity.
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