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As a hardwood tree grows and develops, surface defects such as branch stubs and wounds 
are overgrown. Evidence of these defects remain on the log surface for decades and in many 
instances for the life of the tree. As the tree grows the defect is encapsulated or grown over 
by new wood. During this process the appearance of the defect in the tree’s bark changes. The 
defect becomes flatter and its dimension changes. This progressional change in appearance 
is predictable, permitting the size and location of the internal defect to be reliably estimated. 
This paper concerns the development and analysis of models for the prediction of internal 
features. With the advent of surface scanning and external detection systems, the prediction 
of internal features promises to significantly improve the quality, yield, and value of sawn 
wood products.
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1 Introduction
 

Accurate information about the size, shape, and 
location of internal hardwood log defects is the 
key to dramatically improving the value and qual-
ity of lumber sawn. Historically, the research 
effort examining the relationships among external 

indicators and internal defect features has been 
sporadic. This is surprising given that external 
log defects provide clues about internal defect 
features. Given the advent of computerized log 
scanning systems able to detect defects on the 
log surface (Thomas et al. 2006), there is more 
interest in developing reliable internal defect 
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prediction models. The implementation of these 
models in conjunction with scanning and detec-
tion software promises to provide internal defect 
information using simple laser surface scanning 
equipment.

Schultz (1961) studied German Beech and 
found that the ratio of the bark distortion width 
to distortion length was the same ratio of the stem 
when the branch stub was encapsulated to the 
current stem diameter. However, for species with 
heavier, irregular bark, like hard maple, Shultz 
found that it was difficult to judge the clear area 
above the defect using this method. Similarly, 
Shigo and Larson (1969) discovered that for many 
hardwoods the ratio of defect height to width indi-
cates the depth of the defect with respect to the 
radius of the stem at the defect (Fig. 1). Hyvärinen 
(1976) used sugar maple (Acer saccharum) defect 
data collected by Marden and Stayton (1970) 
to examine the relationships of external indica-
tors to grain orientation and defect encapsulation 
depth. The sugar maple defect data was collected 
from 44 trees obtained from three sites in upper 
Michigan. Hyvärinen found strong correlations 
among encapsulation depth and bark distortion 
width, length, and rise using linear regression 
methods. The best simple correlation (r = 0.66) 
was with diameter inside bark (DIB) that had a 
0.66-inch standard error of estimate. The final 
model used stepwise multiple linear regression to 
find a strong correlation (r = 0.74) with DIB and 
distortion length to encapsulation depth.

Perhaps the most in-depth examination of the 
external/internal defect relationship was con-
ducted in Canada on a softwood species. Lem-
ieux et al. (2001) conducted a similar study using 
21 black spruce trees (Picea mariana) collected 
from a natural stand 75 km north of Quebec City. 
Three trees, each with three logs were selected 
from which a total of 249 knot defects were dis-
sected and their data recorded. It is interesting 
to note that the researchers found better correla-
tions between external indicators and internal 
features on the middle and bottom logs than the 
upper logs. Strong correlations (r > 0.89) among 
the length and width of internal defect zones and 
external features such as branch stub diameter and 
length were found. The researchers modeled the 
defects using three distinct zones corresponding 
to how the penetration angle changes over time in 

black spruce. The penetration angle is the angle 
at which a line through the center of the defect 
intersects the log surface. The Lemieux et al. 
study examined only branches that had not been 
dropped nor pruned, thus preventing an examina-
tion of encapsulation depth.

The largest known study examined correlations 
among external defect size and type populations 
and their impact on the grade or quality of the 
lumber sawn from those logs. This study exam-
ined thousands of logs and several hardwood 
species. The results from this study were used 
to develop the hardwood tree and log grading 
rules (Rast et al. 1973). The correlation of exter-
nal indications to internal defects was limited to 
relating log grade to lumber grade yield (Hanks 
1976). Although useful, this study only grossly 
considered the relationships among external and 
internal defects. 

X-ray/CT (computed tomography) has been the 
traditional research path to determining internal 
defect structures in recent years (Chang 1992, 
Thawornwong et al. 2003). This research has 
typically used medical CT scanners modified for 
industrial use. However, CT scanning technology 
remains expensive with slower than mill speed 
data acquisition speeds. Further, the technol-

Fig. 1. Illustrated guide showing relationship between 
bark distortion length/width ratio and encapsulation 
depth (Shigo and Larson 1969).
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ogy has difficulty with larger diameter logs and 
variable moisture content can present problems. 
These problems have prevented CT scanning from 
being accepted by the industry. A more successful 
X-ray scanning approach commonly uses 3 or 
4 transmitters and detectors to capture internal 
log defect data. These scanners operate much 
faster than CT scanners and have become more 
common in Northern Europe and in Northwestern 
North America. However, these types of scanners 
obtain lower quality/resolution data than do CT 
scanners.

This research takes an alternative approach to 
CT scanning for determining internal log defect 
characteristics. Like the earlier studies by Lemiux 
and Hyvärinen, this research seeks to estimate 
internal defect characteristics based on external 
indicator measurements. The scope of this study 
was larger than the earlier ones in that more 
samples were collected and the model sought to 
predict more internal features for a greater variety 
of defect types.

In an earlier study the relationships among the 
most commonly occuring yellow-poplar defect 
and their internal features examined (Thomas 
2008). Using a series of multiple linear regres-
sion analyses, this study quantified the rela-
tionship among external defect indicators and 
internal defect characteristics for yellow-poplar 
(Liriodendron tulipifera) logs. Based on these 
results, models were developed to predict internal 
features (penetration angle, penetration depth, 
midpoint cross-section diameters, and encap-
sulation depth) using visible external features 
(log diameter; indicator width, length, and rise). 
Good correlations and small prediction errors 
were observed with sound (sawn), overgrown, 
and unsound knot defects. For less severe defects 
such as adventitious buds/clusters and distortion 
type defects, weaker correlations were observed, 
but the magnitude of prediction errors were small 
and acceptable (Thomas 2008). 

However, that research dealt with a single spe-
cies and did not address clustered knot defects 
due to an insufficient number of samples. Clus-
tered knot defects in general are larger and are 
associated with more severe internal defect fea-
tures. This paper determines if data from multiple 
clustered (unsound, sound, and overgrown) knot 
defect types can be pooled and used to develop 

accurate internal prediction models. In addition, 
this paper examines defects in red oak (Quercus 
rubra), one of the most important commercial 
hardwood species in the Appalachian forest. 

2 Materials and Methods

2.1 Sample Collection

Red oak and yellow-poplar defect samples were 
collected from three sites in the central Appa-
lachian forest in North America (Fig. 2). Fig. 2 
also shows the native ranges of red oak and 
yellow-poplar (Little 1971). Site 1 was located in 
northern West Virginia at an elevation of approxi-
mately 700 m. Site 2 was located in southern West 
Virginia at an approximate elevation of 790 m. 
Site 3 was located between these sites and at an 
elevation of 975 m. Site 2 was the southernmost 
and also had the lowest elevation. The winters at 
this site are significantly milder than those of sites 
1 and 3. Further, site 2 was on abandoned farm 
with very good soils. Site 1 was the northernmost 
and was on very rocky soil. Site 3 was located 
approximately between sites 1 and 3 and was at 
the highest elevation. Table 1 lists the number 
and types of defects collected from each site by 
species. 

A species sample from a site consisted of a 
random selection of 33 trees. The goal was to 
collect four defects of each type from each tree 
whenever possible. For example, if there were 
eight sound knots on a tree, every second sound 
knot was selected. Not all trees had four defects 
of each type. In other cases, selecting one defect 
would prevent another from being selected due 
to defect overlap. Whenever this occurred, the 
defect that was least common on the tree was 
given preference and collected and a different 
occurrence of the other defect collected.

2.2 Sample Processing

All defects were identified using the methodol-
ogy defined by Carpenter et al. (1989). Once 
a defect was identified, the section containing 
it was cut from the log. The average length of 
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the defect sections was approximately 300 mm. 
The sample was discarded if it was found during 
slicing that the part of the interior defect was not 
completely contained in the section. An alignment 
groove was cut into the top of the section in a line 
between the indicator and the pith. This provided 

a smooth area for ring counts and a reference 
point for collection and position of the defect 
cross-sections. An identifying tag was stapled 
to the section with the surface indicator and all 
sections photographed (Fig. 3).

Red oak distribution
Yellow-poplar distribution

500 500 10000 1500 kilometers

Fig. 2. Map showing sample log defect sample sites.

Table 1. Numbers of defect samples collected by species, site, and type.

Defect type  Red oak sites Yellow-poplar sites

 WVU Mead Westvaco WVU Camp Creek
 forest forest forest state forest

Adventitious knot (AK) 54 51 66 75
Adventitious knot cluster (AKC) 27 47 68 59
Heavy Distortion (HD) 52 46 60 74
Light Distortion (LD) 2 37 6 98
Medium Distortion (MD) 70 63 79 91
Overgrown knot (OK) 45 114 76 87
Overgrown knot cluster (OKC) 0 48 20 1
Sound knot (SK) 19 36 31 41
Sound knot cluster (SKC) 1 13 0 2
Unsound knot (UK) 30 31 33 6
Unsound knot cluster (UKC) 0 13 0 0
Wound (WND) 0 43 13 14
Total 300 542 452 548
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2.3 Statistical Methods 

Within each species the defect data from different 
sites were combined and grouped by defect type. 
A series of chi-square tests were used to test for 
outliers within each defect type grouping (Komsta 
2006). Any data identifi ed as an outlier was exam-
ined and corrected if in error. The R statistical 
analysis program was used to perform stepwise 
multiple linear regression analyses on the grouped 
defect data (R Development Core Team 2006). 
Within each species/defect group, the data was 
randomly partitioned into two sets. The fi rst set 
contained approximately two-thirds of the data 
and was used for model development. The second 
set held the remaining one-third of the data and 
was used for model testing and validation. The 
model testing samples were used to analyze the 
model’s predictive capabilities. The regression 
equations generated with the model development 
samples were used to predict internal feature 
measurements. The correlation coeffi cient r, the 
mean absolute error (MAE), and the signifi cance 
level of the correlation were determined for each 
defect type and feature combination (Table 2).

The independent variables used were surface 
indicator width (SWID), length (SLEN), rise 
(SRISE), and log diameter at the defect (DIB). 
These variables were selected because they are 
easily measured when the log is inspected or 
laser scanned (L. Thomas et al. 2006). AREA 
(SWID * SLEN), SLEN2, SWID2, VOLUME 
(SWID*SLEN*SRISE), as well as all possible 

interaction term combinations with DIB also were 
tested for any correlation with internal feature 
measurements. The dependent variables repre-
senting the internal features for which predic-
tion models are sought were: encapsulation depth 
(CLEAR), penetration depth (DEPTH), penetra-
tion angle (RAKE), and cross-section width and 
length at penetration depth midpoint (HWID and 
HLEN). Using these fi ve variables an approxi-
mate internal structure of a log defect can be 
determined (Fig. 4).

Fig. 3. External indicator and series of internal defect sections for a heavy distortion defect from a red oak log.

Surface
idicator

Rake

Clear
wood

Width and length
at midpoint

Penetration depth

Fig. 4. Defi nition of internal features described by the 
dependent variables used in the prediction model.
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3 Results
The severe defect types overgrown, sound, and 
unsound knots and knot clusters have the great-
est impact on log value and utility. For analyses 
and discussion of the less severe defect types 
refer to earlier work by Thomas (2008). Correla-
tion results for model development and testing 
for severe defects are presented in Table 2. The 
table is broken down into two main sections, red 
oak and yellow-poplar. Within each section, the 
results for model development and testing are 
listed by defect type. The significance level used 
to evaluate all correlations, development, and test-
ing was α < 0.01. The mean absolute error (MAE) 
column reports the mean of the absolute value of 
the residual errors for the fitted equations. MAE 
indicates the +/– range that can be expected using 
the fitted equation to predict internal features.

3.1 Overgrown Knots

The number of overgrown knot defect samples 
for each species were about the same, 159 red 
oak samples compared to 163 yellow-poplar sam-
ples. All model development and model testing 
correlations were significant (α < 0.01). Overall, 
the model development results of both species 
were similar. Correlations (multiple adjusted 
R2) among external indicator measurements for 
HWID, HLEN, and RAKE features differed little 
among species (Table 2). However, the correlation 
of depth to external features was much stronger 
with yellow-poplar than with red oak, R2 value of 
0.76 versus 0.45. In addition, with model devel-
opment the Mean Absolute Error (MAE) was 
smaller for all variables with yellow-poplar. 

The model testing correlation coefficients, (R), 
were much stronger with yellow-poplar for the 
HWID, HLEN, and DEPTH features. However, 
the correlation of RAKE with external indicator 
measurements was stronger with red oak, R = 0.60 
versus R = 0.46. The MAE was smaller with yel-
low-poplar for most variables, HLEN, RAKE, 
and DEPTH. However, overall the difference in 
the mean absolute prediction errors was less than 
those observed with model development.

3.2 Sound Knots

All yellow-poplar model development and test-
ing correlations were significant. In addition, all 
red oak model development correlations also 
were significant. However, only correlations 
with HLEN for red oak were significant with the 
model testing data set. The main cause of this 
is that there were only 55 red oak sound knot 
samples, compared to 72 yellow-poplar samples. 
When the red oak sample was divided into model 
testing and development sets, only 18 samples 
were available for model testing. In response 
to the sample limitation for red oak, the data 
for sound, unsound, and overgrown knots were 
grouped together. The analysis of the grouped 
data is discussed in section 3.4.

Strong correlations for all internal features were 
found with the yellow-poplar defect data. The model 
development adjusted multiple R2 values varied 
from 0.63 to 0.73. In addition, the mean absolute 
error values ranged from a low of 7.9 mm with 
HWID to a high of 14.5 mm for HLEN. Model 
testing results for yellow-poplar sound knots showed 
similar strong correlations, with R values ranging 
from a low of 0.71 with RAKE to a high of 0.87 
with HLEN. The MAE values for the predicted 
feature measurements ranged from 14.2 mm with 
DEPTH to 20.8 mm for HLEN. RAKE had a mean 
absolute error of 13.8 degrees.

3.3 Unsound Knots

Overall some of the weakest correlations were 
observed with the unsound knot samples. There 
are two reasons for this. First, by definition an 
unsound knot contains rot, the extent of which is 
not predictable based on external features. Second, 
there were fewer unsound knots, 61 red oak and 
39 yellow-poplar samples, than overgrown and 
sound knots. Thus, the number of samples for 
model testing with both species was low. Predict-
ably, in the model testing results only one variable 
of each species was significantly correlated with 
external features. In an attempt to develop and test 
a model for predicting unsound knots, the unsound 
knot samples were grouped with the sound and 
overgrown knot samples. The grouped knot data 
is analyzed in the next section.
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Despite the difficulties described above, the 
model development correlations (multiple 
adjusted R2) for both species were all signifi-
cant (α < 0.01). With the exception of RAKE 
(adjusted multiple R2 = 0.36) all correlations for 
yellow-poplar unsound knots ranged from 0.65 to 
0.70. RAKE also had the lowest correlation with 
red oak (adjusted multiple R2 = 0.54). Correlation 
coefficients (adjusted multiple R2) for the other 
features ranged from 0.63 to 0.87.

3.4 All Knots Grouped

Grouping the samples from the overgrown, sound, 
and unsound knots generated large sample sizes 
for both species, 275 red oak and 274 yellow-pop-
lar samples. All model development and model 
testing correlations for both species were sig-
nificant (α < 0.01). Comparisons between results 
from the grouped knot samples and the individual 
results varied by species and knot type.

3.4.1 Yellow-Poplar

For yellow-poplar model development, correla-
tions with the grouped knot data were slightly 
weaker than those discovered with the pure sound 
and unsound knot data sets. However, correlations 
with the grouped knot data were slightly stronger 
than those discovered with the single overgrown 
knot data set (Table 2). Further, often the mean 
absolute error measurements of the grouped data 
were comparable to the smallest MAE value of 
the best pure data sample analysis, regardless 
of knot type. Thus, grouping the data had little 
overall impact on the accuracy of the predicted 
internal features during model development.

With the model-testing subset, most correla-
tions with the prediction equations were stronger 
with the grouped knot data than with most of the 
pure overgrown and unsound knot samples. For 
all sound knot internal features better correlations 
were realized using the pure sound knot defect 
data. In addition, the MAE values of the grouped 
knot data for most internal values were less than 
or approximately the same as those observed 
with the single overgrown, sound, and unsound 
knot data sets.

3.4.2 Red Oak

The correlations of external feature measurements 
to internal feature sizes for the grouped knot data 
were weaker than those discovered with the pure 
sound and unsound knot data sets during model 
development. Similarly, the grouped knot data 
also had higher MAE values than most of those 
observed with fitting of the single overgrown, 
sound, and unsound knot data sets (Table 2). 
However, with the model-testing subset, most 
correlations with the prediction equations were 
stronger with the grouped knot data than with 
most of the single knot sample sets. The only 
exceptions being with the slight advantage of the 
overgrown knot RAKE (R = 0.60 versus R = 0.55) 
and DEPTH (R = 0.62 versus R = 0.60) features. 
Further, the MAE values for the predicted inter-
nal features in most cases were smaller with the 
grouped data set. The MAE values for HLEN and 
HWID were 10.67 mm and 23.62 mm, respec-
tively. The reason for the large differences in 
performance when comparing the model testing 
and model development results of the pure knot 
samples with the grouped sample is sample size. 
The limited number of pure knot samples prevents 
an accurate pure model from being developed. 

3.5 All Knot Clusters Grouped

Cluster knot defects are composed of two or more 
overgrown, sound, or unsound knots such that 
their surface indicators are merged or intertwined 
together. In nature, these defects occur less fre-
quently than other types of knot defects. The small 
number of overgrown, sound, and unsound knot 
cluster samples required grouping the clustered 
knot samples for well-founded statistical analysis. 
The red oak clustered knot sample consists of a 
total of 85 samples. However, there are only 23 
yellow-poplar knot cluster defect samples. Even 
with grouping, the number of yellow-poplar knot 
cluster samples are too few for the development 
of reliable prediction models. Thus, knot cluster 
model analysis is limited to red oak defects. 

The model development correlations (adjusted 
multiple R2) of HWID, HLEN, and DEPTH with 
surface features were significant while those with 
RAKE were not (α < 0.01) (Table 2). The cluster 
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knot adjusted multiple R2 values were comparable 
to those of the other red oak knots. However, the 
MAE values for the cluster knots were higher, 
ranging from 16.8 mm to 29.2 mm. Model test-
ing revealed that the correlations with DEPTH 
and the testing set were not significant. The other 
internal variables were significantly correlated 
with external indicators. The correlation coef-
ficients (R) of the grouped cluster knot samples 
were similar to values recorded with overgrown, 
sound, and unsound knots. 

4 Discussion

Although this study examined log defects from 
different sites in the Central Appalachian moun-
tains, it is believed that these are representative 
throughout the natural range of the two species. 
Carpenter’s (1950) examination of surface indi-
cators found that although the frequency and 
occurrence of defects within a given species vary 
by region, in general the same indicator will be 
found with its defect in the underlying wood. For 
example, as growth rate varies from site to site and 
region to region, the defect encapsulation rate will 
differ also. However, the rate at which the encap-
sulation occurs, and the degree to which the defect 
is encapsulated will be indicated in the defect’s 
bark pattern. Thus, the faster the diameter growth, 
the faster the defect is encapsulated, and thus the 
faster the bark distortion pattern changes.

Overall the correlations among external and 
internal defect features were stronger with yel-
low-poplar. Further, grouping all yellow-poplar 
knot samples together resulted in stronger cor-
relations for most internal features. Grouping all 
red oak knot samples together resulted in slightly 
weaker correlations in model development, but 
stronger correlations were observed when testing 
the model. All correlations for yellow-poplar and 
red oak were significant with the grouped knot 
data. However, more yellow-poplar clustered knot 
samples are needed, as there were not enough 
samples for analysis after grouping. Grouping the 
red oak and yellow-poplar clustered knot samples 
together also did not yield significant correlations 
among internal and external features. Grouping 
the red oak cluster knot samples yielded signifi-

cant correlations in most cases. The success of 
grouping knot types together indicates that knot 
classification in automated scanning and detection 
systems may not be critical, if grouped internal 
models are used.

The size, type, and location of defects on hard-
wood lumber dictate the grade and value of each 
board. Optimized log breakdown must consider 
internal defect features and how they will impact 
the value of the boards produced. Thus, a key 
problem to optimizing the sawing of hardwood 
logs is acquiring internal defect data. The devel-
opment of models to predict internal defect fea-
tures based on external indicators is one solution. 
In addition, recent advances in image processing 
have produced methods capable of accurately 
detecting moderate to severe defects with 12mm 
or more of surface rise using laser range data 
(Thomas et al. 2006). Further development of 
the prediction models and scanning methods and 
a joint confirmation study is planned.
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