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Highlights
• Image based forest attribute map generated using NFI plots show similar accuracy as currently 

used LiDAR based forest attribute map.
• Also similar accuracies were found for different forest types.
• Aerial images from leaf-off season is not recommended. 

Abstract
Exploring the possibility to produce nation-wide forest attribute maps using stereophotogram-
metry of aerial images, the national terrain model and data from the National Forest Inventory 
(NFI). The study areas are four image acquisition blocks in mid- and south Sweden. Regression 
models were developed and applied to 12.5 m × 12.5 m raster cells for each block and validation 
was done with an independent dataset of forest stands. Model performance was compared for 
eight different forest types separately and the accuracies between forest types clearly differs for 
both image- and LiDAR methods, but between methods the difference in accuracy is small at plot 
level. At stand level, the root mean square error in percent of the mean (RMSE%) were ranging: 
from 7.7% to 10.5% for mean height; from 12.0% to 17.8% for mean diameter; from 21.8% to 
22.8% for stem volume; and from 17.7% to 21.1% for basal area. This study clearly shows that 
aerial images from the national image program together with field sample plots from the NFI can 
be used for large area forest attribute mapping.
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1 Introduction

Mapping of forest attributes using light detection and ranging (LiDAR) has recently changed how 
forest companies acquire forest information. Airborne Laser Scanning (ALS) based forest inven-
tories are now common practice in many countries (White et al. 2013; Vauhkonen et al. 2014). For 
large forest holders or groups of small forest holders with regionally concentrated forest holdings 
e.g., forest companies, dedicated ALS campaigns together with simultaneous field inventories of 
training plots is feasible, but is not cost-efficient for small forest holdings. 

Small-area forest stakeholders, e.g., private forest owners, as well as governmental organi-
sations have an interest in a production of nation-wide ALS based forest attribute maps. Many 
countries, e.g. Denmark, Finland, Netherland, Switzerland and Sweden, are doing or have done 
national ALS surveys. In Denmark, the national ALS datasets and National Forest Inventory (NFI) 
data has been used to estimate forest resources, reporting RMSEs of 42% for basal area and 46% 
for volume at plot level (Nord-Larsen and Schumacher 2012). In Austria, low point density ALS 
acquired for elevation mapping together with NFI data collected under operational conditions were 
used for wide-area stem volume estimation, resulting in standard deviation of 31.5% at plot level 
(Hollaus et al. 2009). In Finland, National Forest Inventory (NFI) data has been added to ALS data 
and dedicated field measurements for improving regional ALS based inventories done by State 
Forest Centres (Tuominen et al. 2014). The study showed that the accuracies of species-specific 
volume estimates improved by adding the NFI data, but the accuracies of total volume, stand mean 
height and diameter did not improve.

In Sweden, the Forest Agency (Skogsstyrelsen) is now mapping forest attributes for the 
whole of Sweden using ALS data captured for the ongoing production of a new national digital 
elevation model together with field sample plot data from the NFI (Nilsson et al. 2016). The national 
collection of ALS data started in 2009 and had by the end of 2016 covered more the 97% of the 
productive forest land area of Sweden. The national forest attribute map with estimates of stem 
volume, tree height, diameter, basal area, and tree biomass has been made available online for free 
at the Forest Agency’s web site. This has generated wide use of the dataset by different stakehold-
ers. However, this data are rapidly aging – every year 3.5% of the forest land is changed due to 
forest treatments like; clear-cutting, thinning, cleaning or final felling of seedling trees (Nilsson 
et al. 2015). Therefore, organisations providing information to the private forest owners (e.g., the 
Forestry Agency and forest owner associations) are now interested in possible future updates of 
the national forest attribute map.

Aerial images have emerged as one possible source of data that can be used to derive three-
dimensional (3D) data similar to those generated by ALS (Baltsavias 1999; Leberl et al. 2010). 
3D data from aerial images describes only the upper part of the canopy surface, whereas LiDAR 
penetrates the canopy and also measures the vertical canopy structure and the ground. Many stud-
ies have shown that 3D data from aerial images together with a high resolution elevation model 
can be used to map forest attributes with accuracies similar to those obtained in ALS based forest 
inventories (St-Onge et al. 2008; Bohlin et al. 2012; White et al. 2013; Gobakken et al. 2015). In 
Switzerland, the NFI uses 3D data from aerial images (Ginzler and Hobi 2015) and NFI sample 
plots and a method that utilizes the NFI criteria of minimum tree height, crown coverage, width, 
and land use to produce a forest cover map with high accuracy, 97%, and with national cover and 
regular updating (Waser et al. 2015). The National Land Survey in Sweden (Lantmäteriet) annually 
acquires aerial images of about one third of the country, with a ground sampling distance (GSD) 
of 0.25 m or 0.5 m and with a forward overlap of 60% and a side overlap of 30% (base to height 
ratio of 0.34), ensuring that each point on the ground is represented in at least one stereo model. 
This is a highly interesting source of 3D data for large-area mapping of forest attributes in Sweden.
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When using aerial images over large areas together with NFI sample plots to map forest 
attributes, some factors that affect the estimation accuracy of the mapped attributes must be 
addressed. The aerial image acquisitions are normally planed in large image blocks which are 
photographed over the time of a few days. However, difference in time over the day generates 
variation of the lighting conditions in the images, e.g., shadows may move between flying two 
strips covering the same area (Honkavaara et al. 2012) . Also due to changing weather, parts of the 
block may be flown later in the season. It is important to have enough field samples to describe 
the variation in the attributes being mapped. The Swedish NFI uses a systematic sampling design, 
commonly used to cover geographical variation (Maltamo et al. 2011). Nevertheless, using too 
old plots data or data from plots geographically too far away from the area being modelled may 
reduce the estimation accuracy.

In this study, the aim is to evaluate the accuracy of forest attribute mapping using 3D data 
from standard aerial images from the national image acquisition program in Sweden, in combination 
with sample plot data from the NFI. Basal area weighted mean height (Hbw), basal area weighted 
mean diameter (Dbw), stem volume (Vol), and basal area (BA) are mapped using the area-based 
approach (Næsset 2002; Næsset 2014). Model performance is reported at plot level and for different 
forest types and compared with model performance from ALS based models. Estimation accuracy 
is evaluated at stand level using independent validation datasets. In addition, models for one sub-
area are applied to other sub-areas to evaluate the effect of phenological variations (leaf-on/off) 
and model robustness for different geographical variations, like forest structure and composition.

2 Materials and methods

2.1 Study area and training data

The study was conducted in four image acquisition blocks (sub-areas) with the size of about 
10 000 km2 in southern (E2) and central (N2, Q2, R2) Sweden (Fig. 1). In each sub-area, for-
ests consist of all kind of developing stages and are mainly dominated by conifers; Scots Pine 
(Pinus sylvestris L.) and Norway spruce (Picea abies L.), but deciduous trees, especially Birch 
(Betula spp.), occurs as minority. Forests are largely well-managed owned by both forest compa-
nies and private land owners.

In the Swedish NFI approximately 9500 sample plots are field surveyed annually. Of these, 
60% are permanent plots with a plot radius of 10 m that are revisited every five years while the 
remaining 40% are temporary plots with a 7 m radius. The NFI plots are positioned with GPS receiv-
ers giving a positional accuracy of about 5 m. These plots are organized into square or rectangular 
clusters consisting of 4, 6 or 8 plots and with a distance between plots ranging from 300 to 600 m. For 
this study NFI plots were selected from the same year or 1–2 years before aerial image acquisition 
to provide a sufficient sample of training data (Table 1). For N2 and Q2 NFI data from 2014 and for 
R2 NFI data from 2015 were not yet available in time of modelling. NFI plots covered forests from 
different developing stages and tree species composition (Table 2). In this study both permanent 
and temporary plots in productive forest land with Hbw over 3 meters were used. For these plots all 
trees was calipered. Plots recorded as divided (i.e., plots located on the boundary between two or 
more stands) in the field by the NFI was not used. Plots with seed trees and plots where the height of 
vegetation was clearly different compared to canopy height from the remotely sensed data (caused 
by, e.g., clear cuts made in the time period between the field inventory and the remote sensed data 
collections) were visually inspected and excluded, removing 10–15% of the plots depending on 
sub-area. This was done separately for the image and LiDAR data sets due to their time difference.
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Table 1. Data collection year for sub-areas E2, N2, Q2 and R2.

E2 N2 Q2 R2

NFI plots 2012–2013 2012–2013 2012–2013 2013–2014
Company stands 2014 - 2015 2015
Biotope stands 2012–2014 - 2012–2015 2012–2015
Aerial images leaf-on 2013 leaf-on 2014 leaf-off 2014 leaf-on 2015
LiDAR data 2010–2012 2010–2012 2009–2011 2009–2012

Fig. 1. The location of the four sub-areas (E2, N2, Q2 and R2) on a background 
map of the Nordic countries (©ESRI).
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2.2 Validation data

For validation at stand level, two types of stands were used: i) forest company stands (company 
stands); ii) biotope protection stands (biotope stands). Company stands represents typical forest 
stand used as planning and operational units in forestry, owned by two different forest companies. 
The stand data was originally collected by forest companies as part of their forest holding inventory 
using the methods and state-estimating models of the Forest Management Planning Package (Jons-
son et al. 1993). Seedling stands were not included in the validation data. The size of the company 
stands varied from 0.3 to 87 hectare with a mean size of 8 hectare. Three to 12 circular sample 
plots having a radius between 5m and 10m were placed systematically in each stand depending 
on the size and heterogeneity of the stand. Diameter of all trees and height of selected trees were 

Table 2. Summary of basal area weighted mean height (Hbw), basal area weighted mean diameter 
(Dbw), stem volume (Vol), and basal area (BA) of the training data for sub-areas E2, N2, Q2 and 
R2. Species proportion is proportion of basal area. 

Characteristic Minimum Maximum Mean Standard  
deviation 

E2, n = 216 plots
Hbw, m 3.0 28.2 14.3 6.2
Dbw, cm 1.3 43.4 18.2 9.4
BA, m2 ha–1 0.7 61.3 21.3 12.4
Vol, m3 ha–1 2.4 669.1 168.6 131.1
Pine proportion (%) 0 100 21 31
Spruce proportion (%) 0 100 49 36
Deciduous proportion (%) 0 100 30 35
N2, n = 167 plots
Hbw, m 3.0 30.8 15.9 6.1
Dbw, cm 3.5 42.8 21.0 9.1
BA, m2 ha–1 1.0 50.8 22.3 10.4
Vol, m3 ha–1 2.7 627.1 181.4 117.7
Pine proportion (%) 0 100 34 36
Spruce proportion (%) 0 100 38 32
Deciduous proportion (%) 0 100 28 32
Q2, n = 223 plots
Hbw, m 3.1 28.4 15.0 5.9
Dbw, cm 2.8 41.2 19.0 8.4
BA, m2 ha–1 2.7 50.5 22.0 9.9
Vol, m3 ha–1 6.6 547.9 174.9 119.6
Pine proportion (%) 0 100 49 37
Spruce proportion (%) 0 100 34 32
Deciduous proportion (%) 0 100 17 25
R2,n = 233 plots
Hbw, m 3.0 29.8 17.0 6.1
Dbw, cm 1.0 45.4 22.5 9.3
BA, m2 ha–1 0.1 59.8 23.8 12.1
Vol, m3 ha–1 0.46 701.5 207.9 144.3
Pine proportion (%) 0 100 37 36
Spruce proportion (%) 0 100 39 34
Deciduous proportion (%) 0 100 24 32
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measured to model the stand attributes at plot level. Stand level results were calculated as mean 
of the plot values. Stand level attributes from company stands used in this study were Hbw, Dbw, 
stem volume and basal area, except for E2 where Hbw was not measured in the field.

Biotope stands are special conservation areas created for conservation of biotopes and endan-
gered species. Biotope stands used in this study variated between 0.7–12.9 ha and were mainly 
mature forests and forests with high amount of deciduous trees. Field measurements in biotope 
stands were planned for evaluation of conservation values not for forestry, however the total stem 
volume was surveyed thoroughly since it was used for economic compensation to the land owners. 
Therefore, diameter measurement of all trees (Dbh over 8 cm) and circa 100 height measurements 
per biotope stands were used to model the stem volume. Validation stand data (company and bio-
tope) were available for sub-areas E2, Q2 and R2. Company stand data were collected maximum 
two years later than the aerial images and the time difference between biotope stands and aerial 
images was maximum three years. Collected stand data is summarized in Table 3.

Table 3. Summary of basal area weighted mean height (Hbw), basal area weighted mean diameter (Dbw), stem volume 
(Vol), and basal area (BA) of the validation data for sub-areas E2, Q2 and R2. Species proportion is proportion of basal 
area.

Company stands Biotope stands
Characteristic Min Max Mean Std Min Max Mean Std

E2, Company stands: n = 25; Biotope stands: n = 10
Hbw, m - - - - - - -
Dbw, cm 13 31 21.9 4.9 - - - -
BA, m2 ha–1 12.6 42.7 25.9 7.3 - - - -
Vol, m3 ha–1 91 380 211 75.6 144.4 357.0 262.5 66.3
Pine prop. (%) - - - - - - - -
Spruce prop. (%) - - - - - - - -
Deciduous prop. (%) - - - - 30 100 87 21
Q2, n = 37/11
Hbw, m 10.5 24.8 17.8 3.7 - - - -
Dbw, cm 12.2 30.6 22.7 5.2 - - - -
BA, m2 ha–1 12.0 47.0 21.8 8.8 - - - -
Vol, m3 ha–1 65 540 219.0 106.4 179.3 508.8 341.0 95.1
Pine prop. (%) 0 100 57 32 - - - 0
Spruce prop. (%) 0 98 35 28 - - - 0
Deciduous prop. (%) 0 69 8 13 1 79 23 27
R2, n = 82/18 
Hbw, m 9.1 24.9 18.9 3.7 - - - -
Dbw, cm 8.4 40.0 25.4 6.1 - - - -
BA, m2 ha–1 12.0 50.0 27.4 8.4 - - - -
Vol, m3 ha–1 61.0 509.0 243.3 101.3 254 481 349 67.0
Pine prop. (%) 0 100 46 33 - - - -
Spruce prop. (%) 0 99 42 30 - - - -
Deciduous prop. (%) 0 98 12.4 16 2 78 22 21
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2.3 Remote sensing data

Aerial images where captured using UltraCam Eagle digital cameras flying at 3700 m above ground 
level (a.g.l.), generating images with a GSD of 0.25 m and with a forward overlap of 60% and a 
side overlap of 30%. Each sub-area (image block) was photographed in one season (i.e., the same 
year and in leaf-on or leaf-off condition) but the images acquisition dates may differ by many 
weeks due to poor weather conditions or technical problems. The images were block triangulated 
using bundle adjustment and radiometrically corrected by Lantmäteriet, as part of their operational 
aerial image production. The radiometric correction was conducted using a model based approach, 
which included correction of haze, atmospheric effects, hotspots and an adjustment of the final 
colourtone (Wiechert and Gruber 2011). Resulting in pan-sharpened Colour Infrared (CIR) images 
(Green, Red, Infrared) with an 8 bit radiometric resolution.

Photogrammetric processing of the images to produce point cloud data was done using the 
SURE software (Rothermel et al. 2012) which generates a height value for each pixel, using a 
modified semi-global matching algorithm (Hirschmüller 2008). Pixels in the first image represent-
ing one area that is occluded in the second image does not get a height value. Software setting 
AERIAL6030 (pre-defined settings optimized for aerial surveys with 60/30 overlap) was used to 
define parameters for point cloud generation. For sub-areas E2, N2 and Q2 enough images to get 
stereo coverage over the selected NFI plots and validation stands was acquired from the Lantmäteriet 
and used for point cloud generation. However, for sub-area R2 full-coverage was available hence 
using all overlapping images (one to 15 stereo-pairs) for point cloud generation. Finally, the point 
cloud height values were transformed from height above mean sea level to height above ground 
level by subtracting the height of the ground provided by the national elevation model (DEM) 
from Lantmäteriet (with 2 m spatial resolution and 0.2 m vertical accuracy (Owemyr and Lundgren 
2010)). Year and season of image and acquisition for each image sub-area are showed in Table 1.

The LiDAR data used in this study are from the national ALS campaign for a new national 
DEM started in 2009. The scanning is done from an altitude between 1700 m and 2300 m a.g.l. 
with a density of 0.5–1 return/m2, a maximum scanning angle of 20 degrees from nadir, a posi-
tional accuracy for the returns of 0.3 m, and a 20% overlap between scanning strips. The scanning 
campaign is organised in blocks usually 25 by 50 km in size and with the ambition that each block 
should be scanned within a minimal time period using the same scanner. In total, 13 different 
scanners were used for the national laser scanning. Most blocks have been scanned with Leica 
(72%) or Optech (25%) scanners. The ambition has been to scan southern Sweden, which has more 
broadleaved forest, in the spring and autumn during leaf-off periods, whereas northern Sweden 
has mostly been scanned during the summer period. Each study sub-area consists of different ALS 
blocks with variation in acquisition year, season and scanner. Year of LiDAR acquisition for each 
sub-area is shown in Table 1.

2.4 Predictor variables

Predictor variables, i.e., point cloud metrics, were calculated from aerial images and LiDAR point 
clouds using FUSION (McGaughey 2015), which calculates various statistical measures describing 
the point cloud data for each training plot. To filter out mismatches in the image matching process, 
all points outside –2 m and 50 m a.g.l. were removed. The thresholds of the filter were set with 
some extra distance to the expected values, i.e., tree height range from 0 to 40 m, to allow for noise 
in the orientation data. Density metrics of points above a specific height threshold were calculated 
using height limits of both 2 meters which is commonly used in ALS based modelling (Korhonen 
and Morsdorf 2014) and 5 meters which have been shown to be useful for image based modelling 
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(Bohlin et al. 2012). All returns were utilized, when metrics were calculated from LiDAR data, 
but also percentage of first echoes was calculated. 

LiDAR penetrates the canopy giving echoes (points) within the canopy, therefore metrics like 
vegetation ratio (i.e., percentage of points over a certain height threshold) describe forest density 
well and are often used in forest modelling (Vastaranta et al. 2013; Gobakken et al. 2015). How-
ever for image based point clouds, which only describe the surface of the canopy, density metrics 
like vegetation ratio tend to result in 1 or 0 and thus poorly describe the forest density. Therefore 
for the image based point clouds, in addition to the metrics from FUSION (McGaughey 2015), a 
canopy height model (CHM) was generated, with 0.5 m GSD, assigning the maximum height to 
each raster cell. Metrics describing the surface of the canopy were calculated, i.e., mean of; canopy 
height (CHM), slope, aspect, surface ruggedness and surface roughness (Hijmans 2015), for each 
training plot. These metrics were also calculated with all no-data pixels (i.e., occluded areas) set to 
zero instead of being ignored in the calculation. These other than FUSION metrics were calculated 
aiming to improve the characterization of forest density information from the image based point 
clouds, but not calculated from the LiDAR based point clouds. 

2.5 Modelling, prediction and accuracy assessment

Linear regression analysis was used to model relationship between predictor variables and forest 
attributes (Y-variables). Selection of final models was based on produced RMSE, bias and adjusted 
R2 values, significance and correlations of metrics and studies of residual plots. In first phase, the 
best combination of two metrics was selected by testing all possible combinations in a simple linear 
model. In second phase, manual testing of best metrics together with logarithmic and square root 
transformation of Y-variables were executed. A third metric was added if improving the model 
but maximum three metrics were selected for each model to avoid overfitting. Bias correction was 
carried out for predictions with logarithmic or square root transformation of Y-variables. Models 
were built for Hbw, Dbw, stem volume and basal area based on image data and LiDAR data. 

A grid approach was used to obtain forest variable predictions for validation stands. The 
study area was overlaid with a grid of 12.5 × 12.5 m cells, also used by national forest attribute 
map of Sweden. The cell size match that of the temporary NFI plots, but are much smaller than the 
size of the permanent plots. However, the effect of cell size for the prediction of forest variables 
was examined for the project of the ALS based national forest attribute map and was found to be 
small (Nilsson et al. 2016). The regression models constructed with NFI training data were used 
to predict the forest attributes for each grid cell. Cells were intersected by stand borders and the 
mean values of the grid cells with the centre within each stand were calculated in order to obtain 
the forest attributes for stand level. The reliabilities of predictions based on the regression models 
were investigated in terms of RMSE and bias for forest attributes: 

RMSE
y y

n

i ii
n

=
−( )=∑ ˆ

, ( )
2

1 1

bias
y y

n

i ii
n

=
−( )=∑ ˆ

, ( )1 2

where n is the number of training plots or validation stands, yi is the observed value for plot i 
or stand i and ŷi is the predicted value for plot i or stand i. The relative RMSEs and biases were 
calculated by dividing the absolute values by the mean values of the training or validation data.
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At plot-level, model performance was assessed for predictions based on image data. To 
compare the performance of the modelled variables for image and LiDAR data in different forest 
types, training plots from all sub-areas were divided in to 8 different strata (Table 4) and relative 
RMSE and bias were reported for each stratum respectively. These strata were selected since 
separating tree species is of general interest in forestry as is mature forests from an ecological and 
economical point of view. This was not evaluated at stand level because of too few observations. 
Finally we also tested the effect of applying stem volume prediction models from one neighbouring 
leaf-on sub-area (R2) on another leaf-off sub-area (Q2) and wise versa and also a geographically 
distant model (E2) on the same sub-areas (Q2 and R2). 

Table 4. Description of strata and number of plots (N.) used in performance assessment of predictions. Hbw = basal 
area weighted mean height and BA = basal area.

Strata Description N. image N. LiDAR

All All plots 839 856
Deciduous Proportion of deciduous trees > 50% 169 157
Conifer Proportion of conifer trees > 50% 670 699
  Pine dom. Proportion of pine > proportion of spruce or proportion of deciduous trees 318 349
  Spruce dom. Proportion of spruce > proportion of pine or proportion of deciduous trees 336 334
Young Hbw < 15 meter 363 367
Mature Hbw > = 15 meter 476 489
  Mature sparse Hbw > = 15 meter and BA < 20 101 106
  Mature dense Hbw > = 15 meter and BA > 35 103 106

Table 5. Image based model statistics and plot level performance for basal area weighted mean height (Hbw), basal 
area weighted mean diameter (Dbw), stem volume (Vol), and basal area (BA) in different sub-areas. VRx is the vegeta-
tion ratio, i.e. the proportion of points over a threshold x divided by the total number of points. mCHM0 = mean CHM 
with Nodata set to zero. Other metrics are calculated by FUSION (McGaughey 2015). Bias was less than 0.1% in each 
case. * Square root transformation of Y-variable was used and back-transformed. 

Dataset Stand attribute Metrics R2 adjusted RMSE RMSE (%)

E2 Hbw Elev.P95 0.90 1.9 13.5
Dbw Elev.LCV, Elev.P95 0.86 3.6 19.6
Vol* Elev.minimum, Elev.CURT.mean.CUBE 0.88 55.0 32.6
BA Elev.mean 0.73 6.4 29.8

N2 Hbw Elev.P95 0.90 1.9 12.0
Dbw Elev.P95 0.79 4.1 19.7
Vol CanopyReliefRatio, Elev.CURT.mean.CUBE 0.74 59.9 32.9
BA Elev.maximum, VR70%.Elev.P95 0.62 6.4 28.7

Q2 Hbw Elev.P95 0.92 1.7 11.1
Dbw Elev.stdev, Elev.P95 0.82 3.5 18.5
Vol* Elev.CURT.mean.CUBE 0.84 55.3 31.6
BA* Elev.P99, mCHM0 0.69 5.7 26.0

R2 Hbw Elev.P95 0.93 1.6 9.5
Dbw Elev.P95, Elev.LCV 0.84 3.7 16.6
Vol* Elev.SQRT.mean.SQ, VR5 0.83 60.0 28.8
BA Elev.minimum, Elev.CURT.mean.CUBE 0.69 6.7 28.1
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3 Results

3.1 Model and plot level performance

The model statistics and plot level accuracies for the forest attributes from image data are presented 
in Table 5. One to two predictor variables were used in image based models and one to three in 
LiDAR based models. Basic height metrics were the most important predictor variables in image 
based models, but some density metrics were also included in some of the final models. In LiDAR 

Fig. 2. RMSE in percent of mean and bias in percent of mean for mean height (Hbw), mean diameter (Dbw), stem 
volume (Vol) and basal area (BA) in different strata based on all plots for image and LiDAR models.



11

Silva Fennica vol. 51 no. 2 article id 2021 · Bohlin et al. · Mapping forest attributes using data from stereo…

based models combinations of basic height and density metrics were used. Based on image data, 
best model fit was produced in sub-area R2 (BA in sub-area Q2) and lowest in sub-area E2, but 
in general results were quite similar to each other between all sub-areas (Table 5). For the best 
performing models of the sub-areas, RMSE% ranged from 9.5% to 13.5% for Hbw; from 16.6% to 
19.7% for Dbw; from 28.8% to 32.9% for stem volume and from 26.0% to 29.8% for basal area. 
LiDAR based models performed better for all forest attributes in all study areas, even though the 
LiDAR data was relatively old (Fig. 2). 

Image and LiDAR based models show in general similar performance for the different strata 
(Fig. 2); highest and lowest performance were predicted in same strata in both datasets. LiDAR 
based performance were always slightly better compared to images based performance. Hbw 
and Dbw were clearly overestimated in deciduous dominated forest and in young forests result-
ing in lower RMSE% compared to other strata. In addition Hbw was underestimated in mature 
sparse forests. Lowest accuracies for stem volume and basal area were produced in mature sparse, 
deciduous dominated and young forests, where deciduous dominated and mature sparse forests 
were clearly overestimated. Best performances were obtained in mature forests and especially in 
mature dense forests for all attributes, even though stem volume and basal area of mature dense 
forest was usually underestimated. 

3.2 Stand level validation

Validating the models at stand level using all the validation stands (company and biotope com-
bined) at each sub-area, the results are similar between the sub-areas except for Dbw in E2, where 
the RMSE was clearly higher (Table 6). For the best performing models of the sub-areas (E2, Q2 
and R2), RMSE ranged from 7.7% to 10.5% for Hbw (E2 excluded); from 12.0% to 17.8% for 
Dbw; from 22.0% to 22.7% for stem volume; and from 17.7% to 21.1% for basal area. The bias 
for all variables in Q2 shows a rather large underestimation (from –5.0 to –9.6%). Fig. 3, shows 
that almost all stands with high stem volumes are underestimated in Q2, whereas in E2 and R2 
volume estimates are more evenly distributed. 

Table 6. Stand level accuracies for basal area weighted mean height (Hbw), 
basal area weighted mean diameter (Dbw), stem volume (Vol), and basal area 
(BA) in different sub-areas (all stands).

Dataset Stand attribute RMSE RMSE (%) Bias (%)

E2 Hbw, m - - -
Dbw, cm 3.9 17.8 –6.8

Vol, m3 ha–1 51.3 22.7 0.4
BA, m2 ha–1 4.6 17.7 –3.6

Q2 Hbw, m 1.9 10.5 –9.1
Dbw, cm 2.9 12.7 –9.6

Vol, m3 ha–1 55.4 22.4 –9.3
BA, m2 ha–1 4.6 18.6 –5.0

R2 Hbw, m 1.5 7.7 –0.4
Dbw, cm 3.1 12.0 –5.3

Vol, m3 ha–1 57.4 22.0 –6.7
BA, m2 ha–1 5.8 21.1 –6.1
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Fig. 3. Stand level stem volumes (m3 ha–1) in sub-areas; E2, Q2 
and R2, based on field measurements and image data.
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Stand data from all sub-areas were combined into one dataset of company stands, one 
dataset of biotope stands and one dataset of all stands and the model developed from each stands 
sub-area was applied to each stand, i.e., the best local model was used. In case of biotope stands 
and all stands, only accuracies of stem volume could be evaluated. Prediction accuracies are 
shown in Table 7. The relative RMSE for stem volume was better in biotope stands compared 
to company stands.

Results applying models from different sub-areas to company stand of Q2 and R2 showed 
that stem volume model from sub-area E2 produced highest accuracies for both Q2 and R2, even 
higher than the model from the own sub-area (Table 8). In general, R2 model produced slightly 
poorer results than Q2 model for Q2, but both Q2 and R2 model produced equally good accuracies 
for R2. All models showed large bias for sub-area Q2 which is leaf-off.

Table 7. Stand level accuracies of forest attributes in combined datasets. 
Hbw = basal area weighted mean height and Dbw = basal area weighted 
mean diameter.

Characteristic RMSE RMSE (%) Bias (%)

Company stands, n = 144
Hbw, m 1.6 8.6 –5.6
Dbw, cm 2.7 11.0 –5.6
Basal area, m2 ha–1 5.3 20.2 –5.4
Stem volume, m3 ha–1 54.8 23.7 –7.8
Biotope stands, n = 39
Stem volume, m3 ha–1 61.2 18.9 –2.2
All stands, n = 183
Stem volume, m3 ha–1 55.7 22.2 –6.1

Table 8. RMSE% and Bias% of stem volume 
using models from different sub-areas to com-
pany stand of Q2 and R2.

Model-area RMSE (%) Bias (%)

Q2-Q2 23.0 –11.5
E2-Q2 19.2 –8.3
R2-Q2 25.3 –17.3
R2-R2 24.1 5.3
E2-R2 22.4 0.9
Q2-R2 24.6 2.0
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4 Discussion 

This study shows that 3D data from the standard aerial image acquisition carried out by Lantmä-
teriet together with training plots from the NFI can be used to estimate tree height, mean diameter, 
stem volume, and basal area for large areas. For forest production stands, the best results in terms 
of RMSE using these image data were 8.6% for tree height, 11.0 for mean diameter, 23.7% for 
stem volume, and 20.2% for basal area. For the Swedish national forest attribute map based on 
ALS data, stand wise accuracies for 253 forest production stands in south and mid Sweden, RMSE 
ranged from 5.4% to 9.5% for tree height; from 8.7% to 13.1% for stem diameter; from 17.2% to 
22.0% for stem volume; from 13.9% to 18.2% for basal area (Nilsson et al. 2016). Both the result 
in this study and the reported accuracy of the current ALS based national forest attribute map are 
slightly lower than dedicated image- or LiDAR based inventories (Næsset et al. 2004; Gobak-
ken et al. 2015). This may depend on factors like: i) poorer training plot positioning (Gobakken 
and Næsset 2009) i.e., NFI often uses raw GPS not DGPS as is common in remote sensing based 
inventories having positional errors of a few meters instead of sub-meter and ii) NFI uses a sys-
tematic sampling design compared to stratified designs commonly used in operational ALS based 
inventories (Maltamo et al. 2011).

The slightly lower accuracies for image based models, compared to LiDAR, can be miss-
ing information from within the forest canopy structure. When comparing stem volume estimates 
using point cloud metrics from LiDAR and metrics calculated from the CHM of the LiDAR data, 
relative RMSE at plot level increased from 31.5% to 35.5% (Hollaus et al. 2009), indicating that 
the information from within the canopy improves the accuracy of stem volume estimation. Also, 
a study comparing LiDAR and image metrics showed that many metrics differ between LiDAR 
and image based point clouds and that the difference increased with decreasing canopy cover 
(White et al. 2015). This indicates that image based data does not describe the gaps and height 
variance of the forest canopy as well as LiDAR. However, increasing the image overlap should 
theoretically decrease the occlusion by the surrounding trees of gaps and therefore increase the 
description of gaps and variance of the canopy height. But Bohlin et al. (2012) tested both 60/30 
image overlap with 0.5 m GSD and 80/60 image overlap with 0.12 m GSD with no increase in 
estimation accuracy of stem volume. 

The underestimation, –9.3%, for stem volume in Q2 (Table 6), is partly explained by a few 
high stem volume stands that has been underestimated (Fig. 3). Some of the high volume stands 
had large deciduous stem volume and Q2 images were acquired during leaf-off season, this affect 
the image matching to generate points mostly on the ground and with more noise and thus the 
canopy height metric values negatively (Véga and St-Onge 2008; Lisein et al. 2015; Bohlin et 
al. 2015), clearly underestimating raster cells with high deciduous proportion. Another reason for 
underestimation is that the mature stands, which are under estimated (Fig. 2), are over represented 
in the validation stand inventory due to the forest companies’ purpose of the inventory, resulting in 
that the performance of the models is not validated for the complete range of the models. However, 
the bias is similar to that reported for the ALS based national forest attribute map, i.e., 8.0–8.9%, 
13.0–13.1%, 16.1–21.6% and 15.2–20.0% for Hbw, Dbw, BA and Vol respectively (Nilsson et al. 
2016) , which have been widely used and is considered an important source of forest information. 

Image and LiDAR based models show very similar trends of RMSE when performance is 
separated in different strata, indicating that both techniques have similar strength and weaknesses 
when it comes to estimate forest attributes in different forest types. This result is in agreement with 
a study from Canada where image and LiDAR based forest attributes were estimated for eight 
different forest types, and the accuracy varied for the different forest type but the overall accuracy 
between the two remote sensing methods were not statistically different (Pitt et al. 2014).
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Comparing company and biotope stands, the biotope stands had higher estimation accuracy 
(Table 7), despite having higher proportion of deciduous trees. This may be an effect of the method 
used for field data collection, i.e., the company stands are sampled with a number of sample plots 
whereas in the biotope stands all trees are callipered, reducing the sampling error in the validation 
data. A large proportion of the estimation error in remote sensing based inventories validated at 
stand level with stands sampled by a number of plots can be because of the sampling error in the 
validation data (Lindgren 2012).

When models trained in other sub-areas were applied on Q2 and R2 validation stands, the 
E2 model was the best. The E2 training data has larger variation and might therefore better explain 
different forests than the local (sub-area) model. However, there is little difference between models. 
All models underestimated the stem volume in Q2 indicating that using leaf-on models on leaf-off 
data is not recommended as suggested for LiDAR based inventories (Villikka et al. 2012).

In ALS based forest inventories a stratified modelling approach is commonly used (Mal-
tamo et al. 2014), where the training data is divided in to different strata based on auxiliary data 
e.g., height or density metric from the remotely sensed data, and separate models are constructed 
for each strata and forest attribute. This approach might also improve the accuracy for large-area 
mapping using aerial images and NFI data. Using the proposed method, an image block cover large 
enough area so that about 200 NFI plots can be utilized if two inventory years are used, preferably 
from the same year as the image acquisition and the year before.

5 Conclusion

Major advantages of this approach are the constant availability of new aerial images, the low cost 
of image data and no extra field data acquisition is need because of use of existing NFI data. Fur-
thermore, Lantmäteriet has started to perform the stereophotogrammetry, i.e., producing 3D data, 
for all images acquired 2016 and onward as part of their annual image production, making it easy 
to implement the proposed method, as soon as point clouds of new image blocks are available and 
thus continuously updating the forest attribute map. However, the density of the forest is difficult 
to describe, which shows as a saturation of the estimation of high volumes as well as lower accura-
cies for volume and basal area compared to height and diameter. Further research must be aimed at 
investigating better describing density metrics as well as how the photogrammetric workflow e.g., 
image overlap and image matching method effect these metrics. Leaf-off season images has a large 
negative impact on the deciduous forest attribute estimations and is therefore not recommended. 
This study clearly shows that aerial images from the national image program together with sample 
plots from the National Forest Inventory can be used for large area forest attribute mapping.
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