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The purpose of this study was to expand an existing semi-mechanistic forest model, ANA-
FORE (ANAlysing Forest Ecosystems), to allow for the prediction of log quality and the 
accompanying uncertainty as influenced by climate and management. The forest stand is 
described as consisting of trees of different cohorts, either of the same or of different species 
(deciduous or coniferous). In addition to photosynthesis, transpiration, total growth and yield, 
the model simulates the daily evolution in vessel biomass and radius, parenchyma and branch 
development. From these data early and latewood biomass, wood tissue composition, knot 
formation and density are calculated. The new version presented here, includes the description 
of log quality, including red heart formation of beeches. 

A Bayesian optimisation routine for the species parameters was added to the stand model. From a 
given range of input parameters (prior), the model calculates an optimised range for the parameters 
(posterior) based on given output data, as well as an uncertainty on the predicted values.

A case study was performed for Slovenian beech forests to illustrate the main model functioning 
and more in particular the simulation of the wood quality. The results indicate that the ANAFORE 
model is a useful tool for analyzing wood quality development and forest ecosystem functioning 
in response to management, climate and stand characteristics. However, the Bayesian optimiza-
tion showed that the remaining uncertainty on the input parameters for the chosen stand was very 
large, due to the large number of input parameters in comparison to the limited stand data.
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1 Introduction
Forest models can be roughly categorized as 
either more mechanistic (based on current under-
standing of physiology), or empirical. Physiology-
based forest models have the advantage of being 
able to deal with changes in environment, climate 
or management outside the original dataset for 
which the model was parameterized. However, 
most mechanistic models actually include some 
empirical relationships as well, and can therefore 
also be categorized as hybrid models. Simulation 
of wood quality is important, as the value of forest 
produce is very dependent on the quality (Knoke 
2006). However, concerning wood quality predic-
tions, mechanisms are not well understood for all 
processes. For ring width and tracheid dimensions 
a number of models have been developed (Fritts et 
al. 1999, Ikonen et al. 2003, Mäkelä and Makinen 
2003, Deckmyn et al. 2008), for red heart (Knoke 
2003) and knot and branch formation (Hein et 

al. 2007). In general, emphasis in wood quality 
modeling has been on more empirical models, 
yielding good predictions for specific sites, but 
needing parameterization for each site/condition 
(Leban et al. 1996, Ikonen et al. 2003, Soares and 
Tomé 2003, Lemieux et al. 2001, Constant et al. 
2003). Other followed pathways are the develop-
ment of single tree models (needing detailed tree 
input, and therefore not intentioned for practical 
use at stand level), or the simulation of a stand 
consisting of identical (average) trees (whereas 
for wood quality the number of ‘top quality’ 
trees is important. Some efforts have been made 
to simulate the final wood price (Carino and 
Biblis 2003).

To create a practical tool for the simulation of 
wood log production at the stand scale, we have 
tried to use a mechanistic model for the processes 
that are more or less understood, as far as possible 
towards wood quality development, and a limited 
number of empirical relations to calculate the final 

Table 1. List of symbols.

Symbol Unit Definition

D Matrix of measured data
DH5 m distance from htot/5 to the crown base
Jm25 µmol m–2s–1 maximal electron transport rate per unit leaf area at 25 °C 
fstarch dimensionless fraction starch that is used in spring (0–1)
femb,day dimensionless daily fraction of pipes embolising in summer(0–1)
femb,win dimensionless fraction of pipes embolising in winter  (0–1)
htot m total stem height
I0 µmol m–2s–1 light compensation point
nbrWhorl # number of branches in a whorl 
Nl,LAres kgNg m–² residual leaf N (when Vm equals zero)
prpip dimensionless species-specific empirical input parameter, for rpip,day calculation
Q10stem dimensionless Q10 temperature coefficient of stem 
qVm25-Nl µmol s–1kg–1 ratio of Vm25 to leaf N content
qJm25-Vm25 dimensionless ratio of Jm25 to Vm25
rfr m fine root radius
qRm25l-Vm25 dimensionless ratio of Rm25,l to Vm25
Rm,fr kg C day–1 maintenance respiration rate of fine root biomass at tQ10ref 
Rm,stem kg C day–1 maintenance respiration rate of stem biomass pool at tQ10ref 
RRH, radius of red heart at htot/5
SLA m² kg–1 C specific leaf area
Tl,max kg H2O m–2s–1 maximal potential leaf transpiration rate
Vm25 µmol m–2s–1 photosynthetic Rubisco capacity per unit leaf area at 25 °C 
WhorlMax m maximal distance between whorls of branches 
α kgC–1 species-specific pipe radius plasticity 
θ, θ’, θt Matrix of 128 input parameters and their prior distribution
ε random vector and p(ε) = p(–ε)
φ Gaussian probability density function  
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quality of the wood logs where necessary. The 
ANAFORE model is a good starting tool because 
of the semi-mechanistic simulation of wood devel-
opment (wood density within each year ring, early 
wood and late wood, vessel dimensions and knot 
formation), and the simulation of tree cohorts in 
a stand (Deckmyn et al. 2006 and 2008). A lim-
ited number of empirical relations were added to 
calculate log quality following the European log 
standards, including a relation for red heart forma-
tion (Torelli 1984 and 2008).

Another problem in forest modeling concerns 
parameterization and uncertainty. Most mechanis-
tic models are over parameterized, and therefore 
will give a good fit to almost any output, but a very 
high uncertainty on the predictions (although in 
many studies this problem is ignored). In addition, 
parameters and validation data are often uncertain 
(measured on different sites or even species, or 
cannot be measured in situ). The use of Bayesian 
statistics can clarify these problems by explicitly 
using the uncertainty on the input parameters and 
the validation data, and by yielding an uncertainty 
on the predictions as well as a posterior uncer-
tainty on the input parameters. The test case in this 

study is a Slovenian beech stand on which, besides 
stand inventory data, a number of wood quality 
parameters were measured, but basic physiology 
data were lacking. The central question for this 
stand was whether, given the limited amount of 
available data, anything significant could be con-
cluded concerning the management of this stand. 
More in particular whether conventional thinning 
would result in a large difference in wood qual-
ity compared to the actual thinning in the stand 
(which is used as a seed stand).

Our goals in this study were:
– To include log quality calculations to the mecha-

nistic ANAFORE model
– To include Bayesian optimization to the ANA-

FORE model
– To evaluate the model and the Bayesian optimiza-

tion routine for a test case with limited informa-
tion: a Slovenian beech forest. 

– To evaluate alternative management options for 
the selected beech stand: thinning equally over all 
size classes (conventional thinning) as compared 
to typical thinning of a seed stand (removal of all 
non-desirable trees or trees competing with the 
seed trees).

Table 2. European log standards (grading rules) for beech as used in the ANAFORE model.

A logs B logs C logs D logs

Minimal dimension
   Length, m 3 3 2 No limit
   Diameter under bark, m 0.35 30 25 No limit
Growth Rate, mm yr–1 ≤ 4 No limit No limit Ni limit
Knots
   Covered or uncovered Not allowed 3knots/3 m Sound allowed Allowed
   Uncovered Not allowed ∑of diam ≤ 

200 mm 
Sound allowed allowed

   Unsound Not allowed ∑of diam ≤ 
40 mm 

∑of diam ≤ 120 
mm

Allowed

Spiral grain, cm m–1 ≤ 5 ≤ 9 Allowed Allowed
Eccentric pith, % ≤ 10  ≤ 20 Allowed Allowed
Sweep, cm m–1 ≤ 2 ≤ 4 ≤ 8 Allowed
Ovality, % ≤ 15 Allowed Allowed Allowed
Fluting Not allowed Not allowed Allowed Allowed
Simple heart shakes Not allowed Not allowed Allowed Allowed
Star shakes Not allowed Not allowed Allowed Allowed
Grub holes Not allowed Not allowed Allowed Allowed
White rot, % of diameter ≤ 10 ≤ 15 ≤ 25 Allowed
Red heart, % of diameter ≤ 20 ≤ 30 Allowed Allowed
Star red heart, % of diameter Not allowed ≤ 10 ≤ 40 Allowed
Discoloration Not allowed Not allowed Allowed Allowed
T disease Not allowed Not allowed Allowed Allowed
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2 Materials and Methods
2.1 The ANAFORE Model

ANAFORE (ANAlysis of FORest Ecosystems) is 
a stand-scale process-based forest growth model. 
After defining the initial forest stand, ANAFORE 
simulates stand C, H2O and nitrogen (N) fluxes, 
tree growth, and wood tissue development. ANA-
FORE follows a bottom-up approach: leaf level 
processes such as photosynthesis and transpira-
tion are simulated at a half-hourly time step for 
sunlit and shaded leaves of crown leaf layers and 
implemented into a daily-operating single tree 
architecture and allocation module. Single trees 
are used as representatives of a limited number 
of tree cohorts (currently 10) which make up the 
tree stand. Tree cohorts and trees within cohorts 
compete for light, H2O and N and are linked to a 
daily running soil model. Output of the model is 
produced at three time levels: half-hourly (only 
for C and H2O fluxes), daily (all C pools) and 
yearly (wood quality). Aboveground woody bio-
mass pools, i.e. stem and branches, are further 
divided into four tissue pools to allow detailed 
simulation of wood development. These are 1) 
conductive pipes, i.e. vessels and/or tracheids; 2) 
fibers, which give mechanical support; 3) paren-
chyma, serving as storage compartment for C and 
H2O; and 4) bark tissue.

A full description of the model, including all 
equations, has recently been published (Deckmyn 
et al. 2008). In the short description below we 
focus only on the relations that are important for 

the wood quality formation, and on the equations 
that have been added since the published version. 
The ANAFORE model has already been validated 
concerning the simulation of the water balance 
(Verbeeck et al. 2007a and b) and stomatal con-
ductance (Op de Beeck et al. 2007).

2.2.1 Simulation of Wood Density

Wood density is simulated through the daily simu-
lation of C allocated to the different stem tissues, 
and the daily calculation of the pipe radius as 
a function of growth rate. Daily C allocated to 
pipes is calculated through pipe theory, in such 
a way that the potential flow through the pipes 
equals potential transpiration rate, as described 
in Deckmyn et al. 2006. 

Transition from early growth (leaf and crown 
development) to late growth (emphasis on stor-
age) is induced by soil water stress, or at a fixed 
date.

2.2.2 Log Grading

As the grading of logs differs strongly between 
countries and for different end-uses, the ANA-
FORE model has adopted grading rules as input. 
The user can define up to 46 characteristics, and 
for each can define the threshold values of up to 
4 quality classes. In this study we use the Euro-
pean Log standards (19 quality characteristics, 
threshold values see Table 2).

Table 3. Descriptives of the beech stand at Blegoš, devided into 2 plots. Number of trees 
n, mean,  variance, standard deviation s and standard error s.e. are given.

Plot n Mean Var s s.e.

Diameter, cm
1 28 32.29 17.23945 4.15204 0.74281
2 38 39.00 43.48537 6.59434 0.99231
 

Height, m
1 28 24.31 5.56422 6.59434 0.42201
2 38 25.51 7.83998 2.80000 0.42134
 

Crown size, m
1 28 9.69 4.17136 2.04239 0.36539
2 38 11.60 3.93450 1.98356 0.29849
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2.2.3 Relations between Log Quality and 
Stem Characteristics 

The quality characteristics relating to size, growth 
rate and knots are calculated through the growth 
model ANAFORE. Additional quality character-
istics (ovality, red heart, white rot) are simulated 
(semi-) empirically. Different relations between 
these log quality characteristics and stem or 
tree characteristics can be used. However, most 
relationships are with diameter at breast height 
(DBH), crown size and growth rate. For the ANA-
FORE model we opted to have the shape of each 
relation variable (linear, exponential or power 
function) for each of up to 46 wood quality char-
acteristics. The parameters of each relationship 
are also input variables. 

For example, in our study red heart formation 
(RRH, radius of red heart at htot/5, htot = total stem 
height) is simulated semi-empirically using the 
relation described by Torelli et al. 2008:

RRH = –2.496 + 0.280 DH5 + 0.156 RH5  (1)

with DH5 the distance from htot/5 to the crown 
base, and RH5 the mean stem radius at htot/5 (if 
calculated RRH is negative, RRH is set to 0). This 
equation was chosen because the ANAFORE 
model simulates changes in crown depth and 
stem to crown height ratio’s in relation to the 
environment and the combined result of ANA-
FORE with the Torelli equation therefore yields 
a semi-mechanistic prediction of red heart for-
mation.

For some characteristics (such as spiral grain, 
fluting, shakes, forks) there might not be any 
(known) relation to tree or stem characteristics. 
In this case, the user can use a purely empirical 
fixed % of each quality class showing this char-
acteristic.

2.3 Bayesian Optimization

Although in other environmental sciences Baye-
sian approach is often used, in forest research only 
a limited number of studies have been published 
(Van Oijen et al. 2005, Svensson et al. 2008). In a 
Bayesian approach, all input and outputs consist 
of probability distributions. Rules of probability 
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Fig. 1. Average monthly climate data (precipitation, 
temperature and irradiance at the altimontane beech 
site at mount Blegoš.

Table 4. Measured (meas) and simulated (sim) data from the best fit (including standard deviation from all runs) 
concerning crown depth, height and red heart of 10 DBH cohorts of adult beech at mount Blegoš.

Cohort Crown depth, m Height, m Red heart, %
Sim Meas Sim Meas Sim Meas

≥ 65 15.2 ± 8.7 16.5 30.1 ± 22.8 28.7 4.5 ± 7.3 4.7
61–65 14.3 ± 10.2 15.1 29.8 ± 18.4 30.3 22 ± 24 4.5
56–60 13.9 ± 9.3 15.5 28.7 ± 21.3 28.7 8.4 ± 10 4.7
51–55 12.3 ± 9.8 14.1 25.3 ± 18.7 27.8 0 ± 14 4.8
46–50 11.4 ± 8.4 13.3 23.05 ± 17.9 27.0 0 ± 15 4.9
41–45 8.7 ± 7.0 11.1 22.06 ± 20.1 25.4 4.3 ± 9 4.8
36–40 6.8 ± 9.8 10.4 21.2 ± 18.4 24.4 36 ± 25 5.2
31–35 7.5 ± 10.3 9.3 19.7 ± 15.8 23.6 0 ± 23 5.3
25–30 9.3 ± 11.2 7.8 16.5 ± 13.8 21.2 0 ± 19 5.5
< 25 5.05 ± 8.9 6.3 11.4  ±  8.9 18.0 0 ± 17 5.9
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Fig. 2. Posterior distribution of WhorlMax, after 10 000 
runs of the ANAFORE model.

Fig. 3. Posterior distribution of qJm25-Vm25. after 10 000 
runs of the ANAFORE model.

are used to obtain a new probability distribution 
(posterior distribution) of the parameter input, 
based on the original input parameter distribution 
(the so-called prior distribution, θ), and the com-
parison of the simulated output with the measured 
data. The result is therefore a matrix consisting of 
the mean and variances of each of the parameters 
(instead of a single set of ‘best-fit’ optimized 
parameters).

The central equation states that the likelihood 
of θ, given output data (D), is related to the likeli-
hood of the data using θ and the likelihood of θ.

p(θ | D) = p(D | θ) p(θ) (2)

The procedure followed in our Bayesian approach 
is to make a random walk through the parameter 
space (= all possible priors), in such a way that 
the collection of visited points forms a representa-
tive sample of the distributions of the parameters. 
This is done through the use of the Metropolis-
Hastings random walk (a Markov chain Monte 
Carlo) as described by Van Oijen et al. 2005. The 
new prior to test, or proposal, θ’ is calculated from 
the previous one (θt) by:

θˈ= θt+ɛ (3)

Where ε is a random vector and p(ε) = p(–ε). In our 
case, we used a gaussian distribution for ε, with 
variances equal to the square of 5% of the prior 
parameter range, and 0 covariances as suggested 
by Van Oijen et al. (2005).

For each new parameter set used, the probabil-
ity of the measured data given these parameters 
is calculated (a low probability therefore shows a 

less good fit), P (D│θ), by assuming a Guassian 
distribution for the measured data, with 30% of 
the mean value as standard deviation. 

p D D M Di i
i

n

iθ ϕ θ( ) = −
=
∏ ( ( ); ,( . ) ) ( )
1

20 0 3 4

Where φ denotes a Gaussian probability density 
function with given mean and variance.

We also calculate the likelihood of the prior. 
For our study, since input data were very limited, 
we assumed and equal likelihoods over this range 
(not that starting from a normal distribution would 
not, in the end, change the result significantly, but 
might change the number of runs needed to get 
to a good result). From the likelihoods calculated 
in (Eq. 3) and the likelihood of the prior (in our 
case constant since a flat distribution was used) 
we get the likelihood of the proposal using (Eq. 
2). This is then compared to the likelihood of the 
previous, accepted run through

β
θ

θ

θ θ

θ θ
= =

p D

p D

p D p

p D pt t t

( ' )

( )

( ') ( ')

( ) ( )
( )5

Then, the proposal is either accepted or rejected 
as a new prior (θt+1) by comparing β to a random 
variable between 0 and 1 (therefore, if the like-
lihood is better (β > 1), the proposal is always 
accepted, if not, it depends on the random number 
generated).

In our case, we run the model 10 000 times to 
get posterior distributions.

Finally, the predictive uncertainty of the model 
is determined by running the model with the dif-
ferent parameters of the posterior distribution. 
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For the ANAFORE model we included all 
species-related input parameters (128 in total) 
in the prior, but uncertainty concerning the soil 
parameters was not included. 

2.4 Case Study

For this case study, we chose to use an altimon-
tane Slovenian beech forest, situated at mount 
Blegoš. The forest is an even-aged beech stand of 
approximately 130 years old. The site index of the 
stand (SI 22–26), and the bedrock type (dolomite) 
situate this stand a stand of average productivity. 
Precipitation, temperature and irradiance of the 
stand are depicted in Fig. 1. In 2004, a range of 
the forest was approved as seed stand. In 2004, 
448 trees were felled (phenotypic negative trees as 
well as competitive trees with regard to selected 
seed trees). 

In 2007, stem characteristics of the remaining 
trees were measured. In 10,5-ha stand a sampling 

grid 40 × 30 m was established, where 66 2-are 
plots were set out. Parameters of diameter, height 
and crown size were calculated according to equa-
tions of systematic sampling. Although stand is 
even-aged, trees in the upper part of the stand 
are of a bit larger dimensions. For this reason 
statistical analysis was performed separately for 
each part of the stand. Due to the fact that the 
seed stand is a finite population, a correction 
factor (1 – n / N)1/2 for standard error was used. 
Parameters in Table 3 show to a greater variability 
with regard to tree diameter, while differences 
in height and crown size are smaller. Due to the 
greater variability of the tree diameter, i.e. due to 
too few number of trees per plot, the size of the 
latter would preferably be larger (3 are). At the 
significance level 5% it can be then calculated the 
lower and the upper bound of diameter for both 
parts of the stand (t1 = 2,052 / t2 = 2,026; df = n – 1), 
respectively.  

In each plot, DBH, tree trunk description, trunk 
defects, quality class from class A (sliced veneer, 

Table 5. Data from 10 000 Prior distributions of 17 input parameters of the ANAFORE model. The 
10 parameters with the largest effect on growth, as well as the 7 additional parameters with the 
greatest and least reduction in standard deviation from the prior to the posterior distribution are 
given. Of these 17, the average, minimum and maximum and standard deviation are given.

Parameter Average Min Max

fstarch 0.25 0.125 0.375
femb,day 0.0045 0.0009 0.009
femb,win 12 2 22
I0 15 7.5 30
nbrWhorl 4 1 9
Nl,LAres 25.0 10–5 12.5 10–5 37.5 10–5

prpip 850 200 1500
Q10stem 2 1.5 2.5
qVm25-Nl 1.1 0.1 2.1
qJm25-Vm25 1.73 0.865 2.595
rfr 0.001 0.0005 0.0015
qRm25l-Vm25 0.021 0.007 0.035
Rm,fr 0.005 0.001 0.009
Rm,stem 15 10–5 5 10–5 25 10–5

SLA 40 30 50
Tl,max 28 10–6 14 10–6 42 10–6

WhorlMax 2 0.1 4.1
α 3 1.5 4.5
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peeled veneer, sawlog), B class (sawlog class 
II) to C/D class (sawlog C and D, firewood) and 
crown characteristics were noted for each tree 
(Table 3). In addition, diameter growth of 5 of 
the felled trees was analyzed for the entire growth 
period. As no data were available concerning 
the physiology of these trees, we started from 
the input values that were found by optimizing 
the ANAFORE model for growth of a German 
beech forest (Deckmyn et al. 2007). As the uncer-
tainty of this prior parameterization is quite large 
we chose to use 30% uncertainty on most input 
parameters, and 50% to 100% on selected input 
parameters for which few data were available.

For the log quality calculations on the simulated 
trees, we graded only using the simulated dimen-
sions, growth rate, red heart and stem defects 
(forking), as other characteristics were not meas-
ured on the site and therefore could not be vali-
dated. The Bayesian parameter estimation was 
done against the DBH, and average height (from 
allometric relations to the DBH) measured on 
five dominant trees, over 100 years. In a second 

run, we included the wood quality estimations as 
well. We use the simulated and measured crown 
depth over 10 DBH classes to validate the model, 
as well as the measured growth data of a similar 
unmanaged stand. Finally, we ran the model for 
3 different management strategies: the current 
strategy (thinning low quality trees in 2003), 
equal thinning over all categories and without 
thinning, over the entire rotation period. 

3 Results 

3.1 Posterior Versus Prior Distributions

Running the model 10 000 times ended in more 
than 80% of the cases not yielding viable trees, 
so many parameter settings are excluded by the 
Bayesian procedure. Reduced uncertainty of 
the parameters was not found for all parameters 
(although many runs are excluded, in some cases 
there was no clear distribution to the values that 

Table 6. Summary data for the posterior distribution of 17 input parameters of the ANAFORE model. The 10 
parameters with the largest effect on growth, as well as 7 additional parameters with the greatest and least 
reduction in standard deviation from the prior to the posterior distribution are given. Of these 17, the average, 
minimum and maximum and standard deviation are given, as well as the value for the best fit are given.

Parameter Avg Min Max SD Best fit

fstarch 0.21 0.125 0.37 0.128 0.14
femb,day 0.0057 0.0022 0.0083 0.0017 0.008
femb,win 14.3 3.2 18.5 0.0017 11.5
I0 17.3 7.7 28.9 7.6 7.6
nbrWhorl 1.53 1 9 0.096 5
Nl,LAres 24 10–5 13 10–5 35 10–5 12 10–5 14.8 10–5

prpip 403 206 630 201 564
Q10stem 2 1.5  2.50 1.94 2.2
qVm25-Nl 1.33 0.35 1.94 0.71 0.89
qJm25-Vm25 1.88 0.89 2.56 0.89 2.23
rfr 0.000828 0.000193 0.001248 0.000556 0.000697
qRm25l-Vm25 0.01774 0.00727 0.03063 0.00913 0.014
Rm,fr 0.003706 0.001555 0.00769 0.001209 0.00385
Rm,stem 0.000491 0.00028 0.001444 0.000118 0.000301
SLA 41.72 33.51 49.05 36.74 37.42
Tl,max 2.76 10–5 2.19 10–6 4.15 10–5 1.59 10–5 2.46 10–5

WhorlMax 0.54 0.32 2.9 0.096 0.48
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were excluded). In Table 5 the values and uncer-
tainties of the 10 parameters most influencing 
total productivity (as was found in a previous 
paper on the ANAFORE model, Deckmyn et 
al. 2008), as well as the 7 parameters that were 
most and least improved by the procedure are 
given. Because the optimization was performed 
against stand and growth data, the uncertainty 
of parameters that are directly related to height 
growth and crown dimensions is shown in Table 
6. For these parameters, uncertainty is reduced 
(Table 6). As an example, the posterior distribu-
tion of the maximal distance between whorls of 
branches, WhorlMax, is depicted in Fig. 2., show-
ing an important improvement from the prior flat 
distribution. 

3.2 Wood Quality Predictions

Although the predicted and measured log grading 
show similar results over the tree cohorts (Fig. 5, 
r² = 0.93), due to the high uncertainty of the pre-
dictions (standard deviations over 50%) this good 
result is only found showing the results using 
the ‘best fit’ input parameters. In Table 4, for the 
shown best fit data, the predictions of crown depth 
and stem height are good, yielding an overall 
good prediction of read heart formation. 

3.3 Management Effects

Reduced thinning limits the growth of the trees, 
so they never reach the required dimensions for 

A-logs. This was found in the measured data 
(from an unmanaged stand) and the simulated 
data (data not shown). Conventional thinning 
(equal over all classes instead of selective thin-
ning of trees with defects or competing with the 
seed trees) results in a small increase in pre-
dicted wood quality of the remaining trees (+7% 
A-logs). As the uncertainty on the simulated logs 
is very large, the changes due to management 
were not significant.

4 Discussion 

4.1 Posterior Versus Prior Distributions

As we started from a very high uncertainty, it was 
expected that the output of the model would be 
very variable prior to the parameter estimation. 
Concerning basic physiology, since no measure-
ments were made (for example of photosynthesis 
or transpiration rates), uncertainty was hardly 
diminished by the runs. For example the ratio 
between Jm25 and Vm25, qJm25-Vm25 (Fig. 3) has 
hardly evolved from the prior flat distribution. This 
can easily be explained as several of the photo-
synthesis related parameters are coupled through 
leaf nitrogen (N), but leaf N was not measured 
on the site. Therefore, high gross photosynthesis 
and dark respiration will yield as good a fit as low 
values for both parameters. In a study by Svensson 
et al. (2008) where data on C-fluxes were used for 
the parameterization of a forest growth model, 
the uncertainty of most of the parameters was 
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reduced. Inclusion of a limited number of specific 
measurements (leaf N, specific leaf area SLA) 
could improve our results significantly. Van Oijen 
et al. (2005) also showed that a bayesian param-
eterization can be greatly improved by increasing 
the variety of measured data.

A number of quality-related parameters in the 
ANAFORE model cannot easily be measured as 
such. For example, onset of late wood produc-
tion (if it is not triggered by drought). In this 
case study, uncertainty is considerably reduced 
after the Bayesian procedure (Table 4). This is 
explained by the fact that it is during the late 
wood phase that the trees store most C. If this 
phase is too short, too little C is stored to survive 
the winter and regrow leaves in spring. Problem-
atic parameters are those that have an important 
influence on the result, but a high (remaining) 
uncertainty such as femb,day, the daily fraction of 
pipe embolism in summer. The amount of pipe 
embolism drives the need for pipe formation in 
the wood and therefore is of major influence to 
wood formation. However, this fraction cannot 
easily be measured and uncertainty remains high 
after the parameterization procedure. In Table 
6, the minimum and maximum values of the 
parameters yielding live trees are given. It is clear, 
that for some parameters the original values were 
badly chosen, and large part of the prior distribu-
tion results in early tree death. For example if the 
maximal distance between branches is allowed to 
reach 4m the trees do not survive. However, the 
bad initial settings are not a problem, since the 
procedure will result in improved minimum and 
maximum values.

Overall, the results indicate the model is over 
parameterized compared to the limited dataset 
available for parameterization, but it is unclear 
whether this is still the case if the model is used 
in a study with more available data. 

4.2 Wood Quality Predictions

Overall, the yield per log grade was well simu-
lated, as a result of a realistic simulation of stem 
height and width. As measured height and width 
were used to parameterize the model, and the 
model tends to be over-parameterized, a good fit 
was to be expected.  

The close fit of measured and simulated red 
heart indicates a close fit of simulated and meas-
ured crown and tree height, as red heart was cal-
culated using the same equations for the stand and 
the simulated data.  For the red heart prediction, 
in this case, the strength of the empirical relation-
ship as constructed by Torelli (1984) determines 
the accurateness of the final result. Although the 
Torelli equation yielded good results in the origi-
nal Slovenian study (which included trees from a 
wide variety of stands), it is not sure whether is 
would perform as well in other regions/climates. 
Red heart is an important determinant of the price 
of beech timber (Knoke et al. 2006), but predic-
tion of red heart remains difficult. Recent studies 
emphasize the physiology of red hear formation 
(in relation to branch mortality), but do not nec-
essarily yield better models for the prediction of 
red heart (Knoke 2003, Wernsdörfer et al. 2005). 
As the uncertainty of our tree predictions (crown 
and stem dimensions) was very high, uncertainty 
of the red heart formation is extremely high as 
well. Therefore, although the model is clearly able 
to simulate wood quality parameters, better and 
more data are necessary before the predictions 
become reliable.

4.3 Management Effects

Red heart formation is an interesting example for 
the wood quality predictions, as it empirically 
links crown characteristics (which are mecha-
nistically simulated) to wood quality. Changing 
the management (reduced thinning) influences 
crown dimensions and therefore wood quality. 
Although a good fit was found between measured 
and simulated wood quality data, uncertainty was 
very high, and no significant effects of the man-
agement strategies on predicted wood quality 
formation could be shown. However, this does 
not mean there was no effect of management, 
only that due to our huge uncertainty, the effect 
was insignificant.  

5 Conclusions

Bayesian statistics are a useful tool for the param-
eterization and analyses of mechanistic models 
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such as ANAFORE, as has been found in a few 
previous studies (Svensson et al. 2008, Van Oijen 
et al. 2005). Although optimization of the input 
parameters yields high correlation between meas-
ured and simulated data, the Bayesian analyses 
indicates the high uncertainty. The Bayesian pro-
cedure is also helpful in indicating which meas-
urements are most useful in reducing uncertainty. 
For example, biomass alone hardly influences the 
distributions, whereas height and crown depth 
have an important effect on several parameters.

Optimization of parameters related to crown 
development is quite efficient, so calculation of 
derived (empirical) wood quality characteristics 
such as red heart development is also relatively 
stable. However, some problematic parameters 
remain that have a high impact on the results, 
but are not easily measured or optimized, and 
future studies should focus on these (such as 
embolism). 

In conclusion, although a good fit was obtained, 
the uncertainty is too high to make predictions 
concerning management effects on yield qual-
ity of Slovenian seed stand. This study clearly 
underlines the importance of including uncer-
tainty when analyzing the performance of models 
(especially mechanistic model). The posterior 
distributions gained from this study can be used 
as prior distributions in future runs of the same 
species, which will reduce the uncertainty of the 
next model runs considerably.
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