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In Finland, the growth and yield models for tree stands are simulation programs that consist of 
several sub-models. These models are often non-smooth and non-differentiable. Direct search 
methods such as the Hooke-Jeeves algorithm (HJ) are suitable tools for optimizing stand man-
agement with this kind of complicated models. This study tested a new class of direct search 
methods, namely population-based methods, in the optimization of stand management. The 
tested methods were differential evolution, particle swarm optimization, evolution strategy, 
and the Nelder-Mead method. All these methods operate with a population of solution vec-
tors, which are recombined and mutated to obtain new candidate solutions. The management 
schedule of 719 stands was optimized with all population-based methods and with the HJ 
method. The population-based methods were competitive with the HJ method, producing 
0.57% to 1.74% higher mean objective function values than HJ. On the average, differential 
evolution was the best method, followed by particle swarm optimization, evolution strategy, 
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1 Introduction
The most important decisions in forest stand 
management are the timing, intensity and type 
of cuttings, and regeneration. If the vocation of 
forestry is to produce economic benefits, cutting 
decisions should be made so as to maximize the 
present value of all future incomes and costs 
(NPV). The whole cutting schedule of a stand 
is defined by a set of decision variables such 
as the time points and intensities of cuttings. In 
the best cutting schedule the values of decision 
variables are set so that the NPV is maximized. 
Optimization is an automated way of searching 
for the best set of decision variables. Since there 
are often several decision variables, methods for 
multidimensional optimization must be used.

Calculation of the net present value of a cutting 
schedule uses growth and yield models of tree 
stands. These are complicated models which are 
difficult to maximize analytically. Most growth 
and yield models are simulators that consist of 
several sub-models for instance for diameter 
increment, height increment, tree survival, and 
stem taper. In most Finnish simulators the tree 
stand is represented by a set of individual trees, 
each tree representing a diameter class of a tree 
species. The use of a rather small number of indi-
vidual trees adds non-smoothness to the growth 
and yield model because the value of a tree, and 
therefore the whole stand, may increase sud-
denly when the tree reaches minimum dimensions 
required, for instance, for saw log.

Direct search methods are suitable tools for maxi-
mizing or minimizing functions that are non-smooth 
and non-differentiable. In their comprehensive 
book about non-linear programming, Bazaraa et 
al. (1993) mention three such methods (multidimen-
sional search methods without using derivatives): 
the cyclic coordinate method, the Hooke-Jeeves 
method, and the Rosenbrock method. The cyclic 
coordinate method alters the value of one deci-
sion variable at a time, i.e. coordinate axes are 
the search directions. The Hooke-Jeeves method 
uses two search modes: exploratory search in the 
direction of coordinate axes (one decision vari-
able altered at a time) and pattern search in other 
directions (more than one decision variable altered 
simultaneously). The method of Rosenbrock tests m 
(m is the number of optimized decision variables) 

orthogonal search directions which are equal to 
coordinate axes only at the first iteration.

Another type of method, namely dynamic pro-
gramming, has been used extensively in stand 
management optimization (see Hoganson et al. 
2008 for a review). It differs from direct search 
methods so that, instead of seeking optimal values 
for continuous decision variables, it finds the opti-
mal sequence of stand states defined by classified 
values of several growing stock characteristics 
(for instance, basal area, mean diameter, and stand 
age). Direct search methods can be used in both 
even-aged and uneven-aged forestry (Trasobares 
and Pukkala 2005). Uneven-aged management 
can also be optimized using linear programming 
and a transition matrix model (e.g. Kaya and 
Buongiorno 1987).

Of the direct search methods mentioned in Bazaraa 
et al. (1993) the Hooke-Jeeves algorithm has been 
used much in forestry, at least in Finland (e.g. 
Valsta 1992a, 1992b, Möykkynen et al. 2000, Miina 
and Pukkala 2000, Pukkala and Miina 2005). In 
the other fields a new type of methods, called as 
population-based methods or evolutionary com-
putation methods, have also been used to solve 
complicated optimization problems. Optimization 
uses a population of solutions instead of a single 
vector of decision variables. Three such methods 
are commonly mentioned in literature: differential 
evolution (Storn and Price 1997), particle swarm 
optimization (Kennedy and Eberhart 1995), and 
evolution strategy (Bayer and Schwefel 2002). The 
method of Nelder and Mead (also called polytope 
search and amoeba search) may be added to the 
list although it is rarely called as population-based 
method (Nelder and Mead 1965). However, because 
it operates with several solution vectors which are 
combined to form new vectors, it does belong to 
the category of population-based methods.

The above population-based methods are direct 
search methods which do not require any guesses 
of derivatives of the objective function and have 
no assumptions concerning it. Therefore, they 
seem lucrative tools for the optimization of stand 
management schedules when the function to be 
maximized is a complicated simulation model. 
However, population based methods have been 
used very little, maybe not at all, in forestry. The 
purpose of this study was to test the population-
based methods in the optimization of stand man-
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agement. The method of Hooke and Jeeves (1961) 
was used as a reference method to which the 
population-based methods were compared.

2 Materials and Methods

In the following, symbol xi is used for a solution, 
i.e. a vector of m decision variables. A population 
consists of n solution vectors. The objective func-
tion value of a solution is denoted as f(xi). Each 
member of the population is characterized by xi 
and f(xi). Depending on the method, the mem-
bers may also have other characteristics such as 
strategy parameter vector or velocity vector. All 
methods except Hooke-Jeeves start with an initial 
population of n vectors of m decision variables. 
In all population-based methods the elements of 
the initial vectors were randomly drawn from 
uniform distribution:

xi = {xij |1 ≤ j ≤ m, xij = U[aj,bj]}

where xij is the jth decision variable of vector xi, aj 
and bj are, respectively, the lower and upper limit 
of the jth variable, and U stands for uniform dis-
tribution. The stopping criteria were also the same 
in all population-based methods. The search was 
stopped when a pre-defined maximum number 
of iterations were completed. The search was 
stopped earlier if the difference in the objective 
function value between the best and the worst 
solution vector was less than one percent of the 
best objective function value: Stop if [f(xbest) – 
f(xworst)] < 0.01 × f(xbest).

2.1 Hooke and Jeeves Method (HJ)

The HJ method needs an initial solution vector 
x1. The search begins with exploratory search in 
the directions of coordinate axes (one decision 
variable altered at a time). After completing one 
round of exploratory searches the algorithm goes 
to pattern search if the exploratory search is suc-
cessful. The pattern search alters the values of 
more than one decision variable simultaneously. 
If exploratory search cannot improve the solution 
the step size used in exploratory search is halved 

and the search is repeated. The search is stopped 
once the step size becomes smaller than a prede-
fined stopping criterion. 

Let d1,…,dm be the coordinate directions and 
let y1 = x1 and k = j = 1. The algorithm works as 
follows (Bazaraa et al. 1993):

Exploratory search 
1) If f(yj + Δdj) > f(yj) (success), let yj+1 = yj + Δdj and 

go to Step 2. Otherwise if f(yj – Δdj) > f(yj) (suc-
cess), let yj+1 = yj – Δdj and go to Step 2. Otherwise 
let yj+1 = yj and go to Step 2 (no improvement 
found in direction j).

2) If j < m, replace j by j + 1 and repeat Step 1 (go to 
next decision variable). Otherwise go to Pattern 
search if f(ym+1) > f(xk) (at least one successful 
change detected in the directions of coordinate 
axes). If f(ym+1) ≤ f(xk) go to Step size reduction.

Pattern search
3) Let xk+1 = ym+1 and let y1 = xk+1 + α(xk+1 – xk). 

Replace k by k + 1, let j = 1, and go to Step 1.
Step size reduction
4) If Δ ≤ ε, stop. Otherwise replace Δ by Δ / 2. Let 

y1 = xk, xk+1 = xk, j = 1, replace k by k + 1, and repeat 
Step 1.

The method has three parameters: initial steps size 
(Δ), stopping criterion (ε), and α. The initial step 
size was different for different decision variables; 
it was 0.1 times the range [aj,bj] of the variable. 
The stopping criterion was equal to 0.01 times 
the initial steps size. The search was stopped 
once the step size was smaller than the stopping 
criterion for every decision variable. Parameter 
α was taken as 1.0.

2.2 Differential Evolution (DE)

In DE, an iteration consists of n tournaments, one 
for every solution. In a tournament, solution xi is 
compared to a trial solution xt, which is obtained 
by combining xi and a noise vector yi. The com-
bination is produced by taking elements randomly 
from vectors xi and yi so that the probability is 
α for xi and 1 – α for yi. The noise vector yi is a 
combination of tree vectors (xa, xb and xc) ran-
domly drawn from the current population:

yi = xc + β(xa – xb)
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If f(xt) > f(xi) the trial vector xt replaces xi. The 
method has four parameters: α, β, n, and maxi-
mum number of iterations. Parameter α was taken 
as 0.9, parameter β as 0.7, n as 5 × m (m is the 
number of optimized decision variables), and 
the maximum number of iterations as 100. The 
optimal solution is the best member at the last 
iteration.

2.3 Particle Swarm Optimization (PS)

In PS the population consists of n particles. Each 
particle is characterized by xi, f(xi), xi

b, f(xi
b) and 

vi, where xi is the current solution, f(xi) the cur-
rent objective function value, xi

b the best solution 
found by the particle so far (“particle best”), f(xi

b) 
the objective function value of particle best, and 
vi a vector of m velocities. In addition, the whole 
population is characterized by the best solution 
found so far by the swarm (xg, called as “global 
best”) and the objective function value f(xg) of 
global best. Vectors vi were initialized with zeroes 
and vectors xi with uniform random numbers 
U[aj,bj] as explained above. In PS, vectors xi are 
called as particle positions.

An iteration of PS begins with the production 
of two random numbers r1 and r2, which are uni-
formly distributed between 0 and 1. Then, particle 
positions are updated by adding velocities to the 
current values (element by element):

xi
updated = xi + vi

Velocities are up-dated as follows:

vi
updated = wvi + c1r1(xi

b – xi) + c2r2(xg – xi)

where w, c1 and c2 are parameters. Vector vi 
determines the direction of movement for particle 
i. The above equation shows that the direction 
depends on both the particle best and the global 
best. 

Solutions xi
updated replace xi. If f(xi) > f(xi

b), xi 
replaces xi

b (new particle best) and f(xi) replaces 
f(xi

b). If f(xi) > f(xg), xi replaces xg (new global 
best) and f(xi) replaces f(xg). Velocity vectors 
vi

updated replace vi. The optimal solution of the 
PS method is vector xg at the end of the last 
iteration. 

Particle swarm optimization has five param-
eters; w, c1, c2, n, and maximum number of 
iterations. Parameter w, which is called as inertial 
constant, was taken as 0.95. Parameters c1 and c2 
were equal to 2. They determine how much the 
particle is directed towards the particle best (cog-
nitive component) and global best (social compo-
nent). The number of particles (n) was 50 + 10m 
where m is the number of decision variables. The 
maximum number of iterations was 50.

2.4 Evolution Strategy (ES)

In ES, every solution of the population is char-
acterized by xi, si, and f(xi), where xi is the cur-
rent solution (vector of current values of decision 
variables), si a vector of strategy parameters, and 
f(xi) the objective function value calculated for the 
solution. The strategy parameters, one for each 
decision variable, determine how much the values 
of decision variables of a recombinant are mutated. 
The solution vectors were initialized using U[aj,bj] 
as explained above. The initial values of strategy 
parameters were obtained from

si = αxi

where α is a parameter set as 0.2. During every 
generation, one offspring was produced as a 
mutated recombination of two parents. If the 
offspring was better (had a better objective func-
tion value) than the worst solution of the current 
population, the offspring replaced the worst solu-
tion. This kind of ES is referred to as a steady state 
ES, which is an ES without a generation gap. 

The best solution of the current population 
was always used as a parent (parent a). The other 
parent (b) was selected randomly from among 
the remaining solutions. The selected parents 
produced a recombinant as follows:

xr = 0.5(xa + xb)
sr = 0.5(sa + sb)

The recombinant was mutated to obtain an off-
spring:

so = sr × eτ×N(0,1)

xo = xr + so × N(0,1)
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where τ is called a learning parameter which was 
calculated as τ = 1 / √n, and N(0,1) is a normally 
distributed random number with mean equal to 0 
and standard deviation equal to 1. The above for-
mulas show that the mutated strategy parameters 
control the amount by which the elements of the 
recombinant solution are mutated. The mutated 
solution (xo, so, f(xo)) replaces the worst solu-
tion of the parent population. Since the learning 
parameter τ is a function of population size, the 
ES has only three parameters: α, n, and maximum 
number of generations. Parameter α was set as 0.2 
and population size (n) as 50 + 10m where m is 
the number of decision variables. The maximum 
number of generations was 2000. The best solu-
tion after the last generation was taken as the 
optimal solution found by the ES method.

2.5 Nelder-Mead Method (NM)

In the NM method the worst, second-worst and 
best solutions, denoted as xw, xs, and xb, respec-
tively, are found in the beginning of a new itera-
tion. The worst solution is replaced by a new 
candidate solution which is a transformation of 
all solutions. However, if the candidate solution 
is worse than the current worse (xw), there is no 
replacement. Instead, a shirking operation is done, 
in which all solutions (points) except the best are 
moved closer to the best solution (xb).

The production of the candidate solution begins 
with the calculation of the centroid solution 
(denoted as xm), which is the mean of all solu-
tions except the worst:

xm = 1 / (n – 1) × ∑i≠w xi

Then a reflection point is computed as a function 
of the centroid and the worst point:

xr = xm + α(xm – xw)

If f(xb) > f(xr) ≥ f(xs), xr replaces xw and the itera-
tion is completed. If f(xr) > f(xb), i.e. the reflection 
point is better than the current best, an expansion 
point is calculated as 

xe = xm + γ(xr – xm)

If f(xe) > f(xr), xe replaces xw and the iteration is 
terminated. Otherwise (if (xr) ≥ f(xs)) xr replaces 
xw and the iteration is terminated. If f(xr) < f(xs), 
i.e. the reflection point is poorer than the second-
worse, a contraction point is calculated. The way 
of calculation depends on whether f(xr) is between 
f(xw) and f(xs) (contract outside) or if f(xr) ≤ f(xw) 
(contract inside). In outside contraction the trial 
point is calculated from the reflection and cen-
troid points:

xc = xm + β(xr – xm)

If f(xc) ≥ f(xr), the point is accepted (xc replaces 
xw) and the iteration is completed. Inside contrac-
tion point is calculated from the best and centroid 
points:

xc = xm + β(xb – xm)

If f(xc) ≥ f(xr), xc replaces xw and the iteration is 
completed. If the reflection, expansion and con-
tracting operations cannot find a point better than 
xw, a shrinking operation is done for all points 
except the best:

xi
updated = xi + δ(xi – xb) for i = 1,…, n, with i ≠ b. 

The new solution vectors xi
updated replace xi and 

a new iteration begins. 
The NM algorithm has four parameters in addi-

tion to population size and maximum number 
of iterations: α for reflection, γ for expansion, β 
for contraction, and δ for shrinkage. The usual 
parameter values were used: α = 1, γ = 2, β = ½, 
and δ = ½. The number of points (population 
size) was not m + 1 as usual but 5 × m, i.e. five 
times the number of optimized decision variables. 
This change reduced the tendency of the method 
to converge to a local optimum. The maximum 
number of iterations was 1000. 

2.6 Optimization Problems

This study optimized the cutting schedules of 
stands. A cutting schedule was defined by the 
number, timing, intensity and type of thinnings, 
and the timing of clear fellings. The number 
of thinnings was not optimized since it is not 
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a continuous variable. Instead, the optimal 
number of remaining thinnings was calculated 
with models, which are based on the optimiza-
tion of the management schedule of many young 
stands with zero, one, two and three thinnings. 
The best number of thinnings (with the highest 
net present value) was modeled as a function of 
stand characteristics:

Scots pine:
nthin = 3.629 – 0.091D + 0.574ln(G) – 0.495ln(T)
Norway spruce:
nthin = 3.011 – 0.839ln(D) + 0.684ln(G) – 0.017T
Birch:
nthin = 1.629 – 0.078D + 0.363ln(G)

where D is basal-area-weighted mean diameter 
(cm), T is basal-area-weighted mean tree age 

(years) and G is stand basal area (m2 ha–1). The 
models show that the optimal number of remain-
ing thinnings decreases with increasing mean 
diameter and tree age, but increases with increas-
ing stand basal area (Fig. 1). The models are based 
on 3% discounting rate and the same dimensions 
and prices of timber assortments as used in this 
study (Table 1). The predicted number of thin-
nings was rounded to the closest integer. If the 
stand was interpreted as a two-storey stand (the 
height of the tallest stratum was at least twice the 
height of the shortest stratum), one thinning was 
added to the result because it was assumed that 
an additional thinning may be required to remove 
the over-storey and the predicted number of thin-
nings are required to grow the remaining stand to 
the end of rotation. It is noteworthy that the net 
present value of the optimized schedule does not 

Fig. 1. Dependence of the number of remaining thinnings on the mean 
diameter (D) and basal area (G) of the stand when stand age (T) is 40 
years.
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change much if the number of thinnings deviates 
by one from the optimal number.

The decision variables which were optimized 
were:

For each thinning:
– number of years since the start of simulation (first 

thinning) or previous thinning (other thinnings)
– harvest percentage, specified separately for all tree 

strata that were inventoried separately
For final felling:
– number of years since the last thinning

The number of decision variables was therefore 
nDV = nthin × (1 + nstrata) + 1. For instance, if there 
were two thinnings and three strata (e.g. pine, 
birch and spruce), the number of decision vari-
ables was 2 × (1 + 3) + 1 = 9. The type of thinning 
was also optimized, at least to some extent, since 
the thinning intensity was optimized separately 
for every stratum. In a two-storey stand, different 
strata may represent different canopy layers of the 
same species, which means that optimization had 
freedom to use high thinning or low thinning. Within 
a stratum the thinning intensity was the same in all 
diameter classes.

The starting values of cutting intervals were 
obtained as follows:

c = (R – T) / (nthin + 1)

where c is the number of years since the beginning 
of simulation (1st cutting) or since previous cut-
ting (other cuttings), R is a guess of the rotation 
length (R = 100), T is the age of the initial stand, 
and nthin is the number of thinnings. The initial 
value of harvest percentage was taken as 30 for 

all strata in all thinnings.
These initial values were used in the HJ method 

as the starting solution (x1). The other methods 
required a range for each decision variable [aj,bj]. 
The range was [5, 2c] for cutting intervals and [0, 
100] for thinning percentages. These ranges were 
also used to calculate the initial step size of the 
HJ method: Δj = 0.1 × (bj – aj).

2.7 Objective Function

The objective variable was net present value of 
all future incomes and costs (NPV) calculated 
with 3% discounting rate. The stumpage prices of 
timber assortments are given in Table 1. The NPV 
was calculated as the sum of the net present values 
of the remaining cutting treatments plus the dis-
counted soil expectation value of bare land:

NPV
N

i

SEV

i
y

y
y

Y

Y
=

+
+

+= ( ) ( )1 10

∑

where y is the number of years since the begin-
ning of simulation, Y is number of years to the 
end of rotation, Ny is net income in year y, and i is 
discounting rate (i = 0.03). The SEV of bare land, 
which represents the value of all future rotations, 
was calculated with the models of Pukkala (2005). 
These models are based on the optimized manage-
ment schedules for full rotation of a great number 
of stands on different sites and with different timber 
prices and discounting rates (3500 optimizations 
altogether with the HJ method). It is noteworthy 
that the discounted value of SEV, calculated with 
3% rate, is rather small compared to the net present 
value of the remaining rotation.

2.8 Yield Model

A simulation model was used to simulate stand 
development to the end of rotation with differ-
ent values of decision variables. The simulator 
used the models of Hynynen et al. (2002) for site 
index, dominant height development, diameter 
increment, crown height, height increment and 
tree survival. The taper models of Laasasenaho 
(1982) were used to calculate assortment volumes 
of removed trees. The saw-log volume obtained 

Table 1. Stumpage prices and minimum top diameters 
of timber assortments.

 Pine Spruce Birch

Log price, € m–3 46 43 44
Pulpwood price, € m–3 14 22 14

Minimum top diameter 15 16 18
of log, cm
Minimum top diameter 8 8 9
of pulpwood, cm
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from the taper model was corrected using the 
log reduction models of Mehtätalo (2002). The 
purpose was to transfer a part of log volume 
to pulpwood volume due to defects which are 
present but not taken into account in the taper 
models. The predictions of Mehtätalo’s models 
were multiplied with correction factors which 
were 0.7 for pine, 0.4 for spruce, and 1.2 for birch 
(Malinen et al. 2007). This is because it has been 
noticed (Malinen et al. 2007) that Mehtätalo’s 
models overestimate the reduction in pine and 
spruce, and underestimate it in birch.

The input data for the simulation model were 
a set of model trees that represented the stand. 
However, the inventory data consisted of stand 
level characteristics (number of trees per hectare, 
stand basal area, mean height, mean age, mean 
diameter) assessed separately for different tree 
strata. Therefore, the model trees were generated 
by first predicting the diameter distribution of 
each stratum. Then, the distributions were divided 
into five diameter classes of equal width and the 
mid-point tree of each class was taken as a model 
tree. The frequencies of the mid-point trees were 
calibrated using goal programming as explained 
in Pukkala and Miina (2005). For example, if 
the stand had four strata, 4 × 5 = 20 model trees 
represented the stand in simulation. Each tree was 
characterized by species, dbh, age, height, and 
frequency. The stratum number of each model 
tree was maintained, to be able to use different 
thinning intensities in different strata. 

2.9 Stands

The management schedule was optimized for one 
stand with all methods to illustrate the development 
of the population of solutions in different methods. 
This stand (referred to as test stand) had four strata 
in two canopy layers (Table 2). Norway spruce 
was present in both canopy layers. This kind of 
stand structure is common in Finnish forests. The 
temperature sum of the region was assumed to be 
1200 d.d, elevation 150 m above sea level, and the 
proportion of lakes in the region 0.2. The test stand 
represented medium site fertility (Myrtillus site).

The second set of data consisted of compartment 
inventory data from 719 stands in North Karelia, 
Finland. These stands represented all common 

stand structures and included one-species one-
layer stands, one-layer mixtures of two to four 
species, and two-layer stands where both canopy 
layers could be mixtures of two to four species. 
The temperature sum of the region was assumed to 
be 1200 d.d. for all stands, elevation 150 m above 
sea level, and the proportion of lakes 0.2.

3 Results

3.1 Results for the Test Stand

The HJ, DE, and NM methods found practically 
the same optimal management schedule for the test 
stand (Table 3): The first thinning was conducted 
immediately, the second after 18–19 years, the third 
after 30–31 years, and final felling after about 45 
years. PS and ES converged to somewhat different 
solutions. The NPV of the solution was the highest 
for NM, followed by DE, HJ, PS, and ES. 

All methods removed all birches in the first 
thinning which was always conducted immedi-
ately (Table 3, Fig. 2). ES removed also some 
pine. The second thinning removed only pine 
in all methods. PS left some pines to continue 
growing whereas the other methods removed all 
of them. The third thinning removed trees mainly 
from the larger spruce layer in all methods except 
PS, which removed the remaining pines and no 
spruces at all. The clear cutting, which was 12–15 
years later, removed the remaining spruces. From 
mean the tree size in different strata (Table 2) 
and the order of removing the strata it can be 
concluded that all thinnings were high thinnings. 

Table 2. Tree strata of the test stand. G is stand basal 
area, N is number of trees per hectare, H is mean 
height, T is mean age, and D is mean diameter. A 
dash (-) means that the variable (G or N) was not 
assessed in the field.

Species G, m2/ha N, trees/ha H, m T, years D, cm

Pine 8 - 15 40 17
Spruce 8 - 11 40 14
Birch 8 - 16 40 18
Spruce - 800 4 20 7
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The thinnings decreased stand age since youngest 
trees were maintained longest. The upper layer 
was completely removed at tree age of about 70 
years (40 + 30 = 70) in the three best methods (DE, 
NM, HJ). The average tree age at final felling was 
65 years in these methods (20 + 45 = 65).

Fig. 3 shows that the range of objective func-
tion values among the population of solutions 
gets narrower during the search process in all 
methods. However, there are certain differences 
between the methods: in ES and NM the worst 
and best solutions approach to each other quite 
fast whereas in DE and PS this happens mainly 
in the beginning of the search. This difference is 
because of the fact that, at every iteration, ES and 
NM concentrate on replacing the worst solution 
by a better one whereas PS updates all solutions at 
every iteration. DE compares every solution to a 
new trial solution which is only slightly different, 
and replaces the solution if the trial is better. 

3.2 Results for the Forest

The mean NPV of the optimal management sched-
ule for the 719 stands was the highest when DE 
was used as the optimization method (Table 4). 
The second best was PS, followed by ES, NM 
and HJ. However, differences in the mean NPV 

Table 3. Cutting years (no. of years since the begin-
ning of simulation) and net present value (NPV) 
in the optimal solution found for the test stand by 
Hooke-Jeeves method (HJ), differential evolution 
(DE), particle swarm optimization (PS), evolution 
strategy (ES) and Nelder-Mead method (NM).

Cutting Optimization method

 HJ DE PS ES NM

1. thinning 0 0 0 0 0
2. thinning 19.0 19.1 12.3 14.3 18.3
3. thinning 31.1 31.5 26.2 40.7 30.0
Final felling 45.7 44.9 41.2 52.2 45.4

NPV, €/ha 7118 7139 7070 7057 7147

Fig. 2. Assortment removals in the optimal cutting schedules for the test stand found by the Hooke-Jeeves 
(HJ), differential evolution (DE), particle swarm optimization (PS), evolution strategy optimization 
(ES) and Nelder-Mead (NM) methods.
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were small, maximally less than two percent. DE 
was better than HJ in 64% of stands and worse 
than HJ in 11% of stands. A NPV difference of 
1 €/ha was used as the limit to rank a method 
better than another. NM, which had the poorest 
average performance among the population-based 
methods, was better than HJ in 43% of stands and 
worse than HJ in 34% of stands. It is noteworthy 
that every method was many times the best: DE 
was the best in 54% of stands and NM in 24% 
of stands. Sometimes several methods shared the 
first position. If these cases are not counted, DE 
was (alone) the best in 29%, PS in 13%, HJ in 
7%, ES in 6% and NM in 3% of stands. All five 
methods gave the same objective function value 
(with an accuracy of 1 €/ha) for 18% of stands. 
HJ was the fastest method, followed by NM and 

Fig. 3. Development of the objective function value (NPV) of the worst and best solutions and the 
mean NPV of all solutions in the test stand during the search process of differential evolution 
(DE), particle swarm optimization (PS), evolution strategy optimization (ES) and Nelder-Mead 
(NM) method.

ES. DE and PS were 5 to 10 times slower than 
the other methods.

The NPVs of the optimal solutions found by the 
population-based methods correlate closely with 
the NPV of the HJ-solution (Fig. 4). There where 
several stands for which DE found a clearly better 
solution than HJ but only one stand for which HJ was 
clearly superior to DE. PS was also clearly better 
than HJ in several stands but only in a few stands 
clearly worse than HJ. ES was clearly superior to 
HJ in some stands but in no stand clearly worse 
than HJ. NM was clearly superior to HJ in four 
stands and never clearly poorer than HJ. From the 
clear superiority of population-based methods in 
several stands it may be concluded that sometimes 
HJ gets trapped to a local optimum.
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Table 4. Summary of the optimization results for 719 stands with the Hooke-Jeeves method (HJ), 
differential evolution (DE), particle swarm optimization (PS), evolution strategy (ES) and 
Nelder-Mead method (NM).

Variable Optimization method

 HJ DE PS ES NM

Mean NPV, €/ha 4815 4899 4881 4874 4847
NPV, % of HJ 100.00 101.74 101.37 101.22 100.57
Better than HJ, % - 64 56 58 43
Worse than HJ, % - 11 20 18 34
Best method, % 27 54 41 33 24
Best alone, % 7 29 13 6 3

Fig. 4. Correlation of the objective function value found by differential evolution (DE), particle 
swarm optimization (PS), evolution strategy (ES) and Nelder-Mead method (NM) with the 
objective function value found by Hooke-Jeeves method (HJ) in 719 stands.
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4 Discussion
The main conclusion that can be drawn from this 
study is that all of the tested population-based 
methods work well in the optimization of stand 
management. All are competitive with the Hooke-
Jeeves method which has been used much in 
forestry. The advantage of the population-based 
methods is that they are easy to use, program, and 
implement. DE worked best according to several 
criteria but differences between the methods were 
minimal. Therefore, any of the five methods tested 
in this study could be used. It is noteworthy that 
the method that ranked worst among the popu-
lation-based methods, namely the NM method, 
was the best method in 24% of stands. The HJ 
method, which produced a slightly lower mean 
NPV for the 719 stands than the other methods, 
was the best in 27% of stands. An interesting 
topic for further research would be to analyze 
how the ranking of methods depends on stand 
characteristics.

The performance of each method depends on 
its parameters. This study used parameter values 
recommended in literature. An exception was 
that a larger than recommended population was 
used in the NM method: the population size was 
5m instead of the usual m + 1 (m is the number 
of decision variables). This modification slightly 
improved the method: the mean NPV of the 719 
stands was 4847 €/ha when the method operated 
with 5m solution vectors and 4767 €/ha (1.7% 
less) when m + 1 solution vectors were used. The 
maximum number of iterations was not taken 
from literature but such a value was used for each 
method which was found sufficient for conver-
gence. The maximum number of iteration varied 
from 50 to 2000 among the four population-based 
methods. However, iteration has a different mean-
ing in different methods: in DE and PS, all solu-
tions are tested or updated during every iteration 
whereas ES and NM produce only one new trial 
per iteration (except when shrinking operation is 
done in NM). 

Of the tested methods, HJ was the fastest and 
DE and PS by far the slowest, approximately 10 
times slower than HJ. The NM method with a 
population size of m + 1 would have been slightly 
faster than HJ. The long computing times of 
DE and PS are mainly due to the high maxi-

mum number of iterations and because the other 
stopping criterion (small difference between the 
best and worst solution) was rarely met in these 
methods. Therefore, in many problems, most of 
the computing time was probably wasted for the 
generation of inferior trial solutions. As can be 
seen from Fig. 2, the objective function value of 
the worst solution vector approaches to the best 
value very slowly in DE and PS, implying that DE 
and PS maintain population diversity much longer 
than ES and NM, which always try to replace 
the worst solution by a better one. Therefore, if 
computing time is an issue, other stopping criteria 
should be developed for DE and PS such as the 
difference between the mean and the best solution 
or the number of iterations that go without any 
improvement in the best solution. In this study, 
computing time was not regarded important, and 
the maximum number of iterations was given a 
high enough value to guarantee that the search 
process was not terminated prematurely.

Evolution strategy resembles genetic algorithms 
(Reeves 1993) in the sense that recombination and 
mutation are used to produce offspring. However, 
genetic algorithms are used mainly for combina-
torial problems (to optimize integer variables) and 
ES is designed for continuous decision variables. 
Another difference is that, opposite to GA, there 
is no stochasticity in ES when selecting mem-
bers for the next generation. Also, the population 
members of GA do not have their own evolution 
strategy parameters. The other population-based 
methods also have similarities with GA: solution 
vectors are combined to obtain a new vector. 
Random variation may be added to the elements 
of the recombinant, this operation corresponding 
to mutation. The only deterministic method (after 
generating the initial solutions) is the Nelder-
Mead method. However, also this method uses 
recombination: all solutions except the worst are 
combined to obtain a centroid solution, which is 
then recombined with the worst solution to obtain 
a reflected, expanded, or contracted solution. 

Particle swarm optimization (PS) resembles 
ant colony optimization (Dorigo 1997, Zeng et 
al. 2007) in the sense that both methods use 
memory and social component in the search proc-
ess. Ant colony optimization implements this by 
pheromone trails which are stronger for good 
solutions. When new trial solutions are formed 
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(ants look for new paths) the process is affected 
by the amount of pheromone in different places, 
the effect of pheromone trails corresponding to 
the cognitive and social components of the PS 
method. Opposite to PS, ant colony optimization 
is designed for combinatorial problems.

One way to further improve the methods tested 
in this study would be to optimize the parameters 
of each method (Pukkala and Heinonen 2006). 
Most probably the improvements would be not 
much in most cases since the used parameter 
values were based on earlier experience. Of the 
four population-based methods, evolution strategy 
is the most versatile since it can be implemented 
in many different ways. Evolution strategies are 
commonly denoted as (n / ρ + λ) – ES, where n is 
the size of the parent population, ρ the number 
of parents that are recombined to make an off-
spring, and λ the number of offspring produced 
in one generation (Bayer and Schwefel 2002). The 
ES used in this study may therefore be denoted 
as (n / 2 + 1) – ES. In addition to population size, 
changeable parameters include the number of 
offspring produced in one generation, number of 
parents used to make a recombinant, the manner 
of selecting the parents, the method of recombin-
ing the parents, and mutation parameters. There-
fore, evolution strategy may be the method that 
offers most room for further experimentation in 
forestry applications.

The standard metaheuristics that are used in 
combinatorial optimization, namely genetic 
algorithm, simulated annealing and tabu search 
(Reeves 1993, Borges et al. 2002), can be modi-
fied so that they work with continuous decision 
variables (e.g. Corana et al. 1987, Wikström and 
Erikson 2000, Chelouah and Siarry 2000). There-
fore, one subject of further research would be a 
systematic analysis of the performance of these 
metaheuristics in the optimization of stand man-
agement. 
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