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In this study, the time to crack initiation (Tinit), duration of crack propagation (Tfrac), crack 
initiation stress, peak stress as well as crack speed and fracture toughness were investigated 
for three Rates of Loading (ROL) and four sizes of notched wood beams using high-speed 
video imaging and neural networks. Tinit was consistent for all volumes and the average 
Tinit was nonlinearly related to volume and ROL. For the smallest ROL, there was a distinct 
volume effect on Tinit and the effect was negligble at the largest ROL. However, the stress 
at crack initiation was not consistent. Contrasting these, Tfrac for all volumes appeared to 
be highly variable but the peak stress carried prior to catastrophic failure was consistent. 
The crack propagation was a wave phenomenon with positive and negative (crack closure) 
speeds that varied with the ROL. As accurate estimation of crack initiation load (or stress) 
and its relationship to peak load (or stress) is important for determining fracture toughness, 
Artificial Neural Networks (ANN) models were developed for predicting them from volume, 
Young’s modulus, face and grain angles, density, moisture content and ROL. Models for 
crack initiation load and peak load showed much higher predictive power than those for the 
stresses with correlation coefficients of 0.85 and 0.97, respectively, between the actual and 
predicted loads. Neural networks were also developed for predicting fracture toughness of 
individual wood specimens and the best model produced a statistically significant correlation 
of 0.813 between the predicted and actual fracture toughness on a validation dataset. The 
inputs captured 62% of variability of fracture toughness. Volume and Young’s modulus were 
the top two contributing variables with others providing lesser contributions.
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1 Introduction

Wood contains micro- or macro-voids that initiate 
crack propagation. A substantial amount of work 
has been done on fracture of wood and crack tip 
displacements (Patton-Mallory and Cramer 1987, 
Samarasinghe and Kulasiri 1998, 1999, 2000a, b, 
2004, Samarasinghe et al. 2007, Bandara et al. 
1999). However, very little has been done to 
understand fracture dynamics of wood, which 
includes time to crack initiation (Tinit), duration of 
fracture (Tfrac), time to catastrophic failure, load 
capacity associated with these events, and speed 
of crack propagation. The time to crack initiation 
and catastrophic failure are measures of the sur-
vival time of a member under load; therefore, how 
the presence of a crack influences time to failure 
is useful in the design of structures.

Nielsen (1978) defined two failure states in 
which 1) material damage starts or crack propa-
gation is initiated, and 2) the damage level has 
reached a point where there is no load carrying 
capacity left and the rate of crack propagation 
increases catastrophically. The time to reach any 
of these failure states is said to be the correspond-
ing time to failure. The first case is the lower limit 
of failure (safe mode) and the second case is the 
upper limit, or time to catastrophic failure. In this 
study, a detail investigation of time to crack initia-
tion (Tinit) and duration of propagation (Tfrac) of 
a crack is made with respect to volume for three 
different ROL. Crack speed indicates the rate of 
propagation of a crack and it increases our knowl-
edge of the energy dissipation mechanisms within 
the material. In this study, high-speed video imag-
ing is used to look closely at these events.

Another important issue is that very little has 
been done to predict fracture toughness of indi-
vidual wood samples from their own properties. 
Fracture of wood in relation to moisture content, 
temperature, density, and size has been studied 
separately (Porter 1964, Petterson and Bodig 
1982). However, little is known about the com-
bined effect of the size, ROL, physical variables, 
such as moisture content, density, and Young’s 
Modulus, as well as geometric variables, such 
as grain angle, ring (face) angle and curvature of 
growth rings on fracture strength of a particular 
wood member. There is a considerable difference 

Symbols

a = crack length
b = thickness of specimen
h = height
L = span
P = applied load
Pinit = crack initiation load
Ppeak = peak load
LR = Longitudinal-Radial plane
LT = Longitudinal-Tangential plane
KIc = Mode-I fracture toughness
KIc(LR) = Mode-I fracture toughness (crack 

perpendicular-to-grain and propagating 
in radial direction)

KIc(LT) = Mode-I fracture toughness (crack 
perpendicular-to-grain and propagating 
in tangential direction)

KIc(TL) = Mode-I fracture toughness (crack 
perpendicular to tangential direction and 
propagating in longitudinal direction)

GIc(TL or RL) = Mode-I critical energy release rate
Tinit = time to crack initiation
Tfrac = duration of crack propagation
ANN = Artifical Neural Networks
DOL = Duration of Load
EMC = Equilibrium Moisture Conditions
MC = Moisture Content
MLP = Multi-Layer Perceptron
MLR = Multiple Linear Regression
RBF = Radial Basis Functions
RMSE = Root Mean Square
ROL = Rate of Loading
LogROL = logarithm of Rate of Loading



277

Samarasinghe Exploration of Fracture Dynamics Properties and Predicting Fracture Toughness of Individual Wood Beams...

in fracture toughness within the same species, 
pieces cut from the same tree and within the same 
batch of kiln dried wood. For these, it is typical 
to use the average fracture toughness. Therefore, 
it would be of much practical use, if load carry-
ing capacity of a particular cracked beam can 
be predicted from its basic physical and geomet-
ric variables. Samarasinghe et al. (2007) dem-
onstrated that properties of individual samples 
can explain the variation of fracture toughness 
and successfully predicted fracture toughness of 
individual samples of pinus radiata beams with 
a crack parallel to grain using neural networks. 
In this study, this work is extended to cracks 
perpendicular-to-grain.

Neural networks are powerful computational 
methods that enable the development of models 
that capture the underlying linear and nonlinear 
relationships between multitudes of variables. 
This study investigates the ability of Neural Net-
works to predict load carrying capacity of cracked 
beams from its size, ROL, and physical and geo-
metric properties. If successful, it could provide 
a better method for predicting fracture strength 
of wood under the uncertain influence of physical 
and geometric variables than the currently used 
average values.

2 Objectives

The goal of this study was two fold: investigate 
fracture dynamics and model fracture toughness 
of individual wood beams with a sharp crack 
perpendicular to the grain. Its specific objectives 
were to:
– Study the time to crack initiation (Tinit) and dura-

tion of crack propagation after initiation (Tfrac) 
and their dependence on size and ROL,

– Use Neural Networks to analyse crack initiation 
and catastrophic loads from individual sample 
properties including volume, ROL, dry density, 
moisture content, Young’s modulus, grain angle, 
face angle, and curvature of growth rings,

– Determine the speed of a propagating crack using 
high speed imaging and its relationship to ROL,

– Predict fracture toughness of individual samples 
from their physical and geometric properties using 
Neural Networks.

Fracture dynamics was an exploratory study and it 
was done on a subset of samples used for studying 
fracture toughness.

3 Background

3.1 Fracture Dynamics

From a study on duration of load (DOL) of solid 
wood beams under various ROL, Spencer (1978) 
found that although duration of load decreases 
with increasing loading rate, the 95th percentile 
held the load the longest and the 5th percentile 
held the load the shortest duration indicating the 
effects of strength reducing defects on DOL. 
However, how the rate of loading affects the 
time to fracture and failure of notched beams 
needs investigation. From experiments carried 
out on Douglas-fir, Mindness et al. (1978) showed 
that the initial crack speed, u, increases with 
the Mode-I fracture toughness, KIc as shown in 
Eq. 1:

ln u = n ln KIc + ln A (1)

where, A and n are positive constants.

3.2 Fracture Toughness

Fracture toughness is a measure of the strength 
of a cracked member and it uniquely defines 
the stress distribution surrounding a crack at the 
point of failure (Sih et al. 1965). Formulation of 
fracture theories assumes co-linear crack prop-
agation. In most wood beams however, crack 
propagation is perpendicular to the existing crack 
(i.e. parallel-to-grain) and the associated fracture 
toughness is denoted by KIc(LT) or KIc(LR) where 
the original crack is perpendicular to grain and 
theoretical propagation direction is radial (R) or 
tangential (T).

Bending tests carried out on notched and solid 
specimens under various loading conditions have 
shown that the strength of solid beams increases 
with increasing ROL; however, the strength of 
notched beams remain unaffected by it (Madsen 
1992). Spencer (1978) tested Douglas-fir solid 
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beams at 8 ROLs and found that the strength was 
insensitive to ROL up to about 50th percentile 
strength. However, the strength of higher 
percentiles increased with ROL and the effect 
was intensified as percentile increased towards 
the 95th percentile. In fact, Schniewind et al. 
(1978) found from creep studies on notched and 
knotty beams that fracture toughness increased 
with decreasing ROL thus eliminating the need 
for a load duration factor. Schniewind et al. 
(1978) further reports that Leicester (1974), who 
ramp tested notched beams to fail from 1 to 300 
minutes, found the maximum fracture toughness 
for 30-minute duration.

As for size parameters, Stanzl-Tschegg et al. 
(1995) found from collinear crack propagation 
studies that the fracture toughness increased with 
net length (specimen length – crack length) and 
it also increased with thickness up to a point and 
then decreased. Barrett and Foschi (1978) found 
that KIc for cracks propagating along the grain 
in Douglas-fir specimens increased as thickness 
decreased. Similar increase in fracture toughness 
for thinner sections has been established for other 
materials due to plane stress conditions. Boatright 
and Garrett (in Patton-Mallory and Cramer 
1987) used the variation in stress state across 
the crack front and the occurrence of irreversible 
deformation (cell buckling) to explain the higher 
KIc in thinner specimens. Johnson (1973) found 
that the variation of KIc(TL) (cracks perpendicular 
to T direction and propagating in L direction) was 
insensitive to initial crack length and thickness. 
Porter (1964) found that the Mode-I critical 
strain energy release rate (GIc(TL) and GIc(RL)) 
was independent of specimen length, thickness 
and height as well as crack length.

As for physical properties, Petterson and Bodig 
(1982) found that the fracture toughness (KIc(TL)) 
increased with specific gravity in the form of 
a power function and decreased with moisture 
content. Smith and Chui (1994) studied the effect 
of moisture content, density and the orientation 
(θ) of the original crack in the Radial-Tangential 
(RT) plane (measured as the angle between crack 
plane and tangent to a growth ring on the cross 
section) on critical strain energy release rate GIc of 
tensile specimens. They found that GIc increased 
from fibre saturation down to about 18% and 
then decreased with further decrease in moisture 

content slightly contradicting the continuous trend 
down to dry conditions found by Petterson and 
Bodig (1983). Smith and Chui (1994) state that 
the relationship between GIc and density becomes 
stronger as moisture content decreases.

Smith and Chui (1994) also found that GIc 
increased with decreasing θ down to 60° but 
decreased with further decrease in angle. 
Although the authors did not discuss the reasons 
for this trend, it can be explained as follows: when 
the angle is 90º, the crack plane coincides with 
the weak Longitudinal-Radial (LR) plane and 
therefore, a lower GIc can be expected. Similarly, 
when the angle is 0º, crack plane coincides with 
the Longitudinal-Tangential (LT) plane, which is 
also weak due to earlywood-latewood boundaries. 
Therefore, a lower GIc can again be intuited. 
Thus, the maximum GIc can be expected for an 
intermediate orientation of the crack plane as 
found by these investigators.

4 Artificial Neural Networks 
(ANN)

Neural networks are highly parallel computing 
methods that simultaneously analyse the interac-
tions among many variables and therefore, are 
especially suitable for approximating nonlinear 
functions of many variables to any desired degree 
of accuracy (Samarasinghe 2006). A comprehen-
sive introduction and a detailed coverage of neural 
networks are given in Samarasinghe (2006). Basic 
feed-forward networks, such as Multi-Layer Per-
ceptron (MLP) and radial basis functions (RBF) 
networks, consist of an input, hidden, and output 
layers of neurons where MLP uses hidden neuron 
functions, such as linear, logistic, hyperbolic tan-
gent etc. and RBF uses Gaussian functions. Each 
input neuron represents one input variable and the 
output neuron(s) represent the output variable(s). 
Connection strength between inputs and hidden 
layer neurons as well as hidden and output neu-
rons are the free parameters of the network that 
need to be estimated starting with initial random 
values using an appropriate learning method until 
minimum prediction error is attained. The dataset 
is divided into training, testing and validation 
sets and these are used for training, testing the 
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accuracy while training, and validating the trained 
networks, respectively.

Seibi and Al-Alawi (1997) developed a feed-
forward Multi-Layer Perceptron (MLP) Artifi cial 
Neural Network to investigate the effect of crack 
geometry, temperature and loading on fracture 
toughness of 7075-T651 aluminium alloy beams 
and plates containing surface and through-
thickness cracks. Their model resulted in an R2 
value greater than 0.95 indicating that the network 
has captured a very strong relationship between 
the input variables and fracture toughness. They 
also used the developed ANN model to assess 
the contribution of individual input variables 
and found that temperature had a predominant 
infl uence followed by crack length to plate length 
ratio and crack depth to crack length ratio. They 
also found that the loading confi guration, whether 
uni-axial or biaxial, played an insignifi cant role. 
Such sensitivity analysis in ANN is very useful 
for fi ltering variables that are signifi cant for 
prediction. By using the developed model for 
analysing trends for scenarios not used in the 
training and testing of the ANN, the authors 
demonstrated the benefi t of neural networks as 
an analytical tool.

Samarasinghe et al. (2007) successfully em-
ployed neural networks to predict fracture 
toughness of individual wood beams with an 
edge crack parallel-to-grain. In this study, 
the approach is extended to predict fracture 
toughness of individual wood beams with a crack 
perpendicular-to-the grain.

5 Methodology

5.1 Specimen Preparation and
Testing Procedure

The specimens were prepared from kiln-dried 
boards cut from a log of New Zealand pinus 
radiata aged 30 years and especially bought for 
this research. Specimen confi guration is shown in 
Fig. 1 and specimen dimensions are in Table 1 (L 
is span, h is height and b is thickness). There were 
4 size categories (A, B, C, D) and each category 
had 51 specimens that were further divided into 
three sets for testing at three ROL. Specifi cally, 
24 specimens were tested at 2.5 mm/min, 15 at 
10 mm/min and 12 at 0.625 mm/min. There were 
a total of 204 specimens. The volume ratios for 
the specimens were 1 : 8: 64 : 297. The ROL ratios 
were: 1 : 4 : 16.

Cracks were made by fi rst cutting a notch with 
a band saw and then sharpening it with a knife 
edge especially prepared for each specimen size 
in order to maintain the standard recommendation 
for crack length ‘a’ : 0.45 h ≤ a ≤ 0.55 h where h is 
the height of beams. The maximum knife-edge 
cut was about 2 mm and the fi nal crack length 
is shown in Table 1. The moisture content of 
specimens ranged from 4 to 16% that refl ected 
the equilibrium moisture conditions (EMC) of 
a centrally heated building where the boards 
were stored prior to preparing specimens. These 
conditions were selected to simulate and study 
the effect of small variations in moisture content 
typical of wood used in interior conditions.

From the total batch of specimens, a subset 
consisting of 68 was used to record the entire 
crack propagation on a high-speed video camera 

P

a

L

h

Fig. 1. Specimen with a crack perpendicular to grain. (h is height, a is crack length, L is span 
and P is applied load, patterns on the surface show grain orientation, and the two circles 
indicate the two rollers supporting the specimen).
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and their spread among the three loading rates 
for each of the four sizes was: 5 specimens for 
10 mm/min, 8 for 2.5 mm/min, and 4 for 0.625 
mm/min. These were used to explore fracture 
dynamics properties. Tests were carried out on a 
computer driven SINTECH (MTS) 30/D material 
testing machine. Four cylindrical load applicators 
were made, one for each size, according to ASTM 
standards for wood (1995) and a roller bed with 
adjustable spans were built to accommodate 
specimens with different spans as shown in Fig. 2. 
The supporting experimental resources were as 
follows: High-speed (450 frames/sec) video 
camera (HSC 250 × 2 of JC Labs Inc.), high speed 
recording device (SVHS Panasonic AG5700 video 
cassette and recorder) and a monitor, two light 
sources to illuminate the surface of the specimens 
and an electronic timer with a stop watch with an 
accuracy of 0.01 seconds.

The following is a description of the procedure 
used for high-speed video imaging of the process 
of crack propagation of the subset of 68 beams: 
The crack tip area was sprayed with black paint 
and the specimen was placed on the roller bed and 
the specimen surface was illuminated to obtain a 
clear image (Fig. 2). A graph paper was placed 
on the specimen and its image was recorded to 
calibrate the image distance to real distances. 
The timer was hung on the specimen closer to the 
crack and it was used to refer the images to load-
time graphs obtained from the testing machine.

The load was applied at the rates specified 
in Table 1 and the high-speed camera was 
simultaneously activated. Video images of the 
specimen were recorded throughout the loading 
process until the specimen failed completely and 
68 fracture processes were thus recorded. Load-
deflection-time plots were also obtained from 
the testing machine to determine duration for 
crack initiation and catastrophic failure, and loads 

associated with these events. The investigations 
of time to failure and crack speeds were based on 
these specimens. The rest of the 136 beams were 
tested to failure in a similar fashion except that 
the crack propagation was not video recorded. 
For these, only the load-deflection plots were 
obtained. Total data set, however, was used for the 
study of crack initiation and catastrophic stresses 
and fracture toughness.

5.2 Physical and Geometric Variables

Data obtained for each specimen were: crack 
length, dimensions, density, moisture content, 
Young’s modulus, ring angle, grain angle and 
curvature of growth rings. Soon after testing, two 
pieces near the tip were cut from every specimen 
to determine moisture content and dry density 
using the oven dry method (ASTM Standards-

Table 1. Specimen sizes, rates of loading, geometric proportions, and sample sizes

Size Size No. of specimens for each Crack a / h
category (L × h × b) mm ROL (mm/min) length
  2.5 10.0 0.625 (a) (mm)

A 1000 × 90 × 45 24 15 12 41 0.46
B 600 × 54 × 27 24 15 12 25 0.46
C 300 × 27 × 13.5 24 15 12 13 0.48
D 150 × 13.5 × 6.75 24 15 12 6 0.45

Fig. 2. Experimental set-up showing the specimen on 
the roller bed with adjustable span, light source 
with fibre optic cable (adjacent to specimen) and 
camera (on the left side of the image).
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Wood 1995). Young’s modulus for each cracked 
beam was estimated from a matched-sample cut 
from the adjacent material and tested in 3-point 
bending at the ROL specifi ed for the correspond-
ing cracked specimen. Tests were carried out 
using the same set-up used for testing cracked 
specimens; displacements were measured using 
images of the specimens and calibrated using an 
image of a graph paper set against each specimen 
prior to testing resulting in a resolution of 15.6 
pixels/mm; and the load was obtained from the 
testing machine. Young’s modulus was deter-
mined from the standard beam formula. Addi-
tionally, the grain angle (angle between grain 
and longitudinal axis of beam), face or ring angle 
(angle between width and tangent to a growth 
ring on the cross section), and ring curvature 
were measured as parameters affecting fracture 
and defi ning the subsequent crack path (Fig. 3). 
The range of the values for each variable was: 
moisture content (4–16%), grain angle (0.06° to 
29°), face angle (0° to 80°), curvature (0.001 to 
49.6), density (355 to 850 kg/m3), and Young’s 
Modulus (MOE) (7.71 to 12.24 GPa).

6 Results and Discussion

6.1 Some Experimental Observations

Following is a summary of some notable observa-
tions on crack initiation and propagation made 
from the tapes. Propagation in more than 40% 
of specimens did not start right from the existing 
crack tip indicating that any point in fracture proc-

ess zone can reach the failure criteria and initiate 
crack propagation. All those cracks not originat-
ing from the tip subsequently joined the tip. In 
most of the specimens, cracks propagated along 
the grain. In few cases, a multitude of small cracks 
developed in different layers in the vicinity of the 
crack and fracture occurred in a staggered condi-
tion along some of these small cracks. Another 
feature observed was the crack extension and 
closure at high speeds where cracks propagate as 
a wave with oscillations which increased rapidly 
as the catastrophic failure was reached. A similar 
wave phenomenon was reported by Abraham 
(1997) for isotropic materials.

6.2 Time to Crack Initiation (Tinit) and 
Propagation (Tfrac)

Typical load-time plots for the beams for all ROLs 
had an initial linear region, and at crack initiation 
graph became nonlinear. This time was recorded 
as the time to crack initiation and the correspond-
ing load was recorded. Beyond crack initiation, 
load increases further up to the peak load at which 
point the load drops suddenly to pick up again 
and fail catastrophically at a later time. The varia-
tions were one in which peak load coincided with 
the catastrophic load and another in which load 
increased linearly up to the peak load. From each 
plot, the times to failure initiation and catastrophic 
failure as well as the crack initiation load and the 
peak load were obtained.

Time to crack initiation (Tinit) was consistent in 
a predictable way for each volume and ROL. The 
Tinit in relation to volume and ROL is shown in 

(a) (b)

Fig. 3. Measurement of geometric properties: a) grain angle (α) and face angle (β) and b) curvature 
measurement (ABCD depicts the cross section, XY denotes section of growth ring whose curva-
ture is measured, XR and YP are tangents to the growth ring and r is radius of the growth ring. 
Curvature was determined using these geometric parameters).
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Fig. 4a which shows that it is nonlinearly related 
to these two variables. For example, there is a 
pronounced effect of volume at the lowest ROL 
(0.625 mm/min). However, this effect diminishes 
as ROL increases and at the highest ROL (10 
mm/min), the volume effect is almost negligible. 
As for the effect of ROL, Fig. 4a indicates that 
it is more pronounced on the largest volume that 
held the load disproportionately longer than the 
smaller ones. Table 2 displays the mean times to 
crack initiation and associated standard deviations 
(within brackets). Where there is no standard 
deviation, valid results could be obtained for only 
1 out the four specimens.

In contrast to Tinit, the duration of crack propa-
gation (Tfrac) was highly random as shown in Fig. 
4b against volume and ROL (0.625, 2.5, 10 mm/
min). Fig. 4b shows that once crack propagation 
has initiated, a beam can fail at any time regard-
less of the volume. However, it also shows that all 
specimens with the largest volume have failed rel-
atively quickly at the lowest ROL. Table 2 shows 
the mean time to fracture and standard deviations 
(shown within brackets) which highlight the high 
variability of Tfrac compared to Tinit.

6.3 Stress at Crack Initiation and 
Peak Stress

Table 3 displays the mean and standard deviation 
of crack initiation and peak stresses (in MPa) with 
respect to specimen size and rate of loading. Fig. 5 
shows the average initiation stress and peak stress 
against volume for the three ROLs and it indicates 
that the stresses follow a power function against 

volume. Statistical tests of significance based on 
two-sample t-tests showed no significant influ-
ence of ROL on both stresses at significance level 
of 0.05. However, volume effect was significant 
for crack initiation and peak stresses (p < 0.001) 
for all volumes.

6.3.1 Neural Network Predictions of 
Load Carrying Capacity

In establishing fracture toughness, it is crucial 
to have an accurate estimation of crack initiation 
load. ASTM guidelines indicate an acceptable 
limit for the ratio of crack initiation load to peak 
load as a measure of validity of a fracture test. 
Furthermore, Table 3 highlights a large variance 
of crack initiation stress within a size category 
(A, B, C, or D) compared to the variance of peak 
stress. Therefore, it would be useful if these can 
be estimated for an individual specimen from its 
own geometric and physical properties and test 
conditions (volume, ROL, density, moisture con-
tent, Young’s modulus, grain angle, face angle, 
and curvature of growth rings) and study how 
they influence it. The statistics of the specimen 
properties are shown in Table 4 which indicates 
a fair amount of variation of these properties 
as well. Therefore, neural network models were 
developed to predict these stresses (and loads) 
from the above parameters. Results revealed that 
models predicting crack initiation load (Pinit) and 
peak load (Ppeak) produced much higher accuracy 
than those predicting the corresponding stresses; 
therefore, the following section presents models 
predicting Pinit and Ppeak, as accurate predictions 

(a) (b)

Tinit (sec)

Log Vol Log Vol
Log ROL Log ROL

Tfract (sec)

Fig. 4. Experimentally observed a) time to crack initiation (Tinit – seconds) and b) duration of fracture 
(Tfrac) in relation to volume and ROL. (Log Vol is logarithm of volume (mm3) and Log ROL is 
logarithm of rate of loading).
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Table 2. Mean time to crack initiation (Tinit), duration of fracture (Tfrac) and associated standard 
deviations (shown within brackets) with respect to volume and ROL.

Sample size ROL Log(Vol) Tinit (sec) Tfrac (sec)
 (mm/min) (mm3)

A (100 × 90 × 45) 0.625 6.61 341.67 (14.43) 82.95 (77.84)
A 2.500 6.61 125.00 (20.41) 41.10 (53.43)
A 10.000 6.61 32.71 (15.61) 36.65 (0.010)

B (600 × 54 × 27 0.625 5.94 306.66 (11.55) 204.17 (117.55)
B 2.500 5.94 78.33 (–) 6.30 (–)
B 10.000 5.94 22.40 (5.00) 9.92 (9.13)

C (300 × 27 × 13.5) 0.625 5.04 193.75 (12.5) 92.44 (123.83)
C 2.500 5.04 57.36 (29.46) 50.13 (59.03)
C 10.000 5.04 8.50 (1.00) 12.81 (10.88)

D (150 × 13.5 × 6.75) 0.625 4.14 95.00 (10.00) 176.01 (84.81)
D 2.500 4.14 24.00 (4.18) 36.45 (48.28)
D 10.000 4.14 5.00 (1.07) 2.31 (2.05)

Table 3. Crack initiation stress and peak stress and corresponding standard deviations with 
respect to specimen size and ROL.

Size mm3 ROL Crack init stress (MPa) Peak stress (MPa)
 mm/min mean stdev mean stdev

A 0.625 7.94 4.10 17.64 2.30
1000 × 90 × 45 2.5 8.77 3.72 18.16 3.83
 10 8.49 4.86 17.74 3.67

B 0.625 9.97 3.86 21.65 2.79
600 × 54 × 27 2.5 10.33 8.05 25.51 3.82
 10 12.46 8.32 26.27 3.98

C 0.625 13.17 12.35 28.99 7.32
300 × 27 × 13.5 2.5 18.29 9.14 30.91 7.50
 10 19.66 11.61 33.01 7.86

D 0.625 35.39 11.93 55.56 8.23
150 × 13.5 × 6 2.5 46.09 16.05 65.02 14.40
 10 39.92 15.23 55.97 13.58

Fig. 5. a) Average crack initiation stress and b) average peak stress against volume for the three ROLs.
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of load carrying capacity (whether load or stress) 
increases the accuracy of estimation of fracture 
toughness using the analytical formula.

For both models, the total data set was randomly 
divided into three sets – 60% for training, 20% 
for calibrating or testing the model during training 
and another 20% for validating the developed net-
work. The validation set shows the prediction and 
generalization ability of the developed network 
when exposed to new data that it has not seen 
before. NeuroShell2 (1997) software was used 
to develop neural network models and a Multi-
Layer Perceptron (MLP) network was the best 
model for predicting Pinit. This neural network 
has one input layer, two sets of 8 neurons each in 
the hidden layer – with one set having Gaussian 
and the other set with Gaussian Complement 
activation functions-, and one output neuron with 
logistic activation. The network was trained with 
backpropagation with momentum and training 
was continued until the mean square error on the 
test set reached minimum.

Fig. 6 shows the actual and predicted load to 
crack initiation for the validation data set. Here, 
the prediction accuracy was such that the R2 was 
0.71 indicating that 71% of variability of Pinit was 
captured by the inputs. Correlation coeffi cient 
between the predicted and actual loads was 0.85 
and the root mean square (RMSE) on the valida-
tion data set was 0.125 (equivalent to 214 N). 
The order of the variables from the most to least 
signifi cant and their contribution to predicting the 
crack initiation load as obtained from a sensitivity 
analysis, performed by analysing the infl uence of 
a variable while holding the other variables at their 
mean value, were: Log Volume (31%), Young’s 
Modulus (16%), face angle (10.3%), moisture 
content (9.6%), curvature (9.2%), grain angle 
(8.3%), Log ROL (8.1%) and density (7.5%). For 
comparison, Multiple Linear Regression was also 
conducted on the data resulting in R2 of 0.626, 
and RMSE of 0.135 (equivalent to 260 N).

As shown in Fig. 5b and Table 3, peak stress for 
all 204 specimens was more consistent. Similar 
observation was made for peak load by Boon-
tanjay (1979) for notched pinus radiata beams. 
Neural networks were developed to predict peak 
load for individual cracked beams from their 
physical and geometric properties and test condi-
tions. The best network was an MLP network with 

2 sets of 8 hidden neurons with one set having 
Gaussian and the other with Gaussian comple-
ment activation functions, and one output neuron 
with logistic activation. Fig. 7 shows the peak load 
predicted from the neural network and the actual 
load for the validation data set that produced an 
R2 value of 0.918 (91.8% of variability captured 
by the inputs), correlation coeffi cient of 0.968 
between the predicted and actual loads and RMSE 
of 0.086 (equivalent to 222 N). It shows high 
prediction accuracy indicating that the neural net-
work has captured the variation in the peak load 
extremely well. A sensitivity analysis revealed 
the following order of signifi cance and contribu-

Table 4. Statistics of physical and geometric properties 
of specimens.

 Min Max Average St.dev

Moisture content (%) 4.1 16.0 10.3 1.51
Grain Angle (rad) 0.001 1.222 0.102 0.147
Face Angle (rad) 0.001 1.57 0.724 0.475
Curvature 0.001 49.6 8.78 9.81
Dry Density (kg/m3) 355 850 482 63.5
Young’s Mod. (GPa) 7.71 12.24 8.64 2.55

Fig. 6. Experimental and Neural network predicted 
crack initiation load Pinit (validation data). (N indi-
cates Newtons)

Fig. 7. Experimental and Neural Network predicted peak 
load (validation data).
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tion of the variables to the peak load: log volume 
(28.4%), Young’s modulus (14%), density (13%), 
grain angle (11.9%), moisture content (11.3%), 
curvature (8.7%), Log ROL (6.9%), and face 
angle (6.0%). Some variables have reversed the 
order of significance from the crack initiation load 
analysis but Young’s modulus appears to be the 
most important secondary variable for both peak 
and crack initiation loads. For comparison, MLR 
was conducted and the resulting R2 was 78.4% 
and RMSE was 0.122 (equivalent to 395 N).

6.4 Crack Speed Profiles

This section investigates speed of crack pro-
pagation in the beams in relation to ROL. The 
fracture process of the 68 specimens selected 
for monitoring crack propagation were recorded 
on 3-hour SVHS videotapes resulting in 9 hours 
worth of information. One of the drawbacks in 
the use of the digitized video images was the hard 
disk space required to store them. For example, 
2–3 minute duration of video occupied about 
100 MB space. Therefore, important still images, 
between 20–100 images along with the graph 
scale image per specimen, were captured from 
the tapes at appropriate events using Vedium 
Movie Clip multimedia imaging software and 
relevant hardware (1998). Graph scale was used 
to convert image pixel distances to mm. For a 
digital image, the smallest unit is called a pixel, or 
picture element, and the image size in this study 
was 512 × 512 pixels. The crack length over time 
was computed using the crack tip coordinates 
obtained at the beginning and end of a specified 

time period. The crack speed during the same 
time period was calculated by dividing the crack 
length by the time interval.

Fig. 8a and b show crack speed profiles within 
the time duration of fracture for two typical speci-
mens of the largest size A (1000 × 90 × 45) for 
the minimum and maximum ROL tested. Fig. 8a 
shows that the crack speed is very low at the 
lowest rate (0.625 mm/min) up to the catastrophic 
failure state where crack speed jumps rapidly 
in the form of a spike up to about 120 mm/sec. 
This indicates slow and stable crack propagation 
until catastrophic failure. At the highest rate of 
loading (10 mm/min) however, speed fluctuates 
significantly throughout the fracture process with 
oscillations with an overall increase up to the 
catastrophic failure where speeds of about 100 
mm/sec are reached (Fig. 8b). This profile indi-
cates a fast and turbulent mode of crack extension 
at the highest ROL.

The negative speeds indicate crack closure 
where crack lips touch each other, and it was 
predominant in the vicinity of the catastrophic 
failure. Nielsen (1978) used an assumption of 
non-negative crack speeds in the time interval 
between crack initiation and catastrophic failure 
to derive expressions for the time to catastrophic 
failure. According to our study however, alternate 
negative and positive speeds were quite frequent 
and negative speeds are reasonably high in many 
cases and quite significant for the highest ROL. 
The speed profiles for the other two sizes are 
not ready due to the labour and time intensive 
extraction of data from the digitized images. 
Therefore, the size effect on crack speed is not 
studied at this point.

Fig. 8. Crack speed profiles for the largest volume for ROL of: a) 0.625 mm/min and b) 10 mm/min.

(a)
(b)
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6.5 Predicting Fracture Toughness of 
Individual Samples Using
Neural Networks

The inconsistency of the crack initiation load 
prominently displayed in this study resulted in the 
ratio of peak load to crack initiation load ranging 
from 1 to 5.6. For metals, ASTM standards (1995) 
recommended ratio is 1.1 for a mostly linear load-
displacement plot up to failure. In wood beams, 
there is a large nonlinear region before failure 
and therefore, the ratio adopted for metals is not 
suitable. Boontanjay (1979), who tested notched 
pinus radiata beams, also found a large ratio and 
he arbitrarily selected 2.5 as the maximum accept-
able ratio for a valid fracture toughness test. In our 
study, a ratio of 2.5 was selected and this reduced 
the data set to 72% of the original set. We noted 
that the large ratios were more a characteristic 
of larger volumes. For example, the rejection 
rate from the largest to smallest volumes was: 
31%, 38%, 18%, and 4%. For the reduced set, 
the fracture toughness (KIc) was obtained from 
the standard formula and associated correction 
factor (Pilkey 1994) given below:
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where, a is crack length, h is height (Fig. 1) and 
b is width (thickness) of the specimen, L is span, 
and Pinit is load at crack initiation. Fig. 9 shows 
the relationship between fracture toughness and 
volume (1 indicates the smallest and 4 the larg-
est) for the three ROLs (1 indicates the smallest 
and 3 the largest) in terms of mean and 95% 
confi dence intervals. The fi gure shows that the 
fracture toughness is the largest for the smallest 
volume and its sensitivity diminishes for larger 
volumes.

Statistical tests of signifi cance using two sample 
t-tests indicated that the ROL effect on mean frac-
ture toughness was insignifi cant for all volumes 
at α = 0.05. With regard to sample size, statistical 
t-tests indicated that the mean fracture toughness 
of the smallest volume was signifi cantly different 
from that for the three larger volumes at α level 
of 0.05.

Simple linear correlation analysis conducted 
on STATISTICA (2007) indicated statistically 
signifi cant correlations (p < 0.05) between fracture 
toughness and: LogVolume (–0.517), Young’s 
modulus (0.405), face angle (–0.443) and grain 
angle (–0.244), and statistically insignifi cant cor-
relation between fracture toughness and: curva-
ture, dry density, moisture content and LogROL. 
Since these were linear correlation coeffi cients, 
they do not capture nonlinear effects typical 
of wood, which ANN are capable of captur-
ing. Therefore, all variables were included in the 
model development.

NeuroShell (1997) and STATISTICA (2007) 
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0.178 which is inferior to results from all neural 
networks indicating the presence of nonlinear 
relationships not captured by MLR.

Fig. 10 shows that the predicted values for most 
specimens are better than the mean value indicat-
ing the advantage of predicting fracture toughness 
from individual specimen properties. Considering 
the constant values generally assumed for fracture 
toughness properties of a single species in dry 
conditions, these results are encouraging. Samara-
singhe et al. (2007) also showed that even for the 
same kiln-dried batch, meaningful relationships 
can be found between KIc and individual speci-
men properties.

The developed neural network was also sub-
jected to sensitivity analysis to fi nd the relevance 
of the input variables. This was done by remov-
ing one variable at a time from the model and 
determining the increase in error in model pre-
diction when this variable was unavailable. The 
results indicated that the most to least infl uential 
variables and their contribution to predicting 
fracture toughness were; LogVolume (28.3%), 
Young’s modulus (12.7%), LogROL (12.6%), 
density (10.4%), moisture content (10.1%), face 
angle (9.5%) and curvature (8%). Although the 
mean fracture toughness values were statistically 
insignifi cant with respect to LogROL, it shows an 
infl uence for individual specimens.

Sample number

Fr
ac

tu
re

 to
ug

hn
es

s
(k
P
a√
m
)

Fig. 10. Observed and predicted fracture toughness with superimposed 
mean value.

that tests a variety of network architectures and 
activation functions in MLPs and Radial Basis 
Functions (RBF) while also testing them on sub-
sets of inputs were used to train 10 networks using 
several learning methods including backpropaga-
tion with momentum, quickprop, and conjugate 
gradient methods. The 5 top performing networks 
were selected based on R2, RMSE and correla-
tion between the predicted and actual data and, 
out of these, the best was an MLP network with 
two sets of 6 hidden neurons, one set with logistic 
and the other with Gaussian complement and an 
output neuron with logistic activation and using 
all 8 inputs. This model produced an R2 of 0.62 
on the validation data indicating that 62% of vari-
ability of KIc is explained by the input variables. 
The correlation coeffi cient between actual and 
predicted values was 0.813 (p < 0.05), and RMSE 
was 0.0961 (equivalent to 532 kPa√m).

The other four networks used all inputs and 
were inferior to this model but had similar per-
formance to each other with statistically signifi -
cant (p < 0.05) correlation coeffi cient between the 
actual and predicted output ranging from 0.542 
to 0.593. These were: 3 RBF functions with 26, 
22, and 20 hidden neurons and an MLP network 
with 12 hidden neurons with tanh activation func-
tions in hidden and output layers. The RMSE for 
these networks based on the validation dataset 
that was not used in model development were, 
0.138, 0.137, 0.131, 0.133 and 0.141, respectively. 
Fig. 10 shows a plot of the relationship between 
the actual and predicted fracture toughness from 
the best model on validation data along with the 
mean fracture toughness depicted by the hori-
zontal line. A multiple linear regression (MLR) 
model produced an R2 of 0.297 and RMSE of 
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7 Summary and Conclusions

This study explored fracture dynamics properties 
of cracked wood beams of four sizes. The volume 
and ROL interact nonlinearly affecting time to 
crack initiation. For example, the volume effect 
was more marked at the smallest ROL where the 
largest volume held the load a disproportionately 
longer time. However, the volume effect was 
negligible at the largest ROL. The time to crack 
initiation was consistent; in contrast, the time 
to crack propagation was more variable for a 
particular size category. However, at the lowest 
ROL, the largest volume failed more quickly 
after crack initiation. The crack propagation was 
a wave phenomenon leading to negative (crack 
closure) and positive speeds, especially at the 
highest ROL, reaching very high speeds at the 
catastrophic failure.

Both the average crack initiation and peak 
stresses were insensitive to ROL but were sig-
nificantly affected by volume. However, the 
peak stress was more consistent than the crack 
initiation stress. Neural network models were 
developed successfully to predict both the crack 
initiation and peak loads for individual samples 
from their physical and geometric variables 
including volume, rate of loading (ROL), Young’s 
modulus, density, moisture content, grain angle, 
curvature of growth rings and face angle. Both 
showed strong correlations and high predictability 
resulting in R2 of 0.71 and 0.918, respectively, and 
correlation coefficients between the actual and 
predicted load of 0.85, and 0.968, respectively. 
These models indicated that volume was the 
predominant variable and Young’s modulus was 
the most important secondary variable affecting 
initiation and peak loads. Other variables showed 
varying contributions to the two loads.

The mean fracture toughness was insensitive 
to ROL and there was a significant difference 
between the mean fracture toughness of the small-
est volume and that of the other three volumes. 
The best neural network model developed to pre-
dict toughness of each individual beams produced 
an R2 of 0.62 and correlation coefficient of 0.813 
between the predicted and actual values.

The study showed that the neural networks 
can predict crack initiation load, peak load and 

fracture toughness of individual beams from their 
properties and are useful for assessing their con-
tributions. The predicted fracture toughness was 
significantly better than the mean value. As crack 
initiation load could be predicted successfully, in 
future, it may be possible to use crack initiation 
load predicted from easily measurable proper-
ties of individual specimens to calculate fracture 
toughness. Alternatively, the model developed 
to estimate fracture toughness directly can be 
used. The current study dealt with only a limited 
range of values for the variables representing inte-
rior use of kiln-dried wood based on specimens 
derived from one log. However, it is promising 
that with a larger database representing a larger 
range of values, neural networks have the poten-
tial to predict load capacity of cracked members 
under the uncertain influence of physical and 
geometric variables.
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