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Predictions of growth and yield are essential in forest management planning. Growth pre-
dictions are usually obtained by applying complex simulation systems, whose accuracy is 
difficult to assess. Moreover, the computerised updating of old inventory data is increasing in 
the management of forest planning systems. A common characteristic of prediction models is 
that the uncertainties involved are usually not considered in the decision-making process. In 
this paper, two methods for assessing the uncertainty of updated forest inventory data were 
studied. The considered methods were (i) the models of observed errors and (ii) the k-nearest 
neighbour method. The derived assessments of uncertainty were compared with the empirical 
estimates of uncertainty. The practical utilisation of both methods was considered as well. 
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found to be feasible. The main advantages of the two studied methods include that bias as 
well as accuracy can be assessed. 
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1 Introduction
Field data concerning the state of the forests, as 
well as predictions of forest growth and yield, are 
essential information sources in forest manage-
ment planning. Inventory data are used in forest 
planning systems to predict stand growth under 
different management schedules and to optimise 
the management schedules for the stands depend-
ing on the landowner’s preferences or objectives 
(e.g. Leskinen 2001) and regulations, as well 
as the recommendations based on current forest 
management practices. Forest planning systems 
are usually quite complex, containing models 
for predicting the development of stands, e.g. 
models for regeneration, growth and mortality, 
and models for simulating the impact of different 
management schedules based on these predictions 
(e.g. Jonsson et al. 1993, Siitonen 1993, Lund-
ström and Söderberg 1996, Eid and Hobbelstad 
2000). Accurate predictions of stand growth and 
yield are essential, because inaccurate predictions 
lead to wrong conclusions and non-optimal treat-
ment schedules (Kangas and Kangas 1997).

The practice in the Nordic Countries is for field 
data to be usually collected stand-by-stand using 
subjective forest inventory methods, e.g. ocular 
inventory methods. In Finland, for example, the 
inventory data on non-industrial private forests 
are mainly collected by using Bitterlich (1984) 
sample plots. The stand basal area is assessed as 
the average of the subjectively selected represent-
ative sample plots. Furthermore, measurers often 
change the average basal area of the sample plots 
based on their own subjective views. Moreover, 
tree heights and diameters at breast height are not 
measured on the sample plots; instead, the trees 
are tallied using a relascope and a subjectively 
chosen basal area median diameter tree per tree 
species per stand is assessed by the measurer. 
Thus, it is difficult to estimate the sampling errors 
and the accuracy of stand-level inventory. 

The accuracy of stand-level inventory con-
tains wide variation due to the subjectivity of 
the method. For example, the measurement error 
of the basal area (BA) varies from about 10% 
to 22% (e.g. Mähönen 1984, Laasasenaho and 
Päivinen 1986, Ståhl 1992, Pigg 1994, Haara and 
Korhonen 2004). In addition, the mean diameter 
at breast height (DgM), the mean height (HgM), 

and the mean age (Age) in stand-level inventory 
are determined by referring to the same basal-area 
median-diameter tree. This implies, for exam-
ple, that errors in these stand characteristics are 
positively correlated (e.g. Ståhl 1992, Pigg 1994, 
Haara 2003). The measurement error for mean 
age is about 20% and for mean diameter and 
mean height about 10–20% (e.g. Mähönen 1984, 
Laasasenaho and Päivinen 1986, Ståhl 1992, Pigg 
1994, Haara and Korhonen 2004). In stand-level 
inventory, the standard error of the mean stand 
volume (V) can vary between 15% and 38% (e.g. 
Poso 1983, Laasasenaho and Päivinen 1986, Ståhl 
1992, Haara and Korhonen 2004). The consider-
able variation between measurers’ accuracy has 
been also noted in many studies (e.g. Laasas-
enaho and Päivinen 1986, Nersten and Næsset 
1992, Ståhl 1992, Kangas et al. 2002, Haara and 
Korhonen 2004). 

Long-term management planning typically uses 
the diameter distribution approach in growth and 
yield predictions (e.g. Clutter et al. 1983, Siitonen 
1993). When doing so, the collected field data 
with tree and stand characteristics are used to 
estimate the theoretical diameter distribution of 
trees. The practice in Finland is to use basal area 
diameter distributions instead of the stem diam-
eter distributions (e.g. Kilkki et al. 1989, Maltamo 
1998). Each sample tree from the theoretical 
diameter distribution predicts a certain number 
of trees in the stand. The mean stand volume can 
be predicted by multiplying the volume of each 
sample tree by the prediction of its number and 
by summing up the estimated volumes.

The uncertainty of growth and yield predictions 
should be taken into account in forest planning 
and decision-making (e.g. Hof et al. 1988, Hof 
and Pickens 1991, Pickens et al. 1991, Hof et al. 
1992, Kangas 1999). There are several approaches 
to assessing this uncertainty. Perhaps the simplest 
way to assess the uncertainty of growth predic-
tions is to use re-measured data and compare the 
growth predictions obtained to observed growth. 
However, empirical assessments are time and 
place constrained, i.e. the assessments carried 
out in a certain time-and-place combination can 
not be directly applied elsewhere (Kangas 1999). 
Besides, the assessments of the reference growth 
data are usually based on accurate measure-
ments instead of ocular assessments. The second 
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approach to assessing the accuracy of growth 
predictions is to utilise the Monte Carlo simula-
tion or Taylor series approximation methods (e.g. 
Gertner and Dzialowy 1984, Mowrer and Frayer 
1986, Gertner 1987, Mowrer 1991, Gertner et al. 
1995, Kangas 1997). When using these methods, 
the total prediction error is composed of several 
error sources (Kangas 1999). In both methods, 
accuracy can be assessed without independent 
re-measurement of data sets. However, from the 
technical point of view, it may be very difficult 
to take all error sources into account, especially 
when dealing with large model sets. A third pos-
sibility in studying the accuracy of simulation 
systems is to model the observed (past) errors as 
functions of explanatory variables at the aggre-
gated level (e.g. Hansen and Hahn 1983, Soares 
et al. 1995, Kangas 1999). In this approach, 
the errors caused by different growth and yield 
models need not be specified. The main restriction 
in using this approach is the requirement of inde-
pendent continuous inventory data, in which both 
planning data and correct data are available at the 
beginning and at the end of the planning period. 
Comparative studies between different methods 
for the purpose of determining their accuracy, 
e.g. Kangas (1999), are rare. Most studies have 
focused on dealing with Monte Carlo simulation 
or Taylor series approximation methods.

In addition to the above techniques, Haara 
(2002) assessed the uncertainty of growth and 
yield predictions by using the k-nearest neighbour 
method (k-NN method). The uncertainty of the 
predicted stand characteristics of the target stand 
was derived from the uncertainty assessments 
of growth predictions of the nearest neighbour 
stands. The variables of the distance function, as 
well as the weights of these variables, were chosen 
using multi-objective optimisation (Haara 2002). 
The differences between the predicted growth of 
the target stand and the predicted growths of the 
reference stands were minimised. As a result, the 
stand characteristics and predicted growth were 
as similar as possible between the target stand 
and the reference stands. In practice, the quality 
of the k-NN method predictions depends on the 
availability of extensive reference data. If good 
reference data are available, the examined method 
is a very promising way to predict the uncertainty 
of growth predictions (Haara 2002).

The quality of forest management planning 
depends greatly on the accuracy of the inven-
tory data, which can be improved, but doing so 
results in increasing inventory costs. In general, 
the costs of field inventory are significant, com-
prising approximately half of the total costs of 
forest management planning (Uuttera et al. 2002). 
On the other hand, the costs of the field inventory 
can be reduced by utilizing old inventory data by 
updating the stand characteristics contained in the 
old data computationally using forest simulation 
systems (e.g. Clutter et al. 1983, Siitonen 1993). 
However, the accuracy of the updated data must 
be adequate for planning purposes. Computational 
updating is already being used in forest planning 
without accurate knowledge of the uncertainty of 
the updated stand characteristics, although there 
are some studies, which have demonstrated that 
updated stand characteristics can be as accurate as 
stand characteristics obtained from new inventory 
data (e.g. Pussinen 1992, Anttila 2002, Hyvönen 
and Korhonen 2003)

The aim of this paper is to further study the 
uncertainty of updated stand-level inventory data 
by comparing two different methods for assessing 
the uncertainty. First, the uncertainty of growth 
and yield predictions is estimated by modelling 
the observed errors obtained by comparing the 
empirical stand characteristics with the updated 
stand characteristics. Second, the assessment of 
uncertainty is carried out by applying the k-near-
est neighbour (k-NN) method and multi-objective 
optimisation. These two assessment methods have 
been presented as promising methods for predict-
ing uncertainty, and in this study the methods are 
further studied and compared in connection with a 
large amount of test data. The updating is carried 
out using the MELA forest management planning 
system (Redsven et al. 2004). The assessments 
of uncertainty are compared with the empirical 
uncertainty. The sources of uncertainty consid-
ered in this study are the errors in the basic forest 
inventory data and the errors of the predictions 
of the forest development due to these inventory 
errors. 



90

Silva Fennica 43(1), 2009 research articles

2 Material and Methods
2.1 Study Material

The study data consisted of three independent 
data sets. The first data set was obtained from 
fixed-radius permanent plots (INKA data) located 
in pure and mixed stands (Gustavsen et al. 1988). 
The INKA data were collected between 1976 
and 1992 by Finnish Forest Research Institute 
staff from forest stands growing on mineral soils 
(Table 1). Three fixed circular sample plots were 
measured in each stand 1–3 times at intervals 
of 5 years. Plots were located 40 meters apart 
from each other. The plot size varied: at least 
120 sample trees per stand were measured in 
Southern Finland and 100 sample trees per stand 
in Northern Finland. The area of the study plots 
varied between 0.008 and 0.13 hectares mean area 
being 0.011 hectares. Tree diameters at breast 
height of all trees of the plot were measured 
but tree heights were measured only from trees, 
which were located in a smaller plot at the center 
of each sample plot. The area of smaller plot was 
1/3 of the area of the sample plot. The INKA data 
consisted of a total of 754 stands. 

The second data set was comprised of three 
independent data sets collected compartment-by-
compartment from Eastern Finland in 1998–2002 
(Hyvönen 2002, Hyvönen and Korhonen 2003, 

Haara and Korhonen 2004). These three data sets 
were combined and consisted of a total of 1223 
stands (Table 1). A stand-level inventory was first 
carried out by measurers in large stand data. The 
accuracy of the stand-level inventory was then con-
trolled by measuring a large check inventory data. 
A systematic network of fixed circular sample plots 
was measured within each stand of the checking 
inventory data. This dataset is referred as CONTROL 
data. The number of the plots and the radius of the 
plots depended on the area of each stand, on the 
development class of the particular stand, and on 
the number of tree species within the stand. The 
average radius of the plots was 7.5 metres, and the 
radius of the plots varied from 3.99 metres (young 
stands) to 10 metres (mature stands). The average 
number of sample plots was 6.2 plots per stand. 
The tree species and the diameter at breast height 
were determined for each tree on the plots. The 
heights of the basal-area median-diameter trees 
of all tree species were measured on at least three 
plots within each stand. 

The third data set (NORTH data) consisted of 
independent and controlled compartment data 
including 1842 stands from Northern Finland and 
collected in 1990–1994 (Haara 2003). A stand-
level inventory was carried out by measurers. The 
control inventory was then done by measuring a 
systematic net of relascope sample plots in each 
stand. The average number of sample plots was 

Table 1. The main stand characteristics of the INKA data, CONTROL data, and NORTH data.

Min Max Mean SD

INKA (754 stands)
DgM (cm) 1.9 35.2 15.8 6.3
HgM (m) 1.9 28.7 12.5 5.6
BA (m2 ha–1) 0.2 38.0 16.4 8.4
V (m3 ha–1) 0.7 387.8 114.5 84.0
Age (years) 2 154 52.7 30.8

CONTROL (1223 stands)
DgM (cm) 7.5 42.6 19.2 5.9
HgM (m) 4.3 31.9 15.5 5.2
BA (m2 ha–1) 1.5 40.8 20.3 6.4
V (m3 ha–1) 8.5 447.4 155.8 80.0
Age (years) 6 179 56.9 26.4

NORTH (1842 stands)
DgM (cm) 1 31.6 15.1 5.5
HgM (m) 1.3 16.6 9.7 3.1
BA (m2 ha–1) 1 36 10.8 6.9
V (m3 ha–1) 1 250 60.3 46.7
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7.7 plots per stand. Tree species and diameters at 
breast height of all trees on the sample plots were 
determined (Table 1). The heights of the basal-area 
median-diameter trees of all tree species within 
the plot were measured. The three datasets, and 
the four data sets generated from those in Chapters 
2.2 and 2.3, are introduced in Table 2.

2.2 Generation of True Stand-Level 
Inventory Data

Tree-specific stand data were first generated from 
the INKA data. The trees from three plots in each 
stand were combined to represent the empirical 
diameter distribution of the stand. The heights of 
the trees were taken only from the sample trees. 
Any missing heights h were estimated for each 
tree using Näslund’s (1936) height model

h
d

b b d
e= +

+( )
+1 3 1

2

0 1
2

. ( )

where d refers to the diameter. The parameters b0, 
b1 and Var(e) were estimated separately for each 
stand. The missing tree heights were predicted 
using the model (1) so that a random variable 
sampled from the normal distribution N(0, Var(e)) 
was added to the predictions. The volumes of the 
trees from the diameter distributions were cal-
culated using Laasasenaho’s (1982) specieswise 

volume models. The correct stand volumes were 
obtained by summing up these tree volumes.

True stand-level inventory data including diam-
eter distribution model errors, referred as INKA1, 
were generated from the true tree-specific stand 
data as outlined above (Fig. 1). The structure 
of the INKA1 data was the same as in current 
forest planning practice in Finland (Koivuniemi 
and Korhonen 2006, Metsäsuunnittelun maasto-
työopas 2006). Each tree species was described 
by the basal area, the diameter at breast height 
of the basal-area median tree, the height of the 
basal-area median tree, and the age of the basal-
area median tree. These species-specific charac-
teristics were calculated from empirical diameter 
distributions. The theoretical basal area diameter 
distributions were predicted from the calculated 
stand characteristics using the three-parametric 
approach of the Weibull function (Mykkänen 
1986, Kilkki et al. 1989). The heights of the 
sample trees obtained from the theoretical diam-
eter distribution were predicted using Veltheim’s 
(1987) height models. Then the predicted heights 
were calibrated with ratio estimation using the 
height of the basal-area median tree of the stand. 
The volumes of the model trees obtained from the 
theoretical diameter distribution were estimated 
using Laasasenaho’s (1982) volume models. The 
volume estimates of the stand-level inventory data 
were obtained by summing up these volumes. 
Furthermore, the basal area median tree of the 

Table 2. The study data sets.

Data Origin Format Errors Purpose

INKA Treewise None Observed errors of growth predictions 
CONTROL Standwise From measurers Measurement errors, error generation
NORTH Standwise From measurers Measurement errors, error generation
INKA1 INKA Standwise Diameter distribution 

model errors (DDME)
Test data for uncertainty assessment 
methods, original data for simulation 
of standwise data with measurement 
errors

CONTROL1 INKA1 Standwise Simulated from 
CONTROL+DDME

Modelling data for the models of 
observed errors, reference data for 
the k-NN method and multi-objective 
optimisation

CONTROL2 INKA1 Standwise Simulated from 
CONTROL+DDME

Test data for uncertainty assessment 
methods

NORTH2 INKA1 Standwise Simulated from 
NORTH+DDME

Test data for uncertainty assessment 
methods
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Fig. 1. Flow chart showing the generation of the study data.
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stand was obtained from the theoretical diameter 
distribution. The diameter, height and age of the 
basal area median tree of the stand were used as 
stand’s DgM, HgM and Age.

2.3 Generation of Erroneous Stand-Level 
Inventory Data

In order to assess the uncertainty of growth and 
yield predictions by examining practical stand-level 

inventory data, the study data should also include 
measurement errors. Haara (2003) found the one 
nearest neighbour method (1nn method) to be a 
useful tool for generating error structures for target 
stands reflecting those in stand-level inventory. In 
the method, the measurement errors of the neigh-
bour stand are used directly as the measurement 
errors of the target stand. The differences between 
the stand characteristics (e.g. main tree species, 
stand basal area) of the target stand and neighbor-
ing stand are as small as possible. In this study, 
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k error realisations of the stand characteristics of 
the target stand are needed and the errors of the 
k nearest neighbours are used one by one, i.e. the 
k-NN method is applied. Because the use of the 
k-NN method requires extensive reference data, 
the NORTH and the CONTROL data sets were 
utilised to generate the measurement errors of the 
stand-level inventory into the INKA1 data (Fig. 1). 
The procedure was as follows. First, the measure-
ment errors of both NORTH and CONTROL data 
sets were examined by deriving true tree and stand 
characteristics. The missing heights of the sample 
trees were estimated using Veltheim’s (1987) height 
models. The height predictions were calibrated 
using the heights of the stand’s sample trees. The 
trees in the sample plots were combined to provide 
a compounded empirical stand diameter distribu-
tion. This distribution was used to calculate the 
true stand characteristics. Errors in the true stand 
characteristics originated from the errors in the 
measurement of the sample trees, from the height 
and volume models, and from the sampling error 
in the control inventory. The measurement errors 
of the stand-level inventory of CONTROL data 
and NORTH data were calculated by comparing 
true stand characteristics and assessed stand char-
acteristics (Table 3). When the sampling error of 
the checking inventory was noted, the RMSE of 
the stand volume of CONTROL data decreased 
3.4 percent units, the RMSE of the stand basal 
area 3.6 percent units, and RMSEs of the DgM 
and the HgM decreased 2.2 and 0.7 percent units, 
respectively.

After studying the measurement errors of the 
CONTROL data and the NORTH data, the next 
step was to use them as the reference data for the 
k-NN method for generating erroneous stand-

level data in the 1st and 2nd measurements of the 
INKA data. Stand-level data with measurement 
errors were first generated from the measure-
ment errors of the CONTROL data. The level 
and the structure of the measurement errors were 
assumed to correlate with the stand characteris-
tics. The search for five nearest-neighbour stands 
was done by using commonly assessed stand 
characteristics as the distance function variables 
in the k-NN method. Similarly, distance func-
tions were applied depending on the tree species. 
The chosen standardised variables of the distance 
function were the basal area median diameter, the 
stand mean basal area, and the proportion of tree 
species in the stand in terms of the basal area per 
hectare. Five different error realisations for the 
target stand were obtained from the measure-
ment errors of the target stand’s five neighbour 
stands. One of the five random error generations 
of each target stand was excluded from the data 
using simple random sampling. The remaining 
data with four measurement error realisations of 
each stand (CONTROL1) were used for model-
ling the observed errors and the excluded data 
with one measurement error realisation for each 
stand were used as the test data (CONTROL 2). 
In this way, each stand had different measurement 
errors in the modelling and in the testing phase. 
The second test data (NORTH2) were generated 
with the 1nn method and with NORTH data as 
the reference data. 

The generated stand level data CONTROL1 
were used as modelling data for the models of the 
observed errors as well as for the reference data for 
the k-NN method for the uncertainty assessments 
of the updated stand level data. CONTROL2 and 
NORTH2 data were used for testing both of these 

Table 3. The root mean square errors (RMSE) and biases of the assessed stand characteristics 
in the two control inventory data (CONTROL and NORTH). The relative RMSEs and 
biases are shown in parentheses.

CONTROL NORTH
RMSE Bias RMSE Bias

DgM (cm) 2.5 (13.1) 0.6 (3.0) 2.5 (13.1) 0.6 (3.0)
HgM (m) 2.4 (15.5) 0.05 (0.3) 2.4 (15.5) 0.05 (0.3)
BA (m2 ha–1) 3.9 (19.3) 0.6 (3.1) 3.9 (19.3) 0.6 (3.1)
V (m3 ha–1) 38.6 (24.8) 4.0 (2.6) 38.6 (24.8) 4.0 (2.6)
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Table 5. The RMSEs and biases of the two test data. In the first test data (CONTROL2) the 
measurement errors in the stand level inventory are generated from the CONTROL data 
and in the second test data (NORTH2) the measurement errors are generated from NORTH 
data.

1st measurement 2nd measurement
RMSE Bias RMSE Bias

CONTROL2
DgM (cm) 2.1 (13.5) 0.3 (2.1) 2.1 (12.4) 0.3 (2.0)
HgM (m) 2.3 (18.7) 0.1 (0.9) 2.3 (17.2) 0.01 (0.1)
BA (m2  ha–1) 2.9 (18.2) 0.2 (1.0) 3.5 (18.5) 0.3 (1.4)
V (m3  ha–1) 26.8 (24.4) 1.4 (1.3) 35.6 (26.0) 1.2 (0.9)

NORTH2
DgM (cm)
HgM (m) 1.9 (12.3) –0.03 (–0.2) 2.0 (12.0) 0.1 (0.4)
BA (m2  ha–1) 2.4 (20.0) 0.1 (0.9) 18.4 (2.4) 0.1 (0.7)
V (m3  ha–1) 2.5 (15.6) 0.3 (1.7) 2.7 (14.0) 0.4 (1.9)

Table 4. The RMSEs and biases of the stand characteristics in the true INKA stand data includ-
ing model errors (INKA1) and reference INKA stand data including measurement errors 
generated from the CONTROL data (CONTROL1). 

1st measurement 2nd measurement
RMSE Bias RMSE Bias

INKA1
DgM (cm) 0.8 (4.9) –0.1 (–0.4) 0.8 (4.6) –0.03 (–0.2)
HgM (m) 1.3 (11.0) 0.05 (0.4) 1.1 (8.6) –0.03 (–0.3)
BA (m2  ha–1) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
V (m3  ha–1) 6.2 (5.6) –1.0 (–0.9) 8.6 (6.5) –2.2 (–1.7)

CONTROL1
DgM (cm) 2.0 (12.8) 0.4 (2.4) 2.1 (12.7) 0.5 (2.7)
HgM (m) 2.3 (18.8) 0.04 (0.3) 2.3 (17.1) –0.02 (–0.1)
BA (m2  ha–1) 2.9 (18.0) 0.0 (0.0) 3.2 (16.9) 0.05 (0.2)
V (m3  ha–1) 28.0 (25.0) –0.4 (–0.4) 32.8 (24.5) –1.2 (–0.9)

methods. The errors in the stand characteristics 
in the data including diameter distribution model 
errors (INKA1) as well as the errors in the model-
ling data (CONTROL1) are presented in Table 4, 
and the errors in the stand characteristics in both 
test data are presented in Table 5.

 

2.4 Growth Simulations

All stand-level inventory data (i.e. correct stand 
inventory data, modelling data and both test data) 
were updated by using the MELA forest simulator 

(Siitonen 1993, Hynynen et al. 2002, Redsven 
et al. 2004) for modelling growth, regeneration 
establishment, and tree mortality. The growth of 
the 1st measurements of the correct stand inven-
tory data and modelling data were predicted 5 and 
10 years, and the growth of the 2nd measurements 
were predicted 5 years. The growth of both test 
data (CONTROL2, NORTH2) was predicted 5 and 
10 years. The logging and silvicultural operations 
carried out between inventories were simulated. 
The timing of these operations had been recorded 
in the inventory. The cuttings were simulated 
following the thinning and regeneration models 
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(Hyvän metsänhoidon… 2001). The uncertainty 
of the growth predictions of the MELA forest 
simulator included errors of the growth, regenera-
tion and mortality models, and the errors due to 
the processing of the inventory data besides the 
measurement errors of the inventory data. 

2.5 Models for Observed Errors 
 

The first method for assessing the uncertainty of 
the updated stand characteristics was to model the 
observed errors. The empirical errors in the stand 
characteristics were achieved by calculating the 
differences between the updated stand charac-
teristics and empirical stand characteristics. The 
models for the observed errors were estimated for 
both true and erroneous stand-level data. In both 
cases, the models were estimated first for stands 
in which no logging or silvicultural treatments 
had been carried out during the simulation period, 
and secondly, for the entire data. The models for 
the treated stands were not estimated because of 
the small number of these stands. The models 
for the observed errors of the basal area median 
diameter, the basal area median height, the basal 
area, and the mean stand volume were estimated. 
The models were of the form:

ln( ) ... ( )Errori iSC SC e2
1 1 2 2 2= + + + +α β β

or

Errori iSC SC e2
1 1 2 2 3= + + + +α β β ... ( )

where Errori
2 denotes the squared observed error 

of the updated stand characteristics, SCk denotes 
stand and site characteristics (k = 1,2,…), and ei 
is an error term.

The stand and site characteristics, which could 
have been measured as such or derived from 
stand level inventory data (e.g. growth predic-
tions), were used as independent variables in these 
models. By using these models, the predictions of 
stand’s MSEs of the updated stand characteristics 
can be achieved. Furthermore, the bias models 
for the observed errors were estimated. In these 
models, the observed errors of the updated stand 
characteristics, i.e. dependent variables in these 
models, were not squared. 

2.6 K-nearest Neighbour Method and Multi-
Objective Optimisation

The second method for assessing the uncertainty 
of the updated stand characteristics was the 
combination of the k-NN method (Härdle 1989, 
Altman 1992) and multi-objective optimisation. 
The uncertainty of the predicted stand character-
istics of the target stand, i.e. RMSEs and biases, 
was predicted from the uncertainty of the growth 
predictions of the 10 nearest neighbour stands. 
The search for the reference stands was carried 
out by using standardised commonly measured 
stand characteristics, i.e. stand basal area, stand 
age and the class variable main tree species, as the 
variables of the distance function. The variables 
of the similarity distance function, as well as the 
weights of the variables, were determined using 
multi-objective optimisation. The non-linear pro-
gramming algorithm (Hooke and Jeeves 1961) 
was used to find the combination of decision 
variables minimizing the objective function. The 
computer program developed by Osyczka (1984) 
was modified and adapted to deal with the k-NN 
method. The differences between the predicted 
growth of the target stand and the predicted 
growth of the reference stand were minimised in 
the optimisation. Thus, the stand characteristics 
and predicted growth were as similar as possible 
between the target stand and the reference stands. 
The (R)MSEs and biases of the updated stand 
characteristics of the neighbour stands were used 
as target stand’s ucertainty assessments.

In the case of the INKA1 data, i.e. true stand-
level inventory data, the reference data of the 
target stand consisted of all stands besides target 
stand in INKA1 data. As regards the stand data 
with measurement errors, the reference data con-
sisted of the CONTROL1 data besides target 
stand, i.e. INKA data with measurements errors 
generated from the CONTROL data. 

2.7 Uncertainty Assessments of the Updated 
Stand Characteristics

The usability of both assessment methods was 
tested by using the true stand-level inventory 
data INKA1 and two generated test data, i.e. 
CONTROL2 and NORTH2. All of these data 
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sets were updated and the empirical errors of 
the growth predictions were calculated from the 
differences between the updated stand character-
istics and the true stand characteristics. The test 
criteria used in the comparison of the predictions 
were RMSE and bias of the observed errors. The 
RMSE and the bias of the empirical errors were 
calculated as 

RMSE =

−










−

∧

=
∑ Y Y

n

i i

i

n 2
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1
4( )

and
 

bias = −
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Y Yi i
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where Yi denotes the true value of the stand char-
acteristics, Y i

∧
 denotes the predicted value of the 

stand characteristics, and n is the number of 
stands. The relative RMSE and the relative bias 
are obtained by dividing RMSE and bias by the 
average of the true stand characteristics. 

 The uncertainty of the updated stand charac-
teristics for the true stand-level inventory data 
and two generated test stand data were predicted 
with both assessment methods, i.e. the models for 
the observed errors and the k-NN method. The 
standwise RMSEs and biases were first predicted 
with both assessment methods. After that RMSEs 
and biases of the three test data sets were obtained 
by adding together the standwise estimates of 
the RMSEs and biases, and by dividing the sums 
by the number of the stands. The predictions of 
uncertainty were compared to empirical RMSEs 
and biases.

The considered stand characteristics were DgM, 
HgM, BA and V. The predictions and related 
uncertainty measures were produced for stands 
without logging and silvicultural treatments and 
together for the stands with and without treat-
ments, using both methods, i.e. the models for the 
observed errors and the k-NN method. 

The uncertainty assessments obtained by both 
methods, i.e. the models for the observed errors 
method and the k-NN method, were also studied 
at the stand level. The 95% confidence intervals of 
the updated stand characteristics were estimated 
for each stand based on the uncertainty assess-

ment of the stand characteristics depending on 
the method used. After estimating the confidence 
intervals, the proportions of the observed errors 
included in the estimated confidence intervals 
were studied by using both methods. The studied 
updating period was 10 years. 

3 Results

3.1 Models for Observed Errors

The models for the observed errors (Eqs. 2–3) 
were estimated in the first phase for the true 
stand-level inventory data (INKA1). Here the 
modelling was carried out by first excluding the 
stands in which management operations had been 
performed during the updating time (Table 6). 
Then the modelling was carried out in whole 
INKA1 data (Table 7). The bias models (Eq. 5) 
for the growth predictions of the stand character-
istics were also estimated for both cases (Tables 
8,9). The uncertainty of the growth predictions 
increased with the applied updating period. In 
addition, the relative uncertainty of the growth 
predictions was clearly higher for young stands. 
The effect of treatments was considerable: growth 
and yield predictions were more difficult in treated 
stands. The uncertainty of the updated BA and V 
were assessed more reliable than the uncertainty 
of the updated median tree characteristics. 

In the second phase, the models of the observed 
errors were estimated using stand-level inven-
tory data CONTROL1, which included generated 
measurement errors. Now the treatment effect was 
not as clear as it has been when using true stand-
level inventory data (Tables 10,11). Moreover, the 
effect of the updating time on the uncertainty of 
the stand characteristics had diminished. Further-
more, the bias models for the growth predictions 
of the stand characteristics were estimated for 
data with and without the stands in which man-
agement operations had been performed during 
the updating time (Tables 12,13).
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Table 6. The models of the observed errors of the growth predictions of the stand characteristics with the correct 
stand inventory data (INKA1) without treated stands.

Model R2 R2
adj Std. error Predictors Coefficients Std. error of

      coeff.

Ln(V error2) 0.30 0.30 2.664 Constant –0.305 * 0.211
    Ti (a) 0.381 *** 0.015
    BA 0.05507 *** 0.016
    V(i) 0.01215 *** 0.001
    BAPI –0.738 *** 0.155
    Age 0.004529 *** 0.002
    dd –0.0003519 *** 0.000
    V 0.0004854 *** 0.002
    SC4 0.262 *** 0.113
      
BA error2 0.16 0.16 5.265 Constant 1.733 *** 0.426
    Ti (a) 0.436 *** 0.029
    Age –0.007329 * 0.004
    BABI 3.009 *** 0.554
    BA(i) 0.165 *** 0.028
    Species 0.289 ** 0.105
    DgM –0.148 *** 0.032
    SC1,2 0.916 ** 0.356
    V 0.1081 *** 0.004
    BA –0.06588 ** 0.033
      
DgM error2 0.07 0.07 2.453 Constant 2.077 *** 0.381
    Ti (a) 0.092 *** 0.016
    BAPI –1.917 *** 0.356
    BASP –1.483 *** 0.383
    (DgM)2 0.0032 *** 0.000
    V –0.01096 *** 0.002
    SC4 –0.355 ** 0.132
    BA 0.04205 ** 0.020
      
ln(HgM error2) 0.10 0.10 2.455 Constant –1.312 ** 0.610
    Ti (a) 0.139 *** 0.016
    Species 0.174 ** 0.085
    BAPI –0.316 * 0.172
    BAMAX –1.845 *** 0.504
    DgM 0.03718 *** 0.010
    HgM(i) 0.09542 *** 0.032
    BABI 0.756 ** 0.347

Ti(a), Growth prediction time, years; BA, Basal area, m2 ha–1; V(i), Estimated growth of mean stand volume, m3 ha–1; BAPI, Proportion of 
Scots pine in stand basal area, (0–1); Age, Stand age, years; dd, Total annual temperature sum; V, Mean stand volume, m3 ha–1; SCx, Fertil-
ity class according to Kuusela and Salminen (1969), dummy-variable in which x = 1,2 ... 8. Definition of x values: 1 = Very rich, 2 = Rich, 
3 = Moist, 4 = Dryish, 5 = Dry, 6 = Barren, 7 = Rocky sites, sandy sites and alluvial soils, 8 = Hilltops and fells; HgM, Height of basal area median 
tree, m; BABI, Proportion of birch in stand basal area, (0–1); BA(i), Estimated growth of stand basal area, m2 ha–1; Species, Number of tree 
species in stand; DgM, Basal area median diameter, cm; BASP, Proportion of Norway spruce in stand basal area, (0–1); BAMAX, Maximum 
proportion of basal area of tree species in stand basal area, (0–1); HgM(i), Estimated height growth of basal area median tree, m; *, coefficient 
is significant at 0.05 level; **, coefficient is significant at 0.01 level, ***, coefficient is significant at 0.001 level
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Table 7. The models of the observed errors of the growth predictions of the stand characteristics with the correct 
stand inventory data (INKA1) with treated stands.

Model R2 R2
adj Std. error Predictors Coefficients Std. error of

      coeff.

ln(V error2) 0.38 0.38 2.638 Constant –0.878 ** 0.392
    Ti (a) 0.382 *** 0.014
    BA 0.0335 * 0.018
    Treat 2.29 *** 0.159
    V(i) 0.009143 *** 0.001
    BAPI –0.778 *** 0.134
    dd –0.0003805 0.000
    V 0.004856 *** 0.001
    ln(V) 0.318 ** 0.126
    SC1,2 –0.341 ** 0.161
      
ln(BA error2) 0.69 0.69 3.255 Constant 20.536 *** 2.541
    Ti (a) 1.174 *** 0.019
    East –0.000003532 ***  0.000
    dd –0.003604 *** 0.000
    Treat 2.392 ***  0.192
    BABR 3.837 ** 1.899
    BA 0.05744 ** 0.024
    HgM –0.112 *** 0.021
    SC1,2 0.629 ** 0.252
    SC3 0.277 *  0.157
    SC4+ –0.620 ** 0.252
    ln(BA) –0.649 ** 0.284
      
DgM error2 0.11 0.11 3.283 Constant 0.725 ** 0.326
    Treat 0.790 *** 0.229
    BAPI –1.121 *** 0.209
    Ti (a) 0.114 *** 0.022
    (DgM)2 0.004078 *** 0.000
    V –0.009106 *** 0.001
    BA(i) –0.146 *** 0.022
    DgM(i) 0.230 *** 0.037
    Species 0.239 *** 0.080
      
ln(HgM error2) 0.10 0.10 2.426 Constant –1.407 ** 0.533
    Ti (a) 0.150 *** 0.015
    BAMAX –1.963 *** 0.454
    BA 0.03275 *** 0.006
    HgM(i) 0.09878 *** 0.028
    BABI 0.678 ** 0.284
    Species 0.177 ** 0.075

Treat, dummy-variable in which 0 = Stand not treated during growth prediction time,1 = Stand treated during growth prediction time; East,Y 
coordinate, m; BABR, Proportion of broadleaves in stand basal area, (0–1); DgM(i), Estimated growth of basal area median diameter, cm;
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Table 8. The bias models of the growth predictions of the stand characteristics with the correct stand inventory 
data (INKA1) without treated stands.

Model R2 R2
adj Std. error Predictors Coefficients Std. error of

      coeff.

V 0.20 0.19 13.46 Constant –2.225 * 2.713
    Age –0.194 *** 0.017
    Ti (a) 0.934 *** 0.160
    SC3 4.062 ** 0.835
    BA 2.522 *** 0.267
    V(i) –0.431 *** 0.000
    V2 0.00246 *** 0.155
    DgM 1.529 *** 0.159
    V –0.349 *** 0.041
    Ln(BA) –6.877 *** 1.870
    Species –1.865 *** 0.449
    SC5 –4.681 *** 1.347
      
BA 0.17 0.16 1.578 Constant 0.921 *** 0.223
    Age –0.2435 *** 0.002
    BA(i) –0.125 *** 0.014
    SC5 –1.459 *** 0.169
    Ti (a) 0.154 *** 0.021
    SC4 –0.530 ** 0.099
    (DgM)2 0.009718 ** 0.001
    DgM 0.981 ** 0.017
    V –0.09889 *** 0.002
    dd –0.003055 ** 0.000
      
DgM 0.13 0.13 1.030 Constant 1.149 *** 0.135
    Age –0.06807 *** 0.001
    V 0.09646 *** 0.001
    Species –0.153 *** 0.034
    SC5 –0.433 *** 0.103
    BA –0.4641 *** 0.010
    dd –0.001376 ** 0.000
    SC3 –0.135 ** 0.063
    DgM –0.4524 ** 0.100
      
HgM 0.14 0.13 1.302 Constant 1.267 *** 0.378
    (HgM)2 –0.1025 *** 0.001
    DgM 0.184 *** 0.017
    Age –0.06955 *** 0.002
    V 0.1461 *** 0.003
    ln(HgM) –1.172 *** 0.257
    HgM(i) –0.5798 *** 0.017
    Ti (a) 0.3899 ** 0.015
    BABI –0.5223 ** 0.022

V(i), Estimated growth of stand mean volume, m3 ha–1
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Table 9. The bias models of the observed errors of the growth predictions of the stand characteristics with the 
correct stand inventory data (INKA1) with treated stands.

Model R2 R2
adj Std. error Predictors Coefficients Std. error of

      coeff.

V 0.36 0.36 19.8 Constant 6.241 ** 3.727
    Treat 15.795 *** 1.315
    V(i) –0.179 *** 0.013
    Age –0.306 *** 0.023
    BASP 8.542 *** 1.799
    DgM 1.351 *** 0.190
    Ti (a) 1.502 *** 0.225
    SC5 –10.701 *** 2.119
    ln(BA) –7.813 *** 2.542
    BA 2.070 *** 0.332
    V –0.180 *** 0.025
    SC4 –4.721 *** 1.313
    Species –1.775 *** 0.578
    dd –0.02747 ** 0.001
      

BA 0.39 0.39 2.287 Constant 3.132 *** 0.339
    BA(i) –0.304 *** 0.015
    Age –0.3598 ***  0.003
    BAPI –0.694 *** 0.217
    Ti (a) 0.188 ***  0.026
    SC5 –2.413 *** 0.342
    Treat 0.890 *** 0.160
    SC4 –1.078 *** 0.273
    dd –0.003734 *** 0.000
    DgM 0.7275 ***  0.019
    V –0.04655 *** 0.001
    BABR –0.921 *** 0.320
    SC3 –0.441** 0.218
      
DgM 0.13 0.12 1.175 Constant 1.278 *** 0.155
    Age –0.08555 *** 0.001
    DgM (i) –0.808 *** 0.012
    V 0.07698 *** 0.001
    Species 0.004078 *** 0.033
    DgM –0.5687 *** 0.010
    SC5 –0.480 *** 0.106
    BA –0.3242 *** 0.010
    BABR 2.126 ** 0.842
    Treat –0.187 *** 0.071
    Ti (a) 0.289 ** 0.012
      
HgM 0.13 0.12 1.316 Constant 1.329 *** 0.328
    (HgM)2 –0.07747 *** 0.001
    V 0.06993 *** 0.001
    DgM 0.147 *** 0.015
    Ln(HgM) –1.107 *** 0.192
    Age –0.0587 *** 0.002
    HgM(i) –0.8539 *** 0.017
    Ti (a) 0.6044 *** 0.013
    SC1 0.307 ** 0.113
    Species –0.108 *** 0.036
    SC5 –0.28 ** 0.118
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Table 10. The models of the observed errors of the growth predictions of the stand characteristics with the errone-
ous stand inventory data (CONTROL1) without treated stands.

Model R2 R2
adj Std. error Predictors Coefficients Std. error of

      coeff.

ln(V error2) 0.16 0.15 2.413 Constant –3.024 *** 0.434
    Ti (a) 0.133 *** 0.015
    Alt 0.002387 *** 0.001
    dd 0.003198 *** 0.000
    BASP 0.190 *** 0.094
    Vlevel 0.00995 *** 0.004
    SC5+ –0.312 *** 0.102
    Age 0.003948 *** 0.001
    ln(V) 0.762 *** 0.049
    1/V 1.539 *** 0.509
    SC1,2 0.463 *** 0.108
    V(i) –0.005416 *** 0.002
      
BA error2 0.04 0.04 2.874 Constant –2.721 *** 0.243
    Ti (a) 0.09566 *** 0.011
    BA 0.874 *** 0.084
    BA(i) 0.08338 *** 0.014
    BASP –0.803 *** 0.090
    Species 0.114 *** 0.035
    dd 0.000671 *** 0.000
    DgM –0.023 *** 0.006
    1/DgM 0.800 *** 0.228
    BABR 1.895 ** 0.951
      
DgM error2 0.07 0.07 2.453 Constant 2.077 ***  0.381
    Ti (a) 0.092 *** 0.016
    BAPI –1.917 *** 0.356
    BASP –1.483 *** 0.383
    (DgM)2 0.0032 *** 0.000
    V –0.01096 *** 0.002
    SC4 –0.355 **  0.132
    BA 0.04205 * 0.020
      
ln(HgM error2) 0.10 0.10 2.455 Constant –1.312 ** 0.610
    Ti (a) 0.139 *** 0.016
    Species 0.174 ** 0.085
    BAPI –0.316 ** 0.172
    BAMAX –1.845 *** 0.504
    DgM 0.03718 *** 0.010
    HgM(i) 0.09542 *** 0.032
    BABI 0.756 ** 0.347

Alt, Elevation above sea level, m; Vlevel, Expected RMSE of mean stand volume of measurer;
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Table 11. The models of the observed errors of the growth predictions of the stand characteristics with the errone-
ous stand inventory data (CONTROL1) with treated stands.

Model R2 R2
adj Std. error Predictors Coefficients Std. error of

      coeff.

Ln(V error2) 0.20 0.19 2.375 Constant –2.05 *** 0.532
    Ti (a) 0.0903 *** 0.010
    Alt 0.001946 *** 0.001
    dd 0.002916 *** 0.000
    BASP 0.329 *** 0.082
    Vlevel 0.006558 * 0.004
    SC5+ –0.289 *** 0.092
    Age 0.003771 *** 0.001
    1/V 1.303 ** 0.628
    SC1,2 0.456 *** 0.088
    Treat 0.753 *** 0.062
    V2 –0.0000167 *** 0.000
    V 0.007001 ** 0.003
    ln(V) 0.557 *** 0.121
      
LN(BA error2) 0.12 0.11 2.310 Constant –3.010 ***  0.437
    Treat  1.170 *** 0.062
    BA –0.205 *** 0.046
    BA (i) 0.08406 *** 0.008
    DgM –0.031 *** 0.006
    dd 0.001195 *** 0.000
    ln(BA) 1.964 *** 0.315
    (BA)2 0.004286 *** 0.001
    1/BA 1.545 *** 0.317
    BAMAX –0.413 *** 0.174
    BASP –0.216 *** 0.081
    BABI 1.347 *** 0.684
      
Var(DgM error2) 0.11 0.11 3.283 Constant 0.725 ** 0.326
    Treat 0.790 *** 0.229
    BAPI –1.121 *** 0.209
    Ti (a) 0.114 *** 0.022
    (DgM)2 0.004078 *** 0.000
    V –0.009106 *** 0.001
    BA(i) –0.146 *** 0.022
    DgM(i) 0.230 *** 0.037
    Species 0.239 *** 0.080
      
ln(HgM error2) 0.10 0.10 2.426 Constant –1.407 ** 0.533
    Ti (a) 0.150 *** 0.015
    BAMAX –1.963 *** 0.454
    BA 0.03275 *** 0.006
    HgM(i) 0.09878 *** 0.028
    BABI 0.678 ** 0.284
    Species 0.177 ** 0.075
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 Table 12. The bias models of the growth predictions of the stand characteristics with the erroneous stand inventory 
data (CONTROL1) without treated stands.

Model R2 R2
adj Std. error Predictors Coefficients Std. error of

      coeff.

V 0.22 0.22 29.615 Constant –121.896 *** 5.668
    BASP 30.643 *** 2.511
    V2 –0.004594 *** 0.000
    SC1 40.183 *** 1.770
    V (a) –0.541 *** 0.021
    dd 0.8476 *** 0.004
    Ti (a) 2.601 *** 0.177
    SC3 14.372 *** 1.023
    BAPI 23.766 *** 2.533
    Alt 0.6643 *** 0.008
    DgM 1.759 *** 0.126
    HgM –1.892 *** 0.173
      
BA 0.29 0.29 3.117 Constant –2.227 *** 0.559
    BA(a) –0.836 *** 0.028
    BAPI –0.926 *** 0.147
    BA 0.239*** 0.000
    Ti (a) 0.286 *** 0.019
    SC5 –4.62 *** 0.223
    SC4 –2.917 *** 0.179
    SC3 –1.415 *** 0.144
    Alt 0.08066 *** 0.001
    BABI –2.585 *** 0.267
    V(a) –0.3517 0.004
      
DgM 0.24 0.24 1.926 Constant –4.74 ***  0.374
    DgM –0.325 *** 0.009
    HgM 0.204 *** 0.010
    SC1 1.455 *** 0.089
    DgM(i) –0.568 *** 0.032
    BABI –1.168 *** 0.169
    dd 0.05001 ***  0.000
    Alt 0.07384 *** 0.001
    Age 0.1185 *** 0.001
    Ti (a) 0.115 *** 0.012
    BAMAX 1.196 *** 0.164
      
HgM 0.40 0.40 1.766 Constant –2.438 *** 0.357
    (HgM)2 –0.158 *** 0.000
    DgM 0.284 *** 0.007
    dd 0.05714*** 0.000
    HgM(i) –0.793 *** 0.023
    Ln(HgM) –2.986 *** 0.108
    V 0.1339 *** 0.001
    Ti (a) 0.161 *** 0.010
    SC1 0.995 *** 0.077
    Alt 0.05511 *** 0.000
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Table 13. The bias models of the growth predictions of the stand characteristics with the erroneous stand inventory 
data (CONTROL1) with treated stands.

Model R2 R2
adj Std. error Predictors Coefficients Std. error of

      coeff.

V 0.33 0.33 30.941 Constant –121.047 *** 4.477
    V(i) –0.631 *** 0.012
    SC1 24.554 *** 1.129
    dd 0.104 *** 0.003
    V2 –0.004403 *** 0.000
    BASP 20.921 *** 1.043
    Ti (a) 2.856 *** 0.139
    Alt 0.8775 *** 0.007
    DgM 2.056 *** 0.114
    HgM –2.124 *** 0.155
      
BA 0.39 0.39 3.233 Constant –3.951 ***  0.522
    BA (i)  –0.598 *** 0.009
    BAPI –0.732 *** 0.130
    Ln(BA) –0.9984 * 0.129
    dd 0.09298 *** 0.000
    Ti (a) 0.253 *** 0.014
    SC5 –4.464 *** 0.197
    SC4 –2.838 *** 0.155
    BA –0.198 *** 0.012
    Alt 0.09313 *** 0.001
    SC3 –1.454 *** 0.121
      
DgM 0.28 0.28 1.939 Constant –4.171 *** 0.297
    DgM –0.338 *** 0.008
    HgM 0.198 *** 0.009
    SC1 0.114 *** 0.022
    (DgM)2 1.489 *** 0.072
    Ti (a) 0.171 *** 0.010
    dd 0.05584 *** 0.000
    Alt 0.08039 *** 0.000
    BABI –1.528 *** 0.129
    Age 0.1069 *** 0.001
      
HgM 0.42 0.42 1.776 Constant –3.986 *** 0.322
    (HgM)2 –0.1632 *** 0.000
    DgM 0.241 *** 0.007
    dd 0.06845 *** 0.000
    HgM(i) –0.801 *** 0.020
    Ln(HgM) –2.823 *** 0.097
    V 0.1324 *** 0.000
    Ti (a) 0.185 *** 0.008
    SC1 1.213 *** 0.064
    Alt 0.06629 *** 0.000
    Age 0.09503 *** 0.001
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3.2 Assessment of the Uncertainty of the 
Updated Inventory Data

The uncertainty in the prediction error of the 
updated stand characteristics was assessed by 
using the true stand-level inventory data INKA1. 
Both methods, i.e. the models of observed errors 
and the k-NN method, where applied. When 
the updating time was 5 years, both methods 
produced RMSEs close to the observed RMSEs 
(Table 14). The growth and yield of BA and V 
of the treated stands were considerably under-
estimated. Both methods reflected this in their 
bias predictions. When the updating time was 
extended to 10 years, the k-NN method gave 

RMSEs for the updated stand characteristics that 
were clearly closer to the observed RMSEs of the 
treated and untreated stands when compared to 
the models of the observed errors method (Table 
15). The models of the observed errors tended to 
overestimate the RMSEs of the basal areas and 
mean volumes, and to underestimate the RMSEs 
of the mean diameters and mean heights. The bias 
predictions were in line with the observed biases 
in both methods. 

The assessment of the uncertainty of the 
updated stand characteristics was also carried 
out with two test data sets. In the case of the 
CONTROL2 data, the models of the observed 
errors produced slight underestimates of the pre-

Table 14. The observed and predicted RMSEs and biases of the updated stand characteristics of the true stand 
level inventory data (INKA1) after a growth prediction period of 5 years.

 RMSE Bias
 Observed Models k-NN method Observed Models k-NN method

No treatment
DgM (cm) 0.6 (3.7) 1.2 (7.5) 0.6 (3.4) –0.05 (–0.3) –0.2 (–1.1) –0.08 (–0.5) 
HgM (m) 1.1 (8.6) 0.8 (5.9) 1.1 (8.3) 0.1 (0.7) –0.3 (–2.1) 0.1 (0.9) 
BA (m2 ha–1) 1.4 (7.6) 1.8 (9.5) 1.2 (6.5) –0.1 (–0.8) –0.1 (–0.6) –0.2 (–1.0) 
V (m3 ha–1) 10.2 (8.0) 9.8 (7.6) 8.2 (6.4) 0.01 (0.01) –1.1 (–0.8) –0.1 (0.1) 

Treatment
DgM (cm) 1.6 (9.6) 1.6 (9.1) 1.2 (6.9) –0.2 (–1.1) –0.2 (–0.9) –0.1 (–0.8) 
HgM (m) 1.3 (9.2) 0.8 (5.6) 1.2 (8.8) 0.1 (0.8) –0.2 (–1.1) 0.2 (1.3) 
BA (m2 ha–1) 5.1 (25.7) 2.6 (15.0) 5.0 (25.0) 2.5 (12.5) 2.4 (13.8) 3.1 (15.8) 
V (m3 ha–1) 41.0 (27.6) 27.3 (21.6) 38.4 (25.9) 21.9 (14.8) 22.5 (17.8) 27.8 (18.7) 

Table 15. The observed and predicted RMSEs and biases of the updated stand characteristics of the true stand 
level inventory data after a growth prediction period of 10 years.

 RMSE Bias
 Observed Models k-NN method Observed Models k-NN method

No treatment
DgM (cm) 1.0 (5.5) 1.5 (8.3) 0.9 (5.2) –0.1 (–0.7) –0.2 (–1.1) –0.2 (–1.0) 
HgM (m) 1.4 (10.4) 1.0 (7.3) 1.4 (10.4) 0.3 (2.2) –0.3 (–2.2) 0.3 (2.3) 
BA (m2 ha–1) 2.4 (11.6) 2.4 (11.5) 2.1 (10.4) –0.2 (–0.9) 0.3 (1.4) –0.2 (–1.1) 
V (m3 ha–1) 17.0 (11.6) 25.5 (17.5) 16.2 (11.0) 1.2 (0.8) 2.2 (1.5) 1.0 (0.7) 

Treatment
DgM (cm) 2.5 (13.4) 1.8 (9.9) 1.7 (9.2) 0.2 (1.0) –0.1 (–0.6) 0.1 (0.5) 
HgM (m) 1.8 (12.2) 1.1 (7.2) 1.7 (11.1) 0.5 (3.3) –0.1 (–0.8) 0.5 (3.3) 
BA (m2 ha–1) 5.2 (25.4) 8.0 (44.0) 5.1 (25.0) 2.1 (10.4) 3.0 (16.2) 2.6 (12.7) 
V (m3 ha–1) 43.7 (27.4) 46.7 (34.4) 42.6 (26.7) 23.1 (14.5) 27.2 (20.1) 27.0 (16.9) 
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Table 16. The observed and predicted RMSEs and biases of the updated stand characteristics of the test data 
(CONTROL2) with errors of the stand-level inventory after a growth prediction period of 5 years. 

 RMSE Bias
 Observed Models k-NN method Observed Models k-NN method

No treatment
DgM (cm) 2.1 (12.9) 1.6 (10.0) 2.0 (12.3) 0.2 (1.1) 0.6 (3.8) 0.3 (2.0) 
HgM (m) 2.1 (16.6) 1.7 (13.0) 2.1 (16.7) 0.2 (1.2) 0.2 (1.3) 0.1 (0.7) 
BA (m2 ha–1) 3.3 (18.1) 2.8 (15.4) 3.3 (18.6) 0.3 (1.8) 1.7 (9.1) 0.1 (0.6) 
V (m3 ha–1) 28.8 (22.6) 27.9 (21.8) 28.0 (22.7) 2.3 (1.2) 3.6 (2.8) –0.05 (–0.4) 

Treatment
DgM (cm) 2.3 (14.2) 2.0 (12.2) 2.2 (12.9) 0.5 (3.0) 0.8 (4.9) 0.6 (3.4) 
HgM (m) 2.4 (17.2) 1.3 (9.7) 2.3 (16.3) 0.3 (2.0) 0.3 (2.5) 0.3 (2.1) 
BA (m2 ha–1) 5.0 (25.6) 4.7 (24.4) 5.0 (23.4) 1.9 (9.9) 2.7 (13.9) 2.2 (10.4) 
V (m3 ha–1) 45.3 (32.6) 33.6 (24.2) 42.8 (27.5) 16.7 (12.0) 13.2 (9.5) 19.3 (12.4) 

Table 17. The observed and predicted RMSEs and biases of the updated stand characteristics of the test data 
(CONTROL2) with errors of the stand level inventory after a growth prediction period of 10 years.

 RMSE Bias
 Observed Models k-NN method Observed Models k-NN method

No treatment
DgM (cm) 2.3 (13.3) 1.7 (9.9) 2.4 (13.4) 0.2 (1.0) 0.5 (2.6) 0.3 (1.9) 
HgM (m) 2.3 (17.0) 1.8 (13.2) 2.3 (16.8) 0.4 (3.1) 0.3 (2.4) 0.4 (3.2) 
BA (m2 ha–1) 4.0 (20.2) 3.4 (17.4) 3.9 (19.2) 0.7 (3.3) 1.8 (9.1) 0.5 (2.4) 
V (m3 ha–1) 33.9 (24.0) 34.8 (24.7) 33.3 (22.6) 6.2 (4.4) 5.2 (3.7) 4.6 (3.1) 

Treatment
DgM (cm) 2.8 (16.1) 2.3 (13.2) 2.8 (15.1) 0.9 (5.2) 0.7 (3.9) 0.9 (4.9) 
HgM (m) 2.7 (18.8) 1.5 (10.2) 2.6 (17.1) 0.6 (4.5) 0.4 (2.7) 0.8 (5.3) 
BA (m2 ha–1) 5.7 (31.8) 5.8 (32.5) 5.6 (25.9) 3.0 (16.6) 4.6 (25.5) 3.4 (15.6) 
V (m3 ha–1) 53.7 (40.3) 43.7 (32.8) 54.1 (31.9) 29.4 (22.1) 27.5 (20.6) 33.8 (19.9) 

Table 18. The observed and predicted RMSEs and biases of the updated stand characteristics of the test data 
(NORTH2) with errors of the stand level inventory from the NORTH data after a growth prediction period 
of 5 years. 

 RMSE Bias
 Observed Models k-NN method Observed Models k-NN method

No treatment
DgM (cm) 1.9 (11.5) 1.6 (9.4) 2.0 (12.3) –0.2 (–1.0) 0.4 (2.3) 0.3 (1.8) 
HgM (m) 2.3 (18.4) 1.8 (14.2) 2.2 (17.2) 0.1 (0.5) 0.1 (0.8) 0.1 (0.6) 
BA (m2 ha–1) 2.8 (16.3) 2.9 (16.9) 3.1 (17.7) 0.7 (4.1) 1.9 (11.1) 0.3 (1.6) 
V (m3 ha–1) 27.2 (22.7) 27.2 (22.7) 27.8 (22.6) 3.2 (2.7) 3.8 (3.1) 0.1 (0.1) 

Treatment
DgM (cm) 2.6 (14.9) 2.0 (11.7) 2.2 (12.6) –0.2 (–0.9) 0.5 (2.8) 0.5 (2.7) 
HgM (m) 2.6 (18.7) 1.5 (10.9) 2.3 (16.1) 0.3 (1.9) 0.4 (2.9) 0.3 (1.6) 
BA (m2 ha–1) 4.6 (24.2) 4.8 (25.1) 5.0 (23.6) 2.2 (11.5) 2.8 (14.9) 2.5 (11.7) 
V (m3 ha–1) 43.9 (32.1) 34.2 (25.0) 44.0 (28.3) 18.7 (13.7) 15.3 (11.2) 20.4 (13.1) 
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dicted RMSEs of the stand characteristics when 
the updating time was 5 years (Table 16), whereas 
the predicted RMSEs were close to the observed 
RMSEs when using the k-NN method in both 
the treated and untreated stands. The prediction 
was somewhat more difficult to perform when 
dealing with the treated stands. When the updat-
ing time was extended to 10 years, the accuracy 
of the k-NN method was still quite good (Table 
17). When the updating time was increased, the 
relative RMSEs increased slightly, but the relative 
biases increased significantly. The biases of the 
updated stand characteristics could be predicted 
using both methods.

The uncertainty of the updated stand charac-
teristics was also estimated using the NORTH2 
stand-level inventory data. With an updating time 
of 5 years, the predictions of RMSEs of V and 
BA produced by both methods were quite similar 
to the observed RMSEs in the untreated stands 
(Table 18). The predicted RMSEs of DgM and 
HgM were slight underestimates. The predicted 
biases were in the same direction as the observed 
biases for BA and V. When the updating time 
was extended to 10 years, the predicted RMSEs 
of DgM and HgM became underestimates (Table 
19). The predicted RMSE of V of the untreated 
stands was overestimated when using the model 
of observed errors. The predicted biases of the 
stand characteristics were quite similar to the 
observed biases. 

The uncertainty assessments of the updated 
stand characteristics were also made at stand 
level. Confidence intervals of 95% were derived 
from the assessments of uncertainty for every 
stand. The proportions of stands in which the 
prediction of uncertainty of DgM, BA and V in the 
correct stand inventory data (INKA1) when using 
the models of observed errors were within the 
confidence intervals were greater when compared 
to the proportions achieved by using the k-NN 
method (Table 20). Contrary to this, the propor-
tions of stands in which the prediction of uncer-
tainty of HgM were within the confidence intervals 
were greater when using the k-NN method. Simi-
lar differences were found when assessing the 
first stand inventory data including measurement 
errors (CONTROL2), although the proportions of 
stands, including these derived confidence inter-
vals, were somewhat smaller (Table 20). When 
the measurement errors were generated from 
the NORTH data, the proportions of the stands 
within the confidence intervals were a slightly 
greater when using the model of observed errors 
compared to the CONTROL2 data (Table 20). 
On the other hand, when the same comparison 
was made with the k-NN method, the propor-
tions of the stands were smaller. The confidence 
intervals were considerably more unfavourable 
with treated stands. 

Table 19. The observed and predicted RMSEs and biases of the updated stand characteristics of the test data 
(NORTH2) with errors of the stand level inventory from the NORTH data after a growth prediction period 
of 10 years.

 RMSE Bias
 Observed Models k-NN method Observed Models k-NN method

No treatment
DgM (cm) 2.2 (12.4) 1.7 (9.7) 2.3 (12.9) –0.2 (–1.1) 0.3 (1.6) 0.2 (1.2) 
HgM (m) 2.5 (18.7) 1.9 (14.2) 2.3 (16.8) 0.3 (2.1) 0.2 (1.4) 0.4 (2.6) 
BA (m2 ha–1) 3.6 (18.6) 3.4 (17.9) 3.9 (18.9) 1.2 (6.3) 2.1 (10.7) 0.7 (3.5) 
V (m3 ha–1) 33.1 (23.9) 35.6 (25.7) 34.1 (23.1) 8.6 (6.2) 6.1 (4.4) 5.0 (3.4) 

Treatment
DgM (cm) 3.3 (18.0) 2.5 (13.1) 2.7 (14.6) 0.01 (0.05) 0.2 (0.9) 0.6 (3.2) 
HgM (m) 2.9 (18.8) 1.7 (11.2) 2.6 (17.0) 0.5 (3.3) 0.4 (2.6) 0.7 (4.6) 
BA (m2 ha–1) 5.6 (27.0) 5.9 (33.0) 5.7 (26.5) 3.1 (14.7) 4.8 (26.7) 3.8 (17.4) 
V (m3 ha–1) 57.2 (35.3) 45.8 (33.9) 55.2 (32.4) 30.4 (18.7) 30.9 (22.8) 35.9 (21.0) 
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4 Discussion

This paper is a study of two methods for assessing 
the uncertainty of updated forest inventory data 
with the forest simulator. The studied methods 
were (i) the models for observed errors and (ii) 
the k-NN method. The uncertainty assessments of 
growth and yield predictions using both methods 
were found to be feasible when dealing with large 
stand data sets. Furthermore, the confidence inter-
vals for the uncertainty predictions of the updated 
stand characteristics for individual stands were 
satisfactory for both methods. 

When comparing the above results to results 
reported in previous literature, Kangas (1999) 
found that the models for observed errors were also 
feasible for assessing the uncertainty of growth 
and yield predictions. Furthermore, Haara (2002) 
achieved promising results for the uncertainty 
assessments of growth predictions by compound-
ing the k-NN method and multiobjective optimi-
sation. However, these two uncertainty prediction 

methods have not been compared previously. In 
addition, the study data used by Kangas (1999) 
were confined to even-aged pure pine stands.

The increased need for valid growing stock data 
is leading to continuous updating of stand data-
bases. In continuous updating, the stand attributes 
are estimated in the field following a forestry 
operation (cutting or silvicultural treatment) and 
then they are stored in databases (Koivuniemi 
and Korhonen 2006). It is inevitable that the con-
tinuous growth simulation of stands increases the 
uncertainty of growing stock data when compared 
to actual field measurements. Predictions of the 
uncertainty of the updated stand data are useful 
as decision support when discussing planning 
problems and the quality of planning data.

The INKA data applied in this study have been 
used as modelling data in many growth models 
in connection with forestry simulators (Hynynen 
et al. 2002, Redsven et al. 2004). However, this 
study focused on the stand-level approach and the 
growth models used were individual-tree-based 

Table 20. The percentage of the stands within the 95% confidence interval derived from the uncertainty assess-
ments with the INKA1 data, CONTROL1 data and NORTH2 data.

DgM HgM BA V

INKA1 Modelling observed errors, no treatments, 5 years 99.5 88.3 99.1 95.8
k-NN method, no treatments, 5 years 93.2 90.1 91.6 90.5
Modelling observed errors, treatments, 5 years 98.2 86.7 82.3 89.4
k-NN method, treatments, 5 years 90.3 92.9 71.7 70.8
Modelling observed errors, no treatments, 10 years 98.7 83.7 97.8 96.9
k-NN method, no treatments, 10 years 91.9 90.2 89.3 89.3
Modelling observed errors, treatments, 10 years 96.1 81.2 99.5 97.6
k-NN method, treatments, 10 years 88.2 89.2 84.8 84.8

CONTROL2 Modelling observed errors, no treatments, 5 years 94.0 92.4 93.8 95.8
k-NN method, no treatments, 5 years 92.0 92.7 92.3 92.7
Modelling observed errors, treatments, 5 years 98.2 86.7 89.4 89.4
k-NN method, treatments, 5 years 89.3 93.0 79.4 86.8
Modelling observed errors, no treatments, 10 years 93.7 91.9 92.8 95.1
k-NN method, no treatments, 10 years 92.4 94.0 90.6 90.2
Modelling observed errors, treatments, 10 years 93.0 83.6 98.0 94.5
k-NN method, treatments, 10 years 86.4 89.0 79.7 84.3

NORTH2 Modelling observed errors, no treatments, 5 years 96.5 96.7 94.5 96.7
k-NN method, no treatments, 5 years 93.4 94.2 92.5 94.0
Modelling observed errors, treatments, 5 years 97.5 89.3 99.2 95.1
k-NN method, treatments, 5 years 89.3 90.9 83.5 88.1
Modelling observed errors, no treatments, 10 years 96.4 96.2 93.7 96.2
k-NN method, no treatments, 10 years 91.1 92.4 89.7 89.3
Modelling observed errors, treatments, 10 years 98.7 90.2 98.3 93.2
k-NN method, treatments, 10 years 85.9 90.6 78.6 82.5
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growth models. The values of the dependent vari-
ables were assumed to be error-free. This assump-
tion could be made since measurement errors in 
the dependent variables do not introduce bias into 
the coefficients, but only slightly increase the 
variance of the models (Carroll et al. 1995).

The main advantage of both of the studied 
methods is that the bias and the accuracy of the 
predictions can be assessed. However, both meth-
ods require independent and repeatedly measured 
inventory data. This can be seen as being the main 
drawback of the studied methods when comparing 
them to methods such as the Monte Carlo simula-
tion or Taylor series approximations (e.g. Gertner 
1987, Gertner and Dzialowy 1984, Mowrer, 1991, 
Kangas 1997, 1998). On the other hand, both of 
the tested methods are quite easy to adapt to forest 
simulation systems if only contemporary models 
and distance functions are estimated. Further-
more, using these methods does not considerably 
add to the computation time even when doing 
growth predictions for large areas.

Forest simulators, as well as the models 
included in the simulators, are usually under 
continuous development and the accuracy and 
the precision of the models can change over 
time. This implies that the empirical estimates 
related to the observed errors produced in this 
study should be also updated to correspond to 
the current situation. Furthermore, the models of 
observed errors should be updated using new data. 
On the other hand, the use of the k-NN method is 
very flexible in dealing with changing situations. 
If the assumptions related to the distance function 
are valid, one needs to update only the reference 
data with simulators using current calculation 
practices.

In addition to the procedures studied in this 
study for deriving inventory data, it would be also 
possible to utilise old inventory data with auto-
matic interpretation of remote sensing material 
such as medium resolution satellite images and 
high resolution aerial photographs (e.g. Anttila 
2002, Hyvönen 2002). Old inventory data can pro-
vide additional information from stands (e.g. fer-
tility class, regeneration age, biodiversity), which 
can be compound especially with obtained laser 
scanner data, whose accuracy of the stand char-
acteristics is adequate for planning purposes (e.g. 
Maltamo et al. 2004, Næsset 2004). Numerical 

interpretation of remote sensing material helps in 
avoiding the subjectivity of stand-level inventory 
and in reducing inventory costs. However, choos-
ing the timing of forest management operations 
is still an unresolved problem when using image 
interpretation techniques only. This is a problem 
especially in the Nordic countries where forest 
stands are managed under regulated management 
schedules with several thinnings included. 

This study focused on errors in planning data, 
but the next step could be an approach where the 
errors are connected to the costs and benefits of 
the planning situation. An example of such an 
approach is the cost-plus-loss analysis (e.g. Ståhl 
et al. 1994, Eid 2000, Holmström et al. 2003, 
Eid et al. 2004) in which the total costs include 
the costs of the inventories and the expected 
loss of non-optimal decisions based on uncertain 
forest data. Thus, whenever the additional costs 
of inventory and planning are less than the addi-
tional income, it would be useful to carry out an 
additional inventory. In addition to the errors in 
basic forestry data and the uncertainty in predict-
ing forest development, the sources of uncertainty 
in forest planning calculations include the uncer-
tainty of the future prices paid for timber (e.g. 
Leskinen and Kangas 1998) and the uncertainties 
involved in forest owners’ preferences (e.g. Lesk-
inen 2001). Separate analyses are important, but 
there is also a need for aggregate consideration 
of all these sources of uncertainty, to explore the 
possible interactions of the different uncertainty 
sources, and to find those aspects of uncertainty, 
which are the most critical in decision support. 
This, in turn, facilitates adaptive planning with 
respect to critical uncertainty sources. For exam-
ple, the high uncertainty of stand attributes pre-
dicted by either one of the methods considered 
in this study could lead to adaptive planning 
with new measurements of the stand attributes 
of some stands. 
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