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Highlights
•	 The quality of forest attribute models based on variables obtained from image matching point 

clouds constructed using different software packages was analyzed.
•	 Different software yielded no significant differences between models.
•	 A comparison showed that models based on variables calculated from airborne laser scanning 

point clouds were superior.

Abstract
Reliable forest inventory methods are important for informed management. The current study 
compared the quality of forest attribute models based on metrics from image matching point 
clouds, generated using various software packages, with those based on metrics from airborne laser 
scanning. The field- and remotely sensed data used in the analyses were collected as part of an 
operational forest management inventory in Norway. Results indicate that models based on point 
cloud data from airborne laser scanning (ALS) consistently produced smaller root mean square 
error values, demonstrating superior accuracy in capturing complex forest structures compared 
to models using image matching point clouds. While image matching offers advantages such as 
lower costs and broader area coverage, this data source primarily represents canopy surfaces, 
which complicate its use in inventories requiring detailed canopy information. Statistical analyses 
revealed no significant differences in model performance among various image matching software, 
but all being inferior to ALS. The study emphasizes the importance of selecting the appropriate 
source of remotely sensed data based on specific inventory needs.
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1	 Introduction

Forests ecosystems play a crucial role globally, influencing climate, biodiversity, and providing 
essential resources. Accurate and precise forest inventories are vital for sustainable forest manage-
ment, as they enable informed decision-making regarding ecosystem services, such as harvesting, 
conservation, and carbon sequestration. During the last decades, forest management inventories in 
numerous countries all over the world have relied on remotely sensed data, in particular airborne 
laser scanning (ALS) (Maltamo et al. 2014). ALS data have mostly been utilized according to the 
area-based approach (Næsset 2002b) in which predictive models for volume, dominant and mean 
height, basal area and other stand descriptive attributes are calibrated using field observations from 
sample plots. The models are based on metrics calculated from the height distributions of ALS 
echoes reflected from the spatial extents of the field plots, metrics representing both the height and 
density of the forest. Estimates of the forest attributes on stand level are obtained by first applying 
the models for prediction on grid cells tessellating the entire area of interest and then aggregating 
the predictions that fall within the respective stand borders. The size of these grid cells is gener-
ally the same size as the field plots used for model calibration because the explanatory variables 
calculated from point clouds are scale dependent.

While ALS remains prevalent in forest management inventories, the significance of infor-
mation from aerial imaging persists, with a historical presence in forest mapping dating back to 
pre-World War II (Standish 1945; Spurr 1952; Loetsch et al. 1964; Korpela 2004). For example, 
two-dimensional applications, such as tree species determination and stand delineation (White et 
al. 2016), have been operational for many decades. With the rapid rise of digital computing, acquir-
ing three-dimensional data automatically through the processing of overlapping images became 
feasible (Næsset 2002a; St‐Onge et al. 2008). Studies that have compared the utility of point clouds 
generated using image matching and ALS for forest information purposes (Järnstedt et al. 2012; 
Gobakken et al. 2015; White et al. 2018) have consistently indicated that estimates obtained from 
image matching data are less precise and accurate than those obtained through ALS. Challenges 
associated with image matching include variable quality and resolution of imagery, all of which 
impact the quality of generated point clouds. Furthermore, constructing accurate digital terrain 
models (DTM) using image matching presents challenges. As a result, it is usually necessary to 
acquire a DTM from an alternative source before utilizing image matching data for predicting tree 
heights and timber volumes. Despite these challenges, image matching offers advantages such as 
lower acquisition costs compared to ALS, the ability to cover larger areas in single acquisitions, 
and the potential for obtaining retrospective forest information by matching historical images. The 
trade-offs between precision and cost-effectiveness make image matching a viable alternative for 
certain applications in forest inventory, underscoring the need for a more nuanced understanding 
of its strengths and limitations within the broader context of remote sensing technologies.

There exist many commercial software packages that can be used to construct point clouds 
from the aerial photographs by means of image matching. Studies (Alidoost and Arefi 2017; Harshit 
et al. 2023) have shown that the attributes of the resulting point clouds may be dependent on the 
software used. For instance, Alidoost and Arefi (2017) investigated and compared the performances 
of four different software packages for generating high density point clouds and digital surface 
models from images captured by unmanned aerial systems over an archeological site. They applied 
both visual and geometric assessments, and results showed that the software producing the fewest 
points was also the one that produced the most accurate surface model. In the study by Harshit et 
al. (2023) four different open-source software packages were compared to two commercial software 
packages. Their focus was to review the recent development of open-source software by comparing 
results to those obtained by using commercial products. Using a dataset covering a combination 
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of buildings and urban vegetation, they found point cloud differences that could be attributed to 
software. Furthermore, Niederheiser et al. (2016) compared point clouds derived from terrestrial 
images of a rock face surrounded by sparse vegetation using different software. They noted that 
image input and matching software had greater impact on the point cloud properties over vegeta-
tion compared to those representing the smoother rock face.

While the choice of software for generating point clouds influences their properties, such 
as the number and distribution of points, these differences do not inherently denote superiority or 
inferiority in the context of area-based forest inventory, carried out in the form that is described 
above. Since the properties of each point cloud represented by statistical metrics are regressed 
against ground reference observations, estimates that result from aggregating subsequent model 
predictions over stands are often subject to small or negligible systematic errors irrespective of 
the source of the auxiliary data. However, this assumption is valid only if the prediction model is 
built on sample data that accurately reflects the overall relationship between the auxiliary data and 
the response for the entire population subject to analysis.

The advantages related to the acquisition of image matching point clouds as discussed above, 
have been decisive for that operational forest inventories sometimes have chosen image matching 
over ALS. However, with a multitude of possible combinations of image qualities, software for 
processing, and settings in the matching procedures, care should be taken before relying on image 
matching point clouds for forest inventory purposes. Although there are several studies that have 
tested and compared the performance of image matching versus ALS, there are, to the best of our 
knowledge, no studies that at the same time have studied the effect of processing the same set of 
aerial images using different software. Knowledge of possible adverse effects due to processing is 
important for designing forest inventories assisted by auxiliary remotely sensed data.

The objective of the current study was to compare the quality of forest attribute models 
based on metrics (moment statistics, height percentiles, and density metrics) obtained from image 
matching point clouds constructed using different software packages. The results were compared to 
results obtained using models based on corresponding variables calculated from ALS point clouds.

2	 Materials

2.1	 Study area

This study was carried out using data from Rendalen municipality, Innlandet county, eastern 
Norway (Fig. 1). The field data were collected as part of a regular forest management inventory.

2.1.1	Field data

To enable the establishment of ground reference data for model calibration, field measurements 
were carried out on 241 field plots during summer 2015. The plots were positioned using Topcon 
Hiper V global navigation satellite systems (GNSS) receivers and the RTKLIB open-source soft-
ware version 2.4.2 developed by Takasu (2013) was used for post-processing the recorded field 
plot center coordinates.

For each plot, species and diameters at breast height (dbh) were measured for trees with 
a dbh larger than 5 cm. Tree heights were measured using a Vertex hypsometer on sample trees 
selected with a probability proportional to stem basal area. On average, there were 8.5 sample trees 
per plot. From the field registrations, four forest attributes were calculated for each plot: plot basal 
area (G), plot volume (V), basal area-weighted mean height (HL), and dominant height (HO) (units 
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can be found in Table 1). These attributes were used as response variables in the analyses. G was 
calculated from single tree basal areas calculated from dbh, that were summed and scaled to m2 
per hectare. Plot-wise V was predicted using a ratio estimator calibrated with the height sample 
tree measurements, as described in (Ørka et al. 2018). In detail, the procedure was as follows:

•	 For all trees, a standardized tree height in meters (sh) was computed based on field 
measured dbh (cm) using the models published by Fitje and Vestjordet (1977).

•	 For all trees, a standardized volume in liters (sv) was calculated using sh and field 
measured dbh as input to the species-wise volume models of Vestjordet (1967), Brant-
seg (1967), and Braastad (1966) for spruce, pine, and deciduous species, respectively.

•	 For all sample trees, field reference volumes in liters (fv) were calculated using the 
field-measured tree height and dbh as input.

•	 For all sample trees, the ratio (k) between fv and sv was calculated.
•	 For each plot, species-wise ratio estimators (K) were calculated as the mean of k.
•	 For all trees, volume predictions (v) were obtained by multiplying sv to the appropriate K.
•	 For each plot, total volume (V) was obtained as the sum of v and scaled to m3 per hectare.

Fig. 1. Location of study area, Rendalen municipality, Innlandet county, eastern Norway, and distribution of field plots.

Table 1. Number of plots (n), mean values (X) and corresponding standard deviations (sd) for the studied 
response variables for each acquisition year.

Acquisition 
year

Stratum n V (sd) 
m3 ha–1

G (sd) 
m2 ha–1

HL (sd) 
m

HO (sd) 
m

2015 1 72 187 (114) 24.4 (11.1) 15.5 (3.4) 19.0 (3.6)
2015 2 80 135 (95) 17.4 (10.2) 15.2 (3.4) 17.4 (3.7)
2015 3 78 119 (87) 17.6 (10.1) 12.4 (2.9) 15.3 (3.4)
2015 All 230 146 (103) 19.7 (10.4) 14.3 (3.2) 17.2 (3.6)
2018 1 15 206 (118) 25.8 (11.9) 16.7 (2.7) 19.5 (3.1)
2018 2 12 204 (105) 24.4 (9.9) 17.2 (3.1) 19.7 (3.0)
2018 3 18 150 (80) 21.3 (9.3) 13.4 (2.3) 16.7 (2.5)
2018 All 45 183 (102) 23.6 (10.3) 15.5 (3.2) 18.4 (3.1)
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Since the sample trees were selected with a probability proportional to stem basal area, HL 
for each plot was obtained as the mean height of the sample trees. However, the sample of trees 
was not designed for a direct calculation of HO. Thus, single tree heights were predicted utilizing 
the above-mentioned volume models, with dbh and v as input and solving for tree height. Then, 
HO was estimated as the mean predicted height of the two largest trees according to dbh. Mean 
values and corresponding standard deviations are displayed in Table 1.

2.1.2	Stratification

The field plots were stratified according to dominant tree species and development stage, which 
is common in operational forest management inventories to enhance the accuracy and precision 
of the model predictions. In the current study, we used three strata where strata 1 and 2 comprised 
mature spruce forests and mature pine forests, respectively, and stratum 3 was composed of young 
forests irrespective of species. Mature and young forests were defined according to age and produc-
tivity, where the latter was quantified using anamorphic site index (SI) models for Norway, based 
on tree height at an index age of 40 years determined at breast height (Tveite 1977; Sharma et al. 
2011). The forest was classified as mature if total age exceeded 45 years for the most productive 
sites (SI = 20 m) and 85 years for the poorest sites (SI = 6 m), with a linearly increasing threshold 
age for the site indices in between. If the age threshold was not met, the forest was classified as 
young. However, regeneration forests were excluded, and the total age thresholds used to separate 
young- and regeneration forests were between 20 years (SI = 20 m) and 55 years (SI = 6 m).

2.2	 Remotely sensed data

2.2.1	Airborne laser scanning data

The ALS data available for the area were collected as part of eight different acquisition projects 
run by the Norwegian mapping authority when establishing the national detailed elevation model. 
All data were collected using Riegl ALS instruments. The data were collected in 2016, 2017, and 
2018 under leaf-on conditions. The mean point density was 3.6 points m–2 and varied from 2 to 
5 points m–2.

In total, eight field plots were covered by two acquisitions, and these were handled as 
separate independent observations, i.e., 16 independent observations. The mean number of field 
plots covered by the different acquisitions was 31 and varied between 3 and 90. The lidR package 
(Roussel et al. 2020) was used with the TIN (Triangulated Irregular Network) option to create a 
triangular terrain model from the ground points and to compute a normalized point cloud (heights 
above the TIN).

2.2.2	Aerial images

In 2015, aerial images were acquired for the whole study area between June 11 and September 29. 
The average flying altitude was 5087 m, and a Vexcel UtraCam XP camera was used. The side and 
forward overlaps between images were 20% and 80%, respectively. The ground sampling distance 
of the images was 25 cm.

The second aerial image acquisition was carried out on May 24, 2018, using av Vexcel Ult-
raCam Eagle M3 camera. The average flying altitude was 2885 m. The side and forward overlaps 
between images were 20% and 60%, respectively. The ground sampling distance was 10 cm. The 
images acquired in 2018 covered 70 of the field plots.
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The Vexcel sensors acquired both panchromatic and four multispectral bands (red, green, 
blue, and infrared). The sensor location and orientation during image acquisitions were logged 
using GNSS and an inertial navigation system (INS).

2.3	 Image processing

The images were processed five times, using four different image matching software packages. 
Match-T was used twice (labeled MatchT1 and MatchT2), by two different institutions. As a result, 
five sets of point clouds were generated by image matching. The different matching routines are 
defined as follows:

•	 Agisoft
•	 MatchT1
•	 MatchT2
•	 Pix4DMapper (henceforth: Pix4D)
•	 SURE

Using the software Match-AT, we computed the exterior orientation (EO) of the images once, 
and then used this result for all subsequent matching routines. An initial EO was first determined 
using a combination of the INS and GNSS that was onboard the sensor platform at the time of data 
acquisition. The initial EO was further improved using ground control points. Finally, an unbiased 
estimate of the quality of the final EO was computed using checkpoints. As the checkpoints were 
not involved in the computation of the EO, they provide the most unbiased method of estimating 
the EO accuracy.

Ultimately, 24 ground control points were used for the 2015 dataset, and 11 for the 2018 data-
set. One checkpoint was used for the 2015 dataset, and two for the 2018 dataset. It is worth noting 
that additional ground control points and checkpoints were in fact used to optimize the EO. How-
ever, only those residing within our study area were considered here, as they were the most relevant.

The interior orientation (IO) of the images, also known as the sensor calibration parameters, 
was computed before the data acquisition through a lab calibration routine executed by the sensor’s 
manufacturer. The calibration results were used as the initial IO in all matching routines. Except 
for the Agisoft routine, no further optimization of the initial IO was done, resulting in identical IO 
for all but the Agisoft routine. However, it is worth noting that reformatting and transforming the 
IO files resulting from Match-AT was required before using them in other software. This is due 
to the differences in input formats and sensor coordinate systems from one software to another. 
Unlike other routines, the Agisoft routine did permit additional optimization of the IO. This led 
to minor variations in the IO parameters used by Agisoft compared to other routines, but these 
variations were deemed not important.

Carrying out image matching across different routines presented a challenge due to the dif-
ficulty in maintaining identical processing settings. The reason being that each software utilizes 
unique terminology and parameters, which affect properties such as the number of image pixels 
matched, image scaling, and any smoothing applied to the results. Nonetheless, we strived to ensure 
that each routine’s image matching process was performed in a way that was as comparable as 
possible to the others. The output for each processing routine was one set of point cloud files for 
each routine.

For each set of point cloud files, the lidR package (Roussel et al. 2020) with the TIN option 
was used for calculating the heights above the ground calculated from ALS-classified ground 
echoes. These normalized point clouds from the five routines and the normalized ALS point cloud 
form the point cloud types used for the analyses.
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2.4	 Selection of data for the analyses

The analyses were carried out on two separate datasets defined by the acquisition years of the 
aerial imagery (2015 and 2018). The field data comprised 241 field plots inventoried in 2015. 
However, the 2015 dataset was reduced to 230 plots. For the 11 excluded plots, at least one the 
image matching routines failed to produce a point cloud; no obvious reason for the failure was 
identified. The 2018 images covered 70 of the field plots. Five of these plots were discarded from 
the analysis because they were harvested prior to the date when the images in 2018 were acquired. 
For the remaining 65 plots, there were only 45 plots, from which point clouds were obtained with 
all the matching routines. The analyses were conducted using only the plots for which all point 
cloud types were represented.

2.5	 Metrics

For each plot, canopy height metrics were calculated for each point cloud, both image matching 
and ALS. The set of metrics comprised percentiles at 10% intervals (H10, H20, ..., H90) calculated 
from points exceeding a threshold of 2 m above ground. In addition, we computed the mean height 
(Hmean), standard deviation (Hsd), coefficient of variation (Hcv), kurtosis (Hkurt), and skewness 
(Hskewness) using the same threshold. Furthermore, canopy density metrics were calculated. 
First, the 0, 1, …, 9th deciles of the height range between the 2 m threshold and the 95% height 
percentile were calculated. Then, the number of echoes above each decile-height was divided by 
the total number of echoes from the plot (including echoes below the threshold), resulting in ten 
canopy density metrics (D0, D1, ..., D9).

2.6	 Analyses

For each response variable (G, V, HL, and HO), models were constructed based on metrics rep-
resenting the properties of each point cloud. In total, 144 models were constructed (four response 
variables, three strata, six point cloud types, and two acquisition years). Both the response and 
explanatory variables were transformed using the natural logarithm (ln), and linear models were 
fitted using ordinary least squares. Variable selection was conducted using the regsubsets function 
from the leaps package in R (Lumley and Miller 2024), with the model that exhibited the smallest 
Bayesian information criterion (BIC) being retained. However, to control for multicollinearity, addi-
tional constraints were implemented: the maximum number of explanatory variables was limited 
to three, and the variance inflation factor (Montgomery et al. 2013) was not allowed to exceed the 
value of 2. Because the response variables were ln-transformed, the model intercept was adjusted 
for logarithmic bias by adding half of the model variance to the intercept (Goldberger 1968). 
Subsequently, the models were applied for prediction to their respective strata, and the differences 
(D) between the back-transformed predicted values and field reference values were calculated.

For each model, the relative root mean square error (RMSE%) was calculated as:

RMSE% ( )�
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�

�
�
�
�

�

�

�
�
�
�

�

D
n
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100 1

where n is the number of field reference plots used to construct the model and y  is the mean field 
reference value.
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We analyzed the distributions of RMSE% related to each type of point cloud for the entire 
range of field plots, but also for subsets per stratum and per variable. However, we kept data from 
the different acquisition years separate because the 2018 dataset was a subdivision of the 2015 
dataset. Two types of analyses were conducted. The distributions were first assessed visually, by 
means of boxplots, to evaluate the magnitude of RMSE% and the differences between the models. 
This assessment was made for the entire range of field plots and per response variable.

Secondly, to determine if there were statistically significant differences in model performance, 
Tukey’s honestly significant difference tests (HSD tests) (Tukey 1949) were applied to the abso-
lute, relative differences (|rD|) between predicted and field reference values, calculated as follows:

rD D
y

= ( )2

This analysis focuses on the magnitude of D and tests whether a specific model is associated 
with larger or smaller random errors, compared to the other models tested. This analysis was carried 
out both for the entire dataset, and separately for each individual stratum and variable.

3	 Results

3.1	 Modelling

All models described in paragraph 2.6 are presented in Supplementary file S1 (available at https://
doi.org/10.14214/sf.25002), which includes their selected explanatory variables, R2 values, p-values 
from t-tests on the residuals, percentage standard deviations of the residuals, and the corresponding 
percentage root mean square values. Summarized results (Table 2) show that the selected metrics 
for V and G cover the complete range. However, the upper-range percentiles (H60–Hmax) and 
lower-range density metrics (D0–D4) were chosen more frequently irrespective of point cloud type.

For HO and HL, the models predominantly feature upper-range percentiles (H60–Hmax), 
although additional metrics across a broader spectrum were sometimes selected.

In terms of the number of explanatory variables, the models were evenly split between those 
incorporating one explanatory variable and those comprising two. There were more ALS models 
including two metrics compared to those based om image matching data. Thus, the image matching 

Table 2. Occurance of different types of metrics in the models, percentages of models having one and two explanatory 
variables, and the range of accuray expressed as relative RMSE. The results are distributed between point cloud types 
and response variable categories (Vars) grouping the density dependent G and V together as well as the height variables 
(HL and HO). 

Point 
cloud  
type

Vars Occurance of metrics (%)*1 Number of  
metrics (%)*2

Range in  
accuracy (%)Density metrics Heigh percentiles Mom. Stat.*7

Lower 
range*3

Upper 
range*4

Lower 
range*5

Upper 
range*6

One Two Min  
RMSE

Max  
RMSE

Image G, V 15 21 13 43 8 47 53 21.3 40.2
ALS G, V 38 13 8 21 21 0 100 19.3 25.7
Image HL, HO 11 5 8 66 11 73 27 9.2 16.3
ALS HL, HO 25 0 0 75 0 67 33 8.7 11.5

*1: The numbers are percentages of the total number of metrics selected for the models represented on each line in the table. *2: The 
numbers are percentages of the total number of models represented on each line in the table. *3: D0–D4. *4: D5–D9. *5: H10–H50. 
*6: H60–Hmax. *7: Moment statistics (Hmean, Hsd, Hcv, Hkurt, Hskewness)

https://doi.org/10.14214/sf.25002
https://doi.org/10.14214/sf.25002


9

Silva Fennica vol. 59 no. 3 article id 25002 · Bollandsås et al. · Impact of point cloud matching on precision and …

models had fewer explanatory variables than the ALS models. Furthermore, models for the height 
responses had fewer explanatory variables than those for V and G.

The model fit, as indicated by R2, ranged from 0.59 to 0.97 for V and G, while the height 
responses exhibited R2 values between 0.47 and 0.95 (Suppl. file S1). The average R2-values for 
both these two groups of responses were both slightly larger for ALS models compared to those 
based on image matching data. For the V and G group, the mean R2 value was 0.80 for ALS models 
and 0.72 for image matching models. Corresponding values for the height responses were 0.86 
and 0.74, respectively. The RMSE%-values were generally smaller for ALS compared to image 
matching and smaller for height variables compared to G and V (Table 2).

3.2	 Visual assessment of RMSE% distributions

Models utilizing ALS point clouds displayed both smaller median RMSE% and less variation 
compared to those based on image matching point clouds (Fig. 2). It can also be noted that the 
median RMSE% values resulting from the 2018 analysis were on a slightly lower level compared 
to those based on the 2015 dataset.

The results categorized by response variables (Fig. 3) showed that there was notably greater 
variation among point cloud types than seen in the overall results. For the variables with per hect-
are units, i.e., G and V, ALS-based models displayed substantially smaller values of median and 
range of RMSE% compared to the models based on image matching point clouds. Among these 
visualized results based on the image matching point clouds, there are no clear indications that 
the different processing routines yield different results in terms of precision. Their performances 
seem to vary among response variables.

For the height responses, unlike the G and V results, the median values associated with ALS 
were in many cases closer to those related to image matching. The median values for all point 
cloud types were similar for HO but exhibited larger variation for HL.

Fig. 2. Distributions of RMSE% associated with models constructed using explanatory variables calculated from dif-
ferent point cloud types on the 2015 (left panel) and 2018 datasets (right panel).
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3.3	 HSD tests

The HSD tests conducted on the absolute, relative differences (|rD|) revealed statistically signifi-
cant differences in model performance based on ALS compared to all other types of point clouds 
(Fig. 4). The bars (Fig. 4) represent the proportion of HSD tests that identified significant differences 
in |rD| among all combinations of point cloud types. For each combination of point cloud types, 
the figure summarizes 16 HSD tests carried out separately for three strata and four variables for 
each of the two acquisition years, plus one overall test for each year independent of stratum and 
variable. Altogether there were 240 HSD tests (Suppl. file S2). Tests performed at both the stratum 
and variable levels indicated that |rD| values obtained from application of ALS models were for 
the most part significantly different (smaller) than those from other point cloud types. In contrast, 
among the models based on image matching point clouds, only a few significant differences were 
observed (Pix4D vs MatchT1 and SURE).

4	 Discussion

The primary findings of the current study indicate that models of forest attributes constructed 
using ALS point cloud metrics, exhibit substantially smaller RMSE compared to those relying on 
metrics derived from image matching point clouds. Our results suggest that these differences are 
more pronounced for V and G than for the height variables HL and HO. The differences between 
the models based on metrics from image matching point cloud were, for the most part, negligible.

It was expected that different explanatory variables would be chosen for the models based 
on different point cloud types, as these datasets possess distinct inherent properties. Nevertheless, 
from a standpoint of biophysical consistency, we had certain expectations regarding which metrics 
that should be selected. For example, based on field-measured variables, V can be predicted as a 
function of mean tree height and stand density, typically represented by basal area. Thus, effective 
explanatory variables obtained from remotely sensed data often include a height percentile from 
the upper part of the canopy, along with a density metric. However, the combinations may vary 
depending on the characteristics of the field reference data and the remotely sensed datasets.

The observation that image matching models included a broader range of metrics than 
those based on ALS metrics, can be attributed to the narrower height range of image matching 
point clouds. These point clouds often fail to capture points deep within the canopy, as such points 
are unlikely to be represented in a single image, let alone across multiple images. Consequently, 
image matching point clouds tend to smooth gaps in the canopy (White et al. 2018), primarily 
representing the canopy surface, thereby resulting in a narrower range of calculated metrics. In 
contrast, ALS offers a more complete depiction of the vertical forest structure, yielding metrics 

Fig. 4. Summary of Tukey HSD tests of |rD| resulting from comparing predictions from different point cloud types on 
different subsets of data. Bars indicate the proportion of 16 tests that identified statistically significant differences in |rD| 
among all combinations of point cloud types separately for the two acquisition years.
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that are less uniformly selected across the height range. The predominance of canopy surface 
representation in image matching point clouds poses considerable challenges, particularly in light 
of the increasing demand for uneven-aged forests and continuous cover forestry, in line with the 
revised PEFC standard (PEFC 2022). Decision making under such management regimes, typically 
requires information from deeper levels of the canopy (Mehtätalo et al. 2024).

The current study also highlighted that the coverage of image matching point data across 
the area of interest may be incomplete and influenced by the specific software used for matching. 
In the context of forest inventory, which relies on wall-to-wall remotely sensed data, this is a chal-
lenge. In the current study, the plots for which image matching point clouds were missing were 
not the same among the different software packages. Furthermore, our data did not allow analyses 
to uncover the underlying reasons for these discrepancies. Future research should investigate the 
various software algorithms, the quality and resolution of the input imagery, and environmental 
conditions that may impact data acquisition.

An analysis of the RMSE% resulting from the various models indicates that models based 
on ALS metrics generally demonstrated greater precision compared to their image matching 
counterparts (Figs. 2 and 3). This pattern remained consistent across all data subsets. Other stud-
ies have found similar trends, although some reported only minor differences between ALS and 
image matching metrics. For instance, Nurminen et al. (2013) reported RMSE% values of 22.6 
and 6.8 for volume and mean height using image matching, respectively, compared to 20.7 and 
6.6 for ALS in the current study. Similarly, Gobakken et al. (2015) observed minimal differences 
between data sources. More substantial contrasts between these two methods were documented 
by Järnstedt et al. (2012), Straub et al. (2013), and Vastaranta et al. (2013). In the current study, 
considering the full range of plots (2015 data), we found at least a five-percentage-point difference 
in RMSE% values between ALS and any of the image matching results for volume. This aligns 
with findings from the aforementioned studies. Although Järnstedt et al. (2012) found a relatively 
large RMSE% difference for mean height as well, the current study found a difference of less 
than one-percentage-point between ALS and the image matching point cloud type that yielded the 
smallest RMSE% value (MatchT1). As Vastaranta et al. (2013) point out, forest attributes that are 
strongly dependent on forest density (V and G) may be more prone to be poorly modelled using 
image matching data. This is most likely the explanation for the greater difference between ALS 
and image matching for these variables in the current study.

The HSD tests revealed statistically significant differences between the |rD| values related to 
the ALS models and most of the corresponding models based on image matching metrics. There 
were, however, only a few statistically significant |rD| among the models based on image matching 
point clouds. These few significant differences were obtained on stratum level. No significant dif-
ferences were observed at the level of the different response variables (Suppl. file S2), even though 
there were striking visual differences in the RMSE% distributions for HL (Fig. 3). Thus, there 
was no concrete evidence that that the different image matching routines yielded different results.

5	 Conclusion

The findings of the current study revealed advantages in using ALS point clouds over those gener-
ated using image matching. Furthermore, the results indicated that there were no differences in the 
qualities among those models based on metrics calculated from image matching point clouds. The 
results indicated that ALS point clouds are better suited to represent complex forest structures. As 
forest management increasingly necessitates detailed information from various canopy layers, it is 
crucial to understand the limitations of image matching techniques. Future research should focus 
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on enhancing the knowledge on the properties of different types of point cloud data and developing 
optimal modeling strategies that align with diverse forestry management goals.
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