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Highlights
• First evidence of genetic variation in Diplodia sapinea resistance among Scots pine.
• Necrosis progression over time varied by maternal genotype, indicating heritable resistance

traits.
• Necrosis was significantly reduced when D. sapinea was predisposed at elevated temperature, 

but only at early infection stages.

Abstract
With ongoing climate change, the risk caused by both native, well-known pathogens and new, 
invasive ones is increasing. Diplodia sapinea (Fr.) Fuckel is responsible for Diplodia tip blight, a 
new fungal disease in Finland, that kills the current-year shoots of Scots pine (Pinus sylvestris L.). 
This can lead to the death of young trees and increase the susceptibility of trees of all ages to other 
stressors. Since D. sapinea spreads by airborne spores, it cannot be eradicated. In this study, we 
present the first screening to evaluate the potential for harnessing the genetic variation of Scots 
pine to improve its resilience against D. sapinea. Further, we wanted to test if predisposing this 
warm-preferring pathogen to higher temperature will increase its virulence. On the contrary, higher 
temperature initially reduced the virulence of D. sapinea, but the effect diminished over time. 
Based on necrosis length, we observed between-family variation in seedling resistance. These 
findings support the need for larger future trials to explore the potential for harnessing genetic 
variation to enhance resistance against D. sapinea.
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1	 Introduction

The opportunistic pathogen Diplodia sapinea (Fr.) Fuckel has emerged as a sudden cause of dis-
ease outbreaks (Diplodia tip blight) in Scots pine (Pinus sylvestris L.) in Finland (Terhonen 2023), 
probably as an outcome of higher temperatures and lower precipitation during growing season 
(Terhonen et al. 2025). Asexual pycnidiospores (Brookhouser and Peterson 1970; Peterson 1977; 
Phillips et al. 2013) infect pine needles throughout the growing season (Brookhouser and Peterson 
1970; Li et al. 2019). Also, elongating shoots are susceptible for D. sapinea infection before their 
lignification (Flowers et al. 2001; Oostlander et al. 2023). Infections may remain latent (Terhonen 
et al. 2021; Blumenstein et al. 2021a), or may develop to visible symptoms (Diplodia tip blight) 
if the host tree is under increased stress (e.g. drought) (Blumenstein et al. 2021b; Blumenstein et 
al. 2022). The optimal growth temperature of D. sapinea is between 25–30 °C (Bußkamp 2018), 
suggesting that higher temperatures may contribute to its increased virulence (Blumenstein et 
al. 2021b), leading to more disease symptoms. Generally, northern regions, such as Finland, are 
warming at a faster rate than the global average (Rantanen et al. 2022; Rantanen et al. 2025), cre-
ating new temperature records (Rantanen et al. 2025). As D. sapinea is a warm-preferring fungal 
pathogen (Bußkamp 2018; Terhonen et al. 2025), that can grow in temperatures as high as +40 °C 
(Milijašević 2006), it poses new risks to Scots pine under climate change. This suggests that, in 
the Nordic regions, Scots pines – previously considered less vulnerable to this pathogen due to 
the cooler climate – may face increasing disease pressure as conditions become more suitable for 
D. sapinea establishment and spread (Terhonen et al. 2025).

Scots pine is both ecologically and economically important tree species in Finland, making 
up approximately 50% of the total growing stock, with a volume of about 1250 million cubic meters 
(National Forest Inventory, 12/13rd). The current value (2024) of good quality Scots pine trunk is 
~80 €/m³ (Luke, Statistic database: https://statdb.luke.fi/PxWeb/pxweb/en/LUKE/). The demand 
of Scots pine seedlings is increasing, and nurseries have started to increase the production amount 
(Finnish Food Authority 2023). This means 60 million seedlings annually and the number can be 
expected to increase. As a wind-pollinated species, Scots pine is characterized by high genetic 
variation within the populations, but also by genetically determined phenotypic differences along 
adaptive gradients (Pyhäjärvi et al. 2019). Scots pine growth also differs significantly among 
populations (provenances) under drought conditions (Taeger et al. 2013; Semerci et al. 2017). 
Pines’ chemical defenses consist of phenols, flavonoids, tannins, and volatile compounds such as 
the monoterpene α-pinene. The monoterpene composition of Scots pine is under strong genetic 
control (Yazdani et al. 1982; Baradat and Yazdani 1988), with the best-known chemotypes being: 
1) high 3-carene & low α-pinene and 2) low 3-carene & high α-pinene (Bäck et al. 2012; Muona 
et al. 1986). Through their antimicrobial and antioxidant properties, these compounds can protect 
pines also from pathogens (Keeling and Bohlman 2006).

Diplodia tip blight is difficult to control. Currently there are no forest management practices 
available against D. sapinea in Finland. As it is spreading through asexual conidiospores produced 
in dead cones, needles and shoots, it is impossible to eradicate it from forests. The cumulative 
impact of D. sapinea on Scots pine health can result in economic losses. The disruption of tree 
crowns, and the death of shoots, seedlings, and eventually mature trees (Blumenstein et al. 2021a; 
Caballol et al. 2022; Brodde et al. 2023), lowers its market value. Genetic variation has crucial role 
in host-pathogen dynamics. Over generations, variation in resistance determines how populations 
of Scots pine can adapt to new pathogen. In the short term, it affects the rate of tree survival and 
growth at stand level and among regions. Finally, the information of genetic variation in resistance 
within natural and breeding populations may facilitate resistance breeding and choice of resistant 
seed sources.

https://statdb.luke.fi/PxWeb/pxweb/en/LUKE/
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The aim of this study is to assess the variation in resistance of Scots pine maternal lines 
to D.  sapinea. We hypothesize that variation in susceptibility of Scots pine to D. sapinea, as 
measured here by necrosis length (cm) in shoots, has a genetic component. If significant differ-
ences are observed among maternal lines, this would support the hypothesis. While the current 
dataset is limited in size, the results will indicate the need and direction for further investigation. 
Our objective (1) is to compare necrosis length (cm) caused by D. sapinea among different Scots 
pine maternal lines in a common garden setting, to detect potential genetic variation in resistance. 
Another objective (2) is to test whether exposing D. sapinea to higher temperatures (35 °C versus 
20 °C) increases the virulence of this warm-preferring pathogen.

2	 Material and methods

2.1	 Scots pine origin and inoculation experiment

The seed lots used here were collected from five different naturally regenerated populations and 
therefore represent the local natural variation (Table 1). Seed were sown in the beginning of 
growing season 2021 in a greenhouse at the Haapastensyrjä research station Natural Resources 
Institute Finland (Luke), Southern Finland. Seedlings were then grown outside the greenhouse in 
randomized block design for the first summer after which they were transferred to outdoor condi-
tions in Viikki, Helsinki. During the second summer (2022) seedlings were planted in individual 
pots (volume 1 litre) and remained outside. In June 2023 (26.6.2023), after current-year growth 
had ceased, the seedlings were inoculated on the main shoot with D. sapinea (strain NCBI ID: 
OP103742) as described in Terhonen (2023). The fungus had been grown for 14 days at either 
+20°C or +35 °C before the inoculations. For each mother tree, three seedlings were inoculated 
with the +20 °C-grown fungus, three with the +35 °C-grown fungus, and three were treated with 
a mock control (agar plug without fungus). All seedlings from the same mother tree were half-
siblings (pollinated by unknown fathers in their respective forests of origin). The seedlings were 
kept outdoor (outside greenhouse) and watered if needed to keep the soil moist. Developing necrosis 
in shoots was measured with a ruler to the nearest 0.1 cm, after two weeks and two months. Before 

Table 1. Overview of used Scots pine seedlings: Mother 
ID used in this experiment as a number, location of moth-
er (population) and Latitude.

Mother ID Population Latitude

2 Kolari, FI 67.33° N
5 Kolari, FI 67.33° N
6 Kolari, FI 67.33° N
8 Kälviä, FI 63.73° N
9 Kälviä, FI 63.73° N
10 Kälviä, FI 63.73° N
14 Punkaharju, FI 61.75° N
15 Punkaharju, FI 61.75° N
19 Loviisa, FI 60.46° N
20 Loviisa, FI 60.46° N
22 Loviisa, FI 60.46° N
24 Loviisa, FI 60.46° N
26 Norra Gullabo, SE 56.45° N
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inoculations, the height and growth of 2023 were measured (to nearest 0.1cm), and the number of 
side shoots were calculated. Fifteen seedlings were randomly chosen for re-isolation of D. sapinea 
conducted as described in Terhonen (2023).

2.2	 Statistical testing

All statistical analyses were performed using R version 4.2.2 (R Core Team 2023) (Supplementary 
file S1, available at https://doi.org/10.14214/sf.25028).

A linear model (LM) was used to analyse the effect of inoculation treatment and seedling 
traits on necrosis length (Y, cm). The model was fitted (Bates et al. 2015) as follows:

Y T G S Mi i i i i i� � � � � �� � � � � �0 1 2 3 4 1( )

where: β0 = intercept, β1–4 = regression coefficient, Yi = necrosis length of seedling i (cm), Ti = 
inoculation treatment (fungi grown at +20 °C, +35 °C, or mock control (categorical)), Gi​ = total 
growth of the seedling during 2023 (cm), Si = number of side shoots, Mi = effect of Mother ID 
(categorical), and εi = residual error term.

Population was excluded from the model due to the low number of mother trees per popula-
tion.

The necrosis data between mother IDs was assessed for each inoculation method (+20 °C 
and +35 °C), separately and combined, after 2 weeks and 2 months using the Shapiro–Wilk test. 
If the data were not normally distributed, the analysis was performed with the Kruskal–Wallis 
test, followed by post hoc pairwise comparison using the Dunn–Bonferroni method. For normally 
distributed data, an analysis of variance (ANOVA) was applied, followed by Tukey’s post hoc test.

3	 Results

Fungal inoculation was considered unsuccessful if necrosis was absent (0 mm) after two weeks. 
As a result, five seedlings were discarded (Mother IDs: 26 × 2, 15, 20, and 22). Diplodia sapinea 
was reisolated from all selected seedlings. The growth of the year 2023, number of side shoots and 
length of the seedling did not affect to the necrosis length (Table 2). Necrosis caused by D. sapinea 
that was predisposed at elevated temperature was significantly lower after two weeks compared 
to the +20 °C treatment (Table 2, Fig. 1), but this difference was no longer significant after two 
months. Both fungal inoculation treatments resulted in significantly greater necrosis compared to 
the mock control (Table 2, Fig. 1).

The offsprings of Mother tree ID 15 was found to be most susceptible to D. sapinea (Table 2, 
Fig. 2). This was confirmed with ANOVA (+20 °C, 2 weeks), as the necrosis in Mother ID 15 was 
significantly higher than in Mother ID 2 (p = 0.017) and 26 (p = 0.007). Combined data (+20 °C and 
+35 °C, 2 weeks) showed that Mother ID 15 had meaningfully longer necrosis than Mother ID 2 
(p = 0.004), 10 (p = 0.046) and 26 (p = 0.004).This was consistent with the combined necrosis data 
(+20 °C and +35 °C) after two months, where Mother ID 15 showed significantly higher necrosis 
than Mother IDs 2 (p = 0.0143), 10 (p = 0.0158) and 26 (p = 0.0461). Other comparisons between 
mother IDs did not show significant differences in necrosis (ANOVA or Kruskal–Wallis, depend-
ing on data distribution) at 20 °C after 2 months or at 35 °C after 2 weeks or 2 months. Moderate 
susceptibility was observed also in offsprings of Mother IDs 8 and 24 after two weeks and months 
(Table 2, Fig. 2). Seedlings from Mother ID 2 and 26 had the lowest necrosis, and the necrosis 
length did not increase significantly over time (Fig. 2).

https://doi.org/10.14214/sf.25028
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Table 2. Linear model estimates of factors affecting necrosis length (cm) in Scots pine seedlings two weeks and two 
months after pathogen, Diplodia sapinea, inoculation. Significance (Sig.) codes: *** p < 0.001, ** p < 0.01, * p < 0.05.

Necrosis after two weeks Necrosis after two months
Effect Estimate Std. Error t value Pr(>|t|) Sig. Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) 1.8168464 0.3587807 5.064 1.81e–06 *** 1.77076 1.05986 1.671 0.097809  
Treatment35 °C a –0.5853122 0.1394796 –4.196 5.76e–05 *** –0.50907 0.41203 –1.236 0.219450  
TreatmentControl a –2.5058077 0.1404937 –17.836 < 2e–16 *** –4.10799 0.41503 –9.898 < 2e–16 ***
MotherID5 b 0.2806464 0.2909528 0.965 0.337016   0.99796 0.85950 1.161 0.248284  
MotherID6 b 0.4971742 0.2854753 1.742 0.084570   0.40203 0.84331 0.477 0.634571  
MotherID8 b 0.7866629 0.2734562 2.877 0.004885 ** 2.03923 0.80781 2.524 0.013116 *
MotherID9 b 0.4568134 0.2927768 1.560 0.121761   0.90711 0.86488 1.049 0.296715  
MotherID10 b 0.2642211 0.2778694 0.951 0.343890   0.09965 0.82085 0.121 0.903615  
MotherID14 b 0.2969386 0.3003453 0.989 0.325148   –0.11514 0.88724 –0.130 0.896999  
MotherID15 b 1.1245038 0.2931321 3.836 0.000216 *** 3.09696 0.86593 3.576 0.000532 ***
MotherID19 b 0.4057178 0.3084283 1.315 0.191284   1.22802 0.91112 1.348 0.180676  
MotherID20 b 0.7334483 0.3037714 2.414 0.017522 * 1.13470 0.89736 1.264 0.208909  
MotherID22 b 0.5289703 0.3162700 1.673 0.097455   1.10774 0.93428 1.186 0.238487  
MotherID24 b 0.6928978 0.2886688 2.400 0.018176 * 1.79427 0.85275 2.104 0.037804 *
MotherID26 b –0.1079628 0.2975640 –0.363 0.717481   –0.06853 0.87902 –0.078 0.938013  
Growth c 0.0248811 0.0325944 0.763 0.446997   0.02789 0.09629 0.290 0.772640  
Length d –0.0001307 0.0254071 –0.005 0.995906   0.04395 0.07505 0.586 0.559486  
SideShoots e –0.0068661 0.0349079 –0.197 0.844456   0.03422 0.10312 0.332 0.740653  

a Difference between inoculation treatment compared to the reference D. sapinea in 20 °C
b Difference in MotherID, the reference is the maternal line MotherID2
c Effect of seedling current year growth (cm) on lesion length (cm)
d Effect of seedling length (cm) on lesion length (cm)
e Effect of number of side shoot on lesion length (cm)
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Fig. 1. Observed necrosis in three-year-old Scots pine seedlings subjected to different treatments: Dip-
lodia sapinea grown at +20 °C, +35 °C, or mock control. Measurements were taken after two weeks 
(a) and two months (b).
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4	 Discussion

Genetic variation in Scots pine can serve as a tool against D. sapinea. Previous studies have shown 
that Scots pine families exhibit significant differences in resistance to Dothistroma septosporum 
(Dorogin) M. Morelet, indicating that this trait is heritable (Perry et al. 2016). Scots pine popula-
tions from Central Europe show genetic variation both within and between populations in their 
susceptibility to pine twist rust (Melampsora pinitorqua Rostr.) (Quencez and Bastien 2001). In 
populations of Scots pine originating from Finland the difference in rust resistance was found 
between populations, but there was still variation among trees within each population (Andersson 

Fig. 2. Observed necrosis in three-year-old Scots pine seedlings from different mother trees. Measure-
ments were taken after two weeks (a) and two months (b). To better illustrate the impact of Diplodia 
sapinea, necrosis lengths from both treatments were combined, and mock-control necrosis (0 cm) was 
excluded from the figure.
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and Danell 1997). In Sweden, Scots pine blister rust (Cronartium pini (Willd.) Jørst) resistance 
was shown to have considerable narrow-sense heritability (Persson et al. 2024). Stein Åslund et 
al. (2025) observed in the field that certain Scots pine trees consistently exhibited lower Diplodia 
tip blight symptoms, suggesting the presence of genetic variation in tolerance that may enhance 
resilience. Due to the uneven number of maternal lines across our populations, we were unable 
to detect population-level differences. However, there was significant variation among half-sib 
families, indicating that genetic variation can have important role in host-pathogen interaction. 
As D. sapinea is a new pathogen in Finland (Terhonen 2023) and benefits from a warmer climate 
(Bußkamp 2018; Terhonen et al. 2025), genetic variation in resistance could be harnessed in Scots 
pine breeding for future conditions.

Diplodia sapinea has been shown to grow in temperature as high as +40 °C (Milijašević 
2006), optimal growth being +30 °C (Bußkamp 2018). Therefore, we considered a +5 °C increase 
above the optimal growth temperature representing “warmer” conditions for D. sapinea in this 
experiment. The ability to cause necrosis decreased after exposed to warmer conditions, likely 
due to stress exceeding the pathogen’s optimal range. However, this effect was temporary, and 
the impact diminished over time, suggesting delayed pathogenicity after heat stress. The climatic 
parameters required for Finnish D. sapinea strains to (a) establish themselves and (b) become 
pathogenic are still unknown.

5	 Conclusion

Significant variation among half-sib families suggests genetic variation related to resistance or 
susceptibility to D. sapinea in Scots pine. Larger data from both natural and breeding popula-
tions of Scots pine need to be studied to verify heritability of resistance against D. sapinea and to 
determine whether the variation describes host resistance or susceptibility.

Supplementary files

S1.pdf,
Metadata of research data.pdf,
available at https://doi.org/10.14214/sf.25028.
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