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In percentile method, percentiles of the diameter distribution are predicted with a system of 
models. The continuous empirical diameter distribution function is then obtained by inter-
polating between the predicted values of percentiles. In Finland, the distribution is typically 
modelled as a basal-area weighted distribution, which is transformed to a traditional density 
function for applications. In earlier studies it has been noted that when calculated from the 
basal-area weighted diameter distribution, the density function is decreasing in most stands, 
especially for Norway spruce. This behaviour is not supported by the data. In this paper, we 
investigate the reasons for the unsatisfactory performance and present possible solutions for 
the problem. Besides the predicted percentiles, the problems are due to implicit assumptions 
of diameter distribution in the system. The effect of these assumptions can be somewhat 
lessened with simple ad-hoc methods, like increasing new percentiles to the system. This 
approach does not, however, utilize all the available information in the estimation, namely 
the analytical relationships between basal area, stem number and diameter. Accounting for 
these, gives further possibilities for improving the results. The results show, however, that 
in order to achieve further improvements, it would be recommendable to make the implicit 
assumptions more realistic. Furthermore, height variation within stands seems to have an 
important contribution to the uncertainty of some forest characteristics, especially in the 
case of sawnwood volume.
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1 Introduction

Diameter distribution is one of the most descrip-
tive and important stand characteristics. How-
ever, in forestry practice the empirical diameter 
distribution is seldom measured. For example, in 
Finnish compartmentwise inventory, the growing 
stock is described by partly visually assessed 
stand characteristics, such as mean diameter and 
basal area, for each tree species. In applications, 
the diameter distribution is predicted with models. 
The predicted distribution is used to compute stand 
volume characteristics with treewise height and 
volume models and as a basis for tree growth pre-
dictions (e.g. Päivinen 1980).

In Finland, basal-area weighted diameter dis-
tribution has been commonly used, since it can 
be easily scaled to observed basal area, and basal 
area is the most important forest characteristic 
assessed in practical field inventories. Scaling the 
distribution to observed basal area also ensures 
good estimates for the stand volume calculated 
from the distribution (e.g. Kangas and Maltamo 
2000b). In applications, however, the basal-area 
weighted distribution is transformed to a fre-
quency distribution. This is done in order to be 
able to utilize single-tree growth models, for 
example. Therefore, in addition to obtaining good 
estimates of volume, also good estimates of the 
frequency distribution are needed.

Borders et al. (1987) developed the percentile 
based diameter distribution prediction method. 
This method characterises an empirical distribu-
tion function with 12 percentiles defined with 
respect to number of stems in a stand. The number 
of stems in desired diameter classes was calcu-
lated by linear interpolation between the pre-
dicted percentiles. Maltamo et al. (2000) used 
the percentile based approach to predict irregular 
diameter distributions of stands in a natural state. 
Gobakken and Næsset (2005) and Maltamo et 
al. (2006) expanded the use of percentile based 
distributions to applications where diameter dis-
tributions are predicted by using airborne laser 
scanning data.

Kangas and Maltamo (2000a) estimated per-
centile based basal-area weighted diameter dis-
tribution models for the three most common tree 
species in Finland. Two sets of models were 

estimated: one set with and another without 
number of stems as a predictor. Transforming 
the basal-area weighted diameter distribution 
to the traditional frequency distribution has not, 
however, produced satisfactory results. The pre-
dicted frequency distribution has been decreasing 
in most stands, especially for spruce (Kangas and 
Maltamo 2000b, Bollandsås and Næsset 2007). 
This problem has been particularly evident for 
the model set without stem number as independ-
ent variable.

Overall, the accuracy of percentile based diam-
eter distributions has proved to be quite similar 
to diameter distributions based on probability 
distributions (e.g. Kangas and Maltamo 2000b). 
More than on estimation method, the accuracy 
depends on the amount of information available 
from the stand. Inclusion of the number of stems 
as a predictor improved the total volume and saw 
timber volume estimates for all species, but the 
improvements were especially large for number 
of stems estimates obtained from the predicted 
distribution. It means that the predicted stem 
numbers are not correct, even if the stem number 
were known and used as an independent variable, 
but that knowing the stem number improves the 
behaviour of the model system. Thus, it can be 
assumed that the stem number carries informa-
tion about the shape of the diameter distribution 
that is useful.

Stem number is not, however, measured in the 
usual field work so that the models including 
stem number as predictor cannot be applied in 
most cases. Using a predicted stem number in 
the models does not improve the model behavior: 
the important information in the stem number 
is obviously just the variation that cannot be 
explained with the basal area and mean diameter 
or other forest characteristics. Siipilehto (2006) 
presented an approach where a group of stand 
characteristics including stem number were pre-
dicted simultaneously. Measured value of any 
of these characteristics, e.g. basal area, can then 
be used to calibrate the estimate of stem number 
based on the correlations of the errors across the 
models. This kind of approach could possibly also 
improve the usability of predicted (and calibrated) 
stem number in diameter distribution models.

It is, however, also possible to utilize stem 
number indirectly, by accounting for the ana-
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lytical relationships between basal-area weighted 
diameter distribution and frequency distribu-
tion, i.e. between diameter, stem number and 
basal area. This analytical relationship can be 
accounted for using a set of models where the 
stem number is included as a soft constraint in 
the modelling process. The relations between the 
errors of the models are then utilized in the Seem-
ingly Unrelative Regression (SUR) or Three Stage 
Least Square (3SLS) estimation. This enables 
striving for coefficients optimal for both estimat-
ing the basal-area weighted and the frequency 
distribution.

Furthermore, the models of Kangas and Mal-
tamo (2000a) were estimated from an angle-count 
sampling data, which is unreliable for the fre-
quencies in the smallest diameter classes (e.g. 
Schreuder et al. 1993). Estimating the models 
from a fixed-size sample plot data may also 
improve the model behaviour in the smallest 
diameter classes, since such data has smaller 
variances of frequency in these classes.

The aim of this paper is to investigate the rea-
sons for the unsatisfactory performance of percen-
tile methods without stem number as a predictor 
and present possible solutions for the problem. 
We analyze how much the problem can be less-
ened with simple ad hoc methods like increasing 
new percentiles into the system. We also present a 
method accounting for the analytical relationships 
between basal area, stem number and diameter in 
the modelling. Our assumption is that taking the 
analytical relationships into account in modelling 
is the best approach to alleviate the problems.

2 Material

The data set includes the permanent sample plots 
(INKA sample plots) measured by the Finnish 
Forest Research Institute (FFRI), originally for 
growth modelling purposes (Gustavsen et al. 
1988). The sample plots were established on min-
eral soils across Finland. The data includes clus-
ters of three circular plots located systematically 
within a stand avoiding stand edges. For estimat-
ing basal-area weighted diameter distribution, the 
information of these circular plots was combined. 
Altogether 100–120 trees were measured in each 

stand for diameter at breast height to the nearest 
0.1 cm. Tree height was measured from about 30 
sample trees to the nearest 0.1 meters. Data were 
selected according to the following criteria: the 
basal area of spruce in the stand had to be over 
1 m2/ha and the number of spruce stems over 50 
per hectare; the number of measured trees in the 
three sample plots had to be at least 10; the basal 
area median diameter had to be over 5 cm; and 
the range between both minimum and median and 
maximum and median diameter had to be over 2 
cm. Altogether, the data included 328 stands.

Näslund’s height model (1937) was constructed 
separately for each stand using sample tree meas-
urements. The height of each tally tree was then 
predicted with these models. A random compo-
nent was added to the predictions from a normal 
distribution using the estimated standard devia-
tion of each height model. This was done in order 
to retain a realistic height variation in the data set. 
Total, sawnwood and pulpwood volumes were 
calculated for each tree using taper curve func-
tions presented by Laasasenaho (1982). Basal-
area weighted diameter distributions were formed 
by using basal areas of individual trees. Finally, 
stand characteristics were calculated as averages 
and sums of tallied trees (Table 1).

Table 1. Range, mean and standard deviation (SD) 
of main characteristics of the study material. A 
denotes age, dgM basal area median diameter, hgm 
height of basal area median tree, N number of 
stems, G basal area, V volume and Vs sawnwood 
volume.

Variable Min Max Mean SD

A, years 13.00 170.00 76.01 32.46
dgM, cm 3.00 36.20 17.12 6.03
hgM, m 2.80 28.73 14.33 4.98
N, ha–1 67.45 3186.12 914.30 626.51
G, m2ha–1 1.01 34.14 12,78 8.96
V, m3ha–1 2.89 383.23 97.92 82.72
Vs, cm 0.00 319.51 44.92 58.18
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3 Percentile Based Basal-
Area Weighted Diameter 
Distribution Models

3.1 The Original Models

In the original models estimated by Kangas and 
Maltamo (2000a), the empirical basal area diam-
eter distribution was described with the aid of 
percentiles of stand basal area (0, 10, …, 90, 95 
and 100%), denoted by d0, d10,...,d100. The 5th 
percentile was not used in this system, since d0 
and d10 were deemed to be quite close in most 
stands. The logarithms of these 12 diameters were 
modelled using measured stand variables as pre-
dictors using the seemingly unrelated regression 
(SUR) (Zellner 1962). The median of the distri-
bution (50th percentile) is commonly assessed in 
compartmentwise inventory in Finland and was 
thus assumed to be known.

To be able to construct the diameter distribution 
using the predicted diameter percentiles, all the 
diameters must be positive. Logarithmic models 
were used in order to meet this requirement. 
The diameters are also required to be monotonic 
with d0 < d10 < ... < d100, in order to produce a 
monotone distribution function and nonnegative 
frequencies for the diameter classes. Excluding 
the 5th percentile was assumed to help in produc-
ing monotonic distributions. However, to meet 
this requirement, an additional model was needed. 
This additional model was used to model the 
difference between d10 and d0 with an intercept 
term. Since SUR estimation minimises the vari-
ance with respect to each model considered, the 
additional model worked like an ad-hoc constraint 
in the estimation process. This procedure ensured 
the monotonicity in the estimation data set, but it 
does not guarantee it in all conditions.

In the application stage, the estimate of the 
relative basal area in each 1-cm diameter class 
[d, d + 1] was calculated from the cumulative 
distribution of diameters F as F(d + 1) – F(d). The 
value of the empirical distribution F was obtained 
by interpolating between the predicted percentiles 
with Späth’s rational spline interpolation (Späth 
1974, Lether 1984, Maltamo et al. 2000) with 
parameters qi and pi having fixed values 25 and 
30 for each interval i. When qi and pi approach 

infinity, the rational spline degenerates to a piece-
wise linear function, and making qi and pi zero 
produces a cubic spline. The used parameter 
values (thus) produced a nearly piecewise linear 
interpolation.

3.2 The Implicit Assumptions in the System

The analytical relationship between the basal-area 
weighted and unweighted diameter distributions 
can be presented with formulas
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where fG denotes the density of basal-area 
weighted distribution and fN the frequency dis-
tribution, and the nominator scales the density to 
unity (e.g. Gove and Patil 1998). With basal-area 
weighted diameter distribution, the stem number 
between diameters L and U can be estimated 
from

N
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,
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and the stand stem number is obtained by having 
L = d0 and U = d100.

Assuming a linear interpolation between the 
predicted percentiles means that the density 
of basal area is assumed to be uniform within 
each interval. This means that a decreasing stem 
number in the diameter classes within this interval 
is implicitly assumed (Fig. 1). This assumption 
may be realistic for most of the distribution, but 
not all. Thus, partly the unsatisfactory results may 
be due to these implicit assumptions in the linear 
interpolation, not in the percentile estimates.

It would, however, be possible to utilise spe-
cial assumptions for tails only. For instance, it 
could be assumed that the tails were estimated 
with second- or third-order polynomials (David 
and Nagaraja 2003, Mehtätalo et al. 2007). In 
the lower tail, this would cause the unweighted 
density to be increasing from d = d0 upwards, but 
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not necessarily for the whole interval (Fig. 1). For 
example, with quadratic interpolation it would 
turn to a decreasing function at d = 2d0. In the 
upper tail, higher order polynomials would make 
the tail lighter. Thus, higher order polynomials 
could be more realistic assumptions than linear 
interpolation, especially for the lower tail. How-
ever, they are also more difficult to parameterize 
into the model, as the analytic functions for stem 
number become more complicated.

In the case of linear interpolation, the density 
of the basal area weighted diameter distribution is 
constant within each interval [di, di+1] (Mehtätalo 
2004)
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where pi is the cumulative distribution value at 
percentile di. The stem number for each interval 
can be obtained from Eq. 3 as
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Using second-order polynomials for tails, the 
density of the basal area weighted distribution 
within each interval would be
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where the tails are specified so that the global 
minimum of the polynomial used in the lower 
tail is 0 and the global maximum of the polyno-
mial used in upper tail is 1. Parameters al, bl, au 
and bu can be solved by forcing the interpolated 
distribution function to pass through predicted 1st 
and 2nd percentiles in the lower tail and through 
90th and 95th percentiles in the upper tail, for 
instance. This would lead to estimates

b
d p d p

d dl
=

−
−

1 2 2 1

1 2

 (7)

Fig. 1. Densities of basal-area weighted (up) and unweighted diameter distribution where percentiles of basal-area 
weighted diameter distribution are d5 = 7, d30 = 11, d70 = 15 and d95 = 20 and the tails are interpolated using 
1st (left), 2nd (middle) and 3rd (right) order polynomials.
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for upper tail. This, in turn, would lead to esti-
mates of minimum and maximum diameters as
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Using the tail model, stem number for the interval 
[d0, d2] can be obtained from Eq. 3 as

4 Approaches for Improving 
the Results

4.1 Methods

If several separate but interrelated models are 
estimated, simultaneous estimation is needed. 
Assuming the models to be independent will lead 
to biased coefficients or, at least, to inefficient 
estimation (e.g. Zellner 1962, Zellner and Theil 
1962). In forest modelling, simultaneous esti-
mation has been used in some growth and yield 
models (e.g. Borders and Bailey 1986, Zhang et 
al. 1997, Hasenauer et al. 1998, Eerikäinen 2002, 
and Siipilehto 2006), and also for diameter distri-
bution models (Borders et al. 1997, Maltamo et 
al. 2000, Kangas and Maltamo 2000a, Robinson 
2004, Maltamo et al. 2006).

Simultaneous equations may be seemingly 
unrelated or directly related. In the first case, 
none of the independent variables are estimated 
with an equation in the system, but the errors of 
the separate models may be correlated. In the 
second case, some of the independent variables 
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and that for the interval [d90, d100] as
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Thus, minimum and maximum diameters need 
not to be estimated with separate models.
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in the equations are estimated with another equa-
tion (endogenous variables), and some are not 
(exogenous variables). The errors of the models 
may or may not be correlated.

In Seemingly Unrelated Regression (SUR), the 
correlations between the errors of models are 
accounted for in estimating the coefficients of the 
models. First, the coefficients are estimated with 
Ordinary Least Squere (OLS) separately for each 
model in the group, and the correlations between 
the errors are estimated. Then, these correlations 
are used in estimating a final set of parameters. 
In this case, OLS models are unbiased for each 
separate model, but modelling efficiency can be 
improved if the correlations are accounted for, and 
the independent variables are not the same in each 
model. If the models are directly related, two-
stage (2SLS) or three-stage least squares (3SLS) 
methods are used. In 2SLS, the equations for 
the endogenous variables are first estimated, and 
predicted values of these variables are then used 
as independent variables when estimating the final 
set of parameters. This is to ensure the unbiased-
ness of the approach. In 3SLS, it is also assumed 
that the errors of the models are correlated, so 
that after 2SLS the estimated correlations of the 
model errors are used in the same way as in SUR 
for estimating the final set of parameters.

It is also possible to use the SUR and/or 3SLS 
estimation as a sort of “soft constraint”. For 
instance, Zhang et al. (1997) used the sum of 
treewise growth estimates to estimate the stand 
growth simultaneously. This helped to constrain 
the treewise growth models so that the estimates 
of standwise growth were more precise. Similar 
ideas are utilized in this study: the estimates of 
stem numbers in different diameter classes, based 
on the estimates of the percentiles, were used to 
constrain the percentile models.

4.2 Modelling Approaches

The first attempt to improve the original models 
was to re-estimate the models from the fixed-area 
INKA sample plots, and including three new 
percentiles, namely 1%, 2% and 5%, into the 
system. This approach may improve the results in 
a sense that the intervals in the smaller tail of the 
distribution would be smaller, so that the implicit 

assumption of decreasing density of number of 
stems within each interval does not have so big 
effect. It also means that the produced distribu-
tions should have less heavy tails overall. On the 
other hand, this approach is assumed to produce 
more problems due to non-monotonicity than the 
original model.

The modelling technique was the same as 
in original models, SUR. In the old models, a 
dummy variable for mesic and poorer mineral 
soils was included, but not in the new ones, and 
in the new ones the temperature sum (TS) was 
included unlike in the old ones. These models 
are later called re-estimated models. The models 
were re-estimated in a logarithmic form requiring 
bias correction when transforming the estimates 
back to arithmetic scale.

In the second attempt to improve the model 
behaviour, the relationship between basal area 
and stem number in a diameter class [di, di+1] 
was used to constrain the model. Assuming linear 
interpolation, the model for stem number between 
any two percentiles is obtained from Eq. 5
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Thus, the strict analytical relationship (Eq. 5) 
is loosened by including parameter bi and an 
error term for each class. Then, if the estimated 
parameters bi differ from their theoretical values 
12732,4(pi+1 – pi), it would indicate that linear 
interpolation assumption does not fit. If the esti-
mated values are near to their theoretical values, 
linear interpolation assumption is suitable, and the 
imposed restrictions can be assumed to improve 
the parameters of interest, namely the coefficients 
for the percentile models.

As the equations are not linear with respect 
to percentile diameters, a nonlinear modeling 
approach is needed. The models were fitted using 
MODEL procedure of SAS, using nonlinear 3SLS 
method. The diameter percentiles were estimated 
with a model of form

d x x
i p p i
= + + + +exp( ... )β β β ε

0 1 1  (16)

where β0 – βp are parameters to be estimated, x1 
– xp are the independent variables. The percentiles 
were assumed to be endogenous variables and 
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the exogenous variables were stand basal area 
(G), logarithm of stand age (t), logarithm of the 
stand age divided by basal area, the basal area of 
spruce divided by the stand total basal area, tem-
perature sum (TS) and the logarithm of the basal 
area median diameter d50. These independent 
variables are the same that were used in the re-
estimated models. Later these models are referred 
to as new models. In the new models, diameters 
were directly estimated so that bias corrections 
were not needed.

Finally, improvements were attempted using 
the second-order polynomials for the tails. In 
this case, models for the minimum and maximum 
diameter were not estimated at all, but they were 
estimated using Formulas 11 and 12. The esti-
mates for the stem numbers in interval [d0, d2] 
was calculated with Eqs. 13 and 14, and in interval 
[d1, d2] with Eq. 5. The stem number in interval 
from [d1, d2] could also have been calculated 
exactly from the second order polynomial, but 
this approximation seemed to work well enough. 
The stem number in interval [d0, d1] was obtained 
from subtraction. Eqs. 13 and 14 were also used 
as soft constraints in the modelling phase, so that 
80 000/π was replaced with parameters b1 and b14 
and an error term was included as in Eq. 15.

4.3 Comparison of the Models

First, the modelling approaches were compared 
based on the standard errors of the estimated 
models. The problems due to non-monotonicity 
were also considered for each case. Stem numbers 
for each interval were calculated using the ana-
lytical relationships presented, and their accuracy 
was analysed.

Then, the models were compared in an applica-
tion stage. In this stage, rational spline was used 
for interpolation, with the same parameters as in 
the original study (Kangas and Maltamo 2000a). 
The height and volume models were applied and 
the accuracy of resulting stand characteristics was 
calculated. The basic performance of the models 
was examined by calculating the root mean square 
errors and biases of stand volume estimates (m3/
ha) obtained with these methods. Tree total and 
sawnwood volumes for each diameter class were 
calculated with Laasasenaho’s taper curve models 

(1982), using diameter at breast height and tree 
height as a predictors. Tree height was predicted 
by using models of Siipilehto (1999). In this 
approach, the parameters of Näslund’s height 
model are predicted for each stand so that the 
height of the mean tree (tree with d50) coincides 
with the observed value.

In both stages, the results were compared to 
the results obtained by using the true percentiles 
instead of estimated ones. This was done in order 
to find out how much of the problems were due 
to percentile estimates, how much were due to 
other reasons.

The absolute root mean square error (RMSE) 
was calculated as

RMSE

V V

n

i i

i

n
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−


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=
∑

2

1
 (17)

where n is the number of sample stands, Vi is the 
true volume of stand i and V̂

i
 is the volume of 

stand i estimated from the predicted distribution. 
The relative RMSE of the volume estimate was 
calculated by dividing the absolute RMSE by the 
true mean volume V  of the stands. The bias of the 
predictions was calculated as

bias

V V
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In addition to stand total volume, the RMSE and 
bias of sawnwood volume and number of stems 
were considered.

Finally, an error index proposed by Reynolds et 
al. (1988) was used in the comparisons as a meas-
ure of the goodness-of-fit of the distributions. 
The error index was calculated in 1-cm diameter 
classes for stem numbers. Thus, the error index 
of a given stand was the sum of the absolute dif-
ferences between the actual and predicted stem 
frequencies of the diameter classes

e f fi i
i

K

= −
∧

=
∑

1

 (19)

where f
i

∧

 and fi are the predicted and true fre-
quency of diameter class i, respectively, and K is 
the number of diameter classes.
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5 Results

The parameters of original models (Kangas and 
Maltamo 2000a) are presented in Table 2, those of 
the re-estimated models including the models for 
1%, 2% and 5% percentiles in Table 3 and those 
of the new models in Table 4. It can be noted that 
in the re-estimated models, contrary to the prior 
beliefs, the model for minimum diameter model 
had a larger standard error than that of the original 
models, so that using fixed sample plots did not 
improve the models in this respect. With respect 
to standard errors of other common percentiles, 

Table 2. The coefficients (SUR) of the original model, estimated from angle count plot data (Kangas and Maltamo 
2000a). Median point (dgM) is expected to be known. Clarifications of variable codes: d0,…, d100 diameter 
percentiles, Soil = dummy variable for stands on mesic and poorer mineral soil. For other variable codes, 
see Table 1.

 Intercept Ln(dgM) ln(A) ln(A/G) ln(G) Soil RMSE

Ln(d0) –0.3561 0.8351 – –0.1178 –0.1261  0.4021
Ln(d10) –0.2120 0.8830 – –0.0736 –  0.2732
Ln(d20) –0.1667 0.9679 – –0.0789 –  0.1711
Ln(d30) –0.3199 1.0528 – –0.0379 –  0.1191
Ln(d40) –0.1315 1.0266 – –0.0313 –  0.0990
Ln(d60) 0.1766 0.9688 – – –  0.0564
Ln(d70) 0.3237 0.8964 0.0348 – –  0.0770
Ln(d80) 0.4768 0.8381 0.0603 – –  0.0932
Ln(d90) 0.7771 0.7502 0.0792 – – –0.0392 0.1051
Ln(d95) 0.9005 0.7016 0.1014 – – –0.0409 0.1164
Ln(d100) 1.3823 0.6241 0.0832 – – –0.0682 0.1580

those of the re-estimated models were a little 
smaller than those of the original models in 5 
cases out of 10. The re-estimated model required 
three additional restricting models with only an 
intercept term in order to produce monotonic 
distributions, between 2% and 0%, between 100% 
and 95% and also between 5% and 2%. This is 
according to prior beliefs.

The RMSEs of the new models are not directly 
comparable with the other, logarithmic models, 
but relative RMSEs provide a suitable basis for 
comparison. The standard errors of the logarith-
mic models can be interpreted as approximate 
relative RMSEs for the diameters in an arithmetic 

Table 3. Re-estimated models (SUR) for different percentile diameters of Norway spruce from INKA data, includ-
ing the new percentiles (1,2, and 5%).

 Intercept Ln(dgM) ln(A) ln(A/G) ln(G/Gtot) TS RMSE

Ln(d0) –1.5345 0.6244 0.4001 –0.1624 –0.4964 –0.2072 0.6365
Ln(d1) –0.9141 0.6860 0.2156 –0.1070 –0.1622 0.0724 0.2448
Ln(d2) –1.0213 0.7675 0.1774 –0.0822 –0.0651 0.1449 0.2339
Ln(d5) –0.8715 0.7966 0.1497 –0.0680 – 0.1913 0.1981
Ln(d10) –0.6844 0.8865 0.1017 –0.0604 – 0.1434 0.1547
Ln(d20) –0.3571 0.9480 0.0471 –0.0472 – 0.0648 0.1208
Ln(d30) –0.1803 0.9848 0.0197 –0.0281 – – 0.0932
Ln(d40) –0.1115 1.0098 – – – – 0.0535
Ln(d60) 0.1984 0.9591 – – – – 0.0638
Ln(d70) 0.3521 0.9346 – – – – 0.0921
Ln(d80) 0.5970 0.8776 – – – – 0.1172
Ln(d90) 0.7680 0.8530 – – – – 0.1355
Ln(d95) 0.8247 0.8526 – – – – 0.1421
Ln(d100) 0.8443 0.8554 – – – – 0.1412
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scale, so that RMSE of 0.63 for logarithm of 
minimum diameter in re-estimated models corre-
sponds approximately to 63% RMSE of diameter 
(e.g. Lappi 1986). Interpreted in this way, the 
relative RMSEs of the new models were better 
than those of the original models in most of the 
percentiles (excluding minimum diameter) and 
also better than those of the re-estimated models, 
except for percentiles 1, 2 and 5%. This may 
be partly due to smaller amount of independent 
variables that were used in the 3SLS approach 
for those percentiles (all variables not significant 
with 5% risk level were excluded), and partly due 
to constraining stem number models. The new 
models required one additional model between 
1% and 0% in order to produce monotonic results. 
Thus, the information concerning the stem num-
bers enhanced more satisfactory behaviour of the 

model in this sense.
In the stem number models, the parameters bi 

differed from their theoretical values less than 
1% in 7 cases out of 14, and less than 6.5% in 12 
cases out of 14 (Table 5). In the first class, from 
0% to 1%, however, the parameter was about 
42% smaller than theoretical value and in the last 
interval 28% smaller than the theoretical value. 
This indicates that in these two intervals, the stem 
numbers are consistently overestimated if linear 
interpolation is used. The small value of bi thus 
compensates for the overestimation.

This can also be seen from the estimates of 
stem number for the 14 intervals obtained from 
the analytical relationships. Using true percen-
tiles and the estimated percentiles form the re-
estimated models, the estimates of stem number 
were obtained using Eq. 5. Correspondingly, the 

Table 4. New models estimated with 3SLS for different percentile diameters of Norway spruce including the 
constraining models of stem numbers in different diameter classes. The standard errors of the coefficients 
are presented in brackets.

 Intercept ln(A) ln(A/G) Ln(G/Gtot) ln(dgM) TS RMSE RMSE% R2

d0 –1.3866 0.3985 –0.1969 –0.6699 0.7055 –0.2154 2.00 53.97 0.23
 (0.3883) (0.0885) (0.0574) (0.1461) (0.0950) (0.0880)
d1 –0.4271 0.1794 –0.1290 –0.2714 0.6461 – 1.62 28.44 0.52
 (0.1814) (0.0407) (0.0297) (0.0695) (0.0537)
d2 –0.4033 0.1129 –0.1097 –0.2034 0.7593 – 1.78 27.05 0.59
 (0.1695) (0.0358) (0.0261) (0.0582) (0.0505)
d5 –0.5860 0.0456 –0.0549 – 0.9212 – 1.86 22.35 0.72
 (0.1347) (0.0182) (0.0134)  (0.0405)
d10 –0.4700 – –0.0432 – 1.0094 – 1.74 17.18 0.83
 (0.0982)  (0.0095)  (0.0304)
d20 –0.3747 – –0.0308 – 1.0403 – 1.50 12.07 0.91
 (0.0690)  (0.0062)  (0.0215)
d30 –0.2126 – –0.0213 – 1.0231 – 1.30 9.13 0.94
 (0.0515)  (0.0043)  (0.0162)
d40 –0.1240 – – – 1.0149 – 0.77 4.86 0.98
 (0.0251)    (0.00829)
d60 0.2458 – – – 0.9431 – 1.08 5.82 0.97
 (0.0297)    (0.00984)
d70 0.3808 – – – 0.9252 – 1.80 8.51 0.93
 (0.0451)    (0.0150)
d80 0.6128 – – – 0.8735 – 2.26 10.32 0.90
 (0.0520)    (0.0173)
d90 0.8184 – – – 0.8364 – 2.95 12.16 0.86
 (0.0605)    (0.0202)
d95 0.9486 – – – 0.8106 – 3.25 12.67 0.85
 (0.0625)    (0.0209)
d100 0.9372 – – – 0.8261 – 3.32 12.55 0.86
 (0.0621)    (0.0207)
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estimates of stem number were obtained using the 
estimated percentiles and model (Eq. 15) in the 
case of new models. The stem number estimates 
obtained from new models were in three intervals 
better than those estimated from true percen-
tiles, and in 11 intervals out of 14 better than 
those estimated from the re-estimated models. 
Thus, accounting for the analytical relationships 
improved the estimates (slightly) in 11 cases.

In the first interval, the best estimates were 
obtained from re-estimated model (RMSE 70.21), 
and worst with true percentiles (RMSE 165.94). 
Thus, in this particular interval, the linear inter-
polation produced the greatest errors. In the case 
of re-estimated models, the errors in estimated 
percentiles compensated for that error, which 
reduced the RMSE. The most probable reason is 
that using a model shortens the tail, and therefore 
lessens the effect of implicit assumptions. In the 
new models, both the small value of bi in the 
model and the shortening tail compensated for 
the errors due to implicit assumptions, and the 
result was almost as large a bias as in the case 
of true percentiles, but to a different direction. If 
the theoretical value of bi had been used in this 
interval instead of the estimated one, the results 
would have been better: bias 10.5 and RMSE 
108.8. The error due to linear interpolation covers 
for a large part of the uncertainty involved in the 
stem number estimates. The proportion of RMSE 

based on true percentiles from that of the new 
models varies from about 20% to 135%, being 
on average about 75%. Roughly three fourths of 
the uncertainty in stem number estimates in each 
interval is thus due to linear interpolation (ignor-
ing the effect of possible compensation).

When the new models were used so that the 
minimum and maximum diameters and the stem 
numbers in the first and last interval were pre-
dicted with tail estimators (Eqs. 11–14) and the 
corresponding models were excluded from the 
modelling phase, the results were bias 38.32 and 
RMSE 80.91 in the first interval and bias –5.57 
and 7.83 in the last interval. Thus, tail estima-
tor improved the result in the first interval, but 
slightly worsened in the last one. This also indi-
cates that linear interpolation does not fit to the 
first interval. In last interval, the second order 
polynomial seems to produce too light tail, and 
linear interpolation seems to be better. If models 
based on (13) and (14) were also included as 
soft constraints in the system, the results were 
bias –43.1 and RMSE 86.83 for the first inter-
val, and –5.32 and 6.62 for the last one. Thus, 
this constraint did not improve the fit in the first 
interval but did so in the last one. In this case, 
the parameters were 29932 (17.5% greater than 
the theoretical value) and 22176 (12.9% smaller 
than the theoretical value). Thus, the constraint 
fitted clearly better than the one based on linear 
interpolation, but yet a better assumption would 
be required to obtain a truly useful constraint. On 
the other hand, using the second order polynomial 
for tail produced monotonous distributions in all 
stands without any ad-hoc constraints.

When the models were implemented into an 
application, and the resulting stand character-
istics from all the three different models (origi-
nal, re-estimated and new) were compared to 
the corresponding results obtained by using true 
percentiles, the results were quite surprising. The 
accuracy of forest characteristics obtained in the 
application phase was fairly similar in all these 
cases, except for the error index (Table 7).

The error index, which describes how well the 
distribution fits, was clearly better with true per-
centiles. The error index could also be improved 
from 10.808 to 9.461 by introducing three new 
percentiles, but it could not be further improved 
by using the analytical stem number information, 

Table 5. The parameters bi of the stem number models, 
the theoretical parameter values and the standard 
error of the estimates.

Model Estimate Theoretical s.e.
  value

b1 74.22165 127.3 2.0682
b2 128.39 127.3 0.7135
b3 380.382 382 1.3758
b4 638.1402 636.6 2.0986
b5 1272.963 1273 3.2281
b6 1282.755 1273 4.0486
b7 1302.129 1273 4.6813
b8 1277.789 1273 5.0712
b9 1299.457 1273 6.4981
b10 1296.145 1273 7.0526
b11 1336.275 1273 8.4306
b12 1278.992 1273 11.4362
b13 675.6775 636.6 9.5500
b14 457.4792 636.6 4.0518
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even though the class-wise stem number estimates 
in most classes could be improved (Table 6). True 
percentiles did produce only slightly better results 
than the percentiles estimated with new models 
for volume (RMSEs 11.828% and 12.062%, 
respectively) and sawnwood volume (RMSEs 
18.336% and 22.195%, respectively) (Table 7). 
In stem number estimates, reduction in the rela-
tive RMSE of stem number was from 22.116% 
(original models) to 20.587% (new models).

As the stem number estimate is likely to be 
effected with the long and heavy tails, an ad-
hoc shortening of the tail was also tested. This 
was carried out by using 1% diameter as a “true 
minimum” in the estimation. With this value, the 
RMSE of stem number could be reduced to 6.059 

and bias to 5.212 (Table 7). However, the use of 
1% diameter as a minimum in true percentile 
values produced worse diameter distributions than 
the re-estimated or new models, when the distri-
butions were visually inspected (Fig. 2).

Irrespective of the seemingly minor improve-
ments, using the stem number information for 
constraining the percentile models seems to force 
the models to behave visually more satisfactorily. 
In Fig. 2 are shown three example stands, for 
which the diameter distributions with different 
models are presented. In these examples, the 
density functions obtained with new models are 
no more decreasing, as they were with the original 
models.

Table 6. The accuracy of class stem number estimates (i.e. stem numbers at percentiles 1–100 minus the stem 
number at the preceding percentile, denoted by ir1 – ir100) , estimated with true percentiles, with the re-esti-
mated models and Eq. 5, and estimated percentiles and the stem number models included in the new model 
system.

 True percentiles Re-estimated INKA models New models
 Bias Std RMSE Bias Std RMSE Bias Std RMSE

Ir1 –53.72 157.00 165.94 24.40 65.83 70.21 44.45 114.10 122.45
Ir2 1.08 6.07 6.16 6.23 22.08 22.94 6.37 22.55 23.43
Ir5 –0.45 7.94 7.96 9.45 39.32 40.44 10.63 39.15 40.57
Ir10 0.11 7.65 7.65 7.29 35.68 36.42 6.30 33.58 34.17
Ir20 –0.27 7.72 7.73 5.24 33.98 34.39 3.18 32.33 32.49
Ir30 0.16 6.94 6.94 2.12 18.33 18.45 0.95 17.68 17.71
Ir40 1.74 6.35 6.58 1.85 12.45 12.58 0.43 9.84 9.85
Ir50 0.39 5.59 5.60 –0.54 7.14 7.16 –0.36 4.26 4.27
Ir60 1.03 6.07 6.15 0.42 6.06 6.08 –0.09 3.40 3.40
Ir70 0.81 5.56 5.62 0.76 8.14 8.17 0.33 6.15 6.16
Ir80 1.91 5.61 5.92 2.25 9.20 9.47 0.46 7.61 7.62
Ir90 0.74 6.30 6.35 0.97 9.66 9.71 0.19 7.92 7.92
Ir95 0.84 4.31 4.39 –0.49 6.44 6.46 –1.37 5.27 5.44
Ir100 –1.99 3.33 3.88 –6.29 5.88 8.61 –2.91 4.96 5.75

Table 7. The relative RMSE and absolute biases of volume, sawnwood volume, stand stem number and error index, 
calculated with true percentiles, with true percentiles modified so that 1% diameter was used as a minimum 
diameter, with original model percentiles, with re-estimated models, and with the new models.

  True True Original Re-estimated New
   modified  INKA

V RMSE% 11.828 11.911 11.637 12.062 12.069
 Bias –0.067 –0.147 –1.126 –0.100 –0.059
Vsawnwood RMSE% 18.336 18.582 21.893 22.062 22.195
 Bias –0.999 –1.046 –0.551 –0.356 –0.453
N RMSE% 21.412 6.059 22.116 21.139 20.587
 Bias –69.672 5.212 –12.049 50.235 40.717
Error index  6.833 7.086 10.808 9.461 9.462
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Fig. 2. Examples of predicted density functions in three example stands (1–3): a = true percentile values (1% diam-
eter used as a true minimum), b = original percentile models of Kangas & Maltamo (2000b), c = re-estimated 
percentile models and d = new model. True distribution is presented with bars, and the estimate with lines.
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6 Discussion

In this paper, we investigated the reasons for the 
unsatisfactory performance of basal area weighted 
percentile-based diameter distribution models and 
presented possible solutions for the problem. The 
improvements were attempted by including new 
percentiles into the system and using analytical 
relationships between basal area, stem number 
and diameter. The results were indeed better than 
those obtained using the original model in the 
sense that the basal-area weighted distributions 
transformed to traditional density functions were 
not decreasing (Fig. 2). However, otherwise the 
improvements were minor, except in the error 
index, which could be decreased by 12.4%.

When the results were compared to those 
obtained using true percentiles in the applica-
tion phase, it can be seen that the results cannot 
be much improved by improving the percentile 
models. Small improvements are still possible 
with respect to error index, but in other respects 
further improvements in the results seem very dif-
ficult. Therefore, there are other sources of uncer-
tainty involved, which seem to be more important 
than the errors in percentile estimates.

Besides the (nearly linear) spline interpola-
tion used, another likely source of error is the 
height variation involved in the data set. This is 
supported by the fact that the original percentile 
models produced RMSE of about 3.29% (Kangas 
and Maltamo 2000b) for volume in the same 
INKA dataset, while in this study the RMSE was 
11.83% even with true percentiles. In the former 
case, the volumes of the trees were calculated 
using diameter as the only independent variable, 
both for the measured trees used as reference 
information and for the trees sampled from the 
predicted distribution. Thus, height variation did 
not affect the results. In this study, a volume 
model with both height and diameter as independ-
ent variables was used, and the height variation of 
the reference data was accounted for.

For sawnwood volume, the RMSE was 18.34% 
with true percentiles and 21.89% for the origi-
nal models. The effect of percentile estimates 
in this study seems thus to be fairly low, and 
that of height variation and linear interpolation 
assumption cover for most of the error (roughly 

four fifths). In the study by Kangas and Maltamo 
(2000b) the original models produced RMSE 
11.85% for sawnwood volume in the same INKA 
data set that was used for the current study. Partly 
the difference can be explained with the fact that 
height variation was not accounted for in the orig-
inal study, but partly the difference may be due 
to the differences in the definition of sawnwood 
volume. In the original study, all trees greater than 
17 cm at breast height were considered as sawn-
wood trees, and their volume formed the sawn-
wood volume. Because of the definition, most of 
the errors were likely to be due to the errors in 
percentile estimates. In this study, the sawnwood 
volume was calculated as the proportion of tree 
volume fulfilling the minimum diameter require-
ments for each tree sampled from the distribution. 
Consequently, since the RMSE observed in the 
original study was fairly high, it can be assumed 
that some of the errors in percentiles were com-
pensated with some other error sources in the case 
of new models, and the true effect is more than 
one fifth of the errors.

Another interesting phenomena in this study 
is that the other set of original percentile models 
with stem number as an independent variable 
(Kangas and Maltamo 2000a), produced clearly 
better estimates for stem number than the true 
percentiles in this study in the same data set, 
namely RMSE 6.88% and bias –40.69. It can 
be assumed that the models with stem number 
adjusted the estimate of minimum percentiles so 
that the implicit bias could be partly corrected. 
The most reasonable explanation for this is that 
those models shortened the tails, and thus less-
ened the effect of implicit assumptions.

Therefore, it seems that the bias and problems 
in the stem number are mostly due to the (nearly) 
linear interpolation used in the application. It 
may be that there are single trees in the stand 
that have a diameter much smaller than other 
trees, and these cases may produce problems to 
estimation, as linear interpolation of basal-area 
weighted diameter percentiles implicitly assumed 
a decreasing density between 0% and 1% per-
centiles.

Thus, the most significant remaining error 
sources are other than percentile estimates. It 
seems that further improvements would require 
that the implicit assumptions in the models are 
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made more realistic. It would also mean that 
the height models should be improved. Adjust-
ing the shape of the height model in addition to 
level could help. This means that more than one 
height sample tree should be measured and the 
height sample trees should not be too similar to 
each other in diameter. It could also be useful to 
utilize the whole conditional distribution of tree 
heights given the tree diameter, instead of using 
only conditional expectations. This would require 
integration of the volume estimates over the dis-
tribution of heights. Simpler approaches would 
be simulation of heights from the conditional 
distribution or a two-point distribution approach 
as used by Lappi et al. (2006).

7 Conclusions

The percentiles models of Kangas and Maltamo 
(2000a) have been widely used in forest planning 
calculations, e.g. in MELA simulator. Although 
the test results have shown the accuracy of these 
models being comparable with other models, 
the behaviour of percentile based models has 
been unsatisfactory, especially in Norway spruce 
stands. The work concerning the improvement 
of percentile models of this study has improved 
the behaviour of the models in the sense that 
frequency functions are not always decreasing 
any more. This study concentrated on the predic-
tion of diameter distribution using current stand 
characteristics but it is expected that the usability 
of new percentiles models will be better also in 
growth simulations. This is due to the fact that the 
number of small trees will now be more realistic. 
The future research work will include the model-
ling of new percentile models also for other tree 
species such as Scots pine and birch species.
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