
575

www.metla.fi/silvafennica · ISSN 0037-5330
The Finnish Society of Forest Science · The Finnish Forest Research Institute

Models in Country Scale 
Carbon Accounting of Forest Soils

Mikko Peltoniemi, Esther Thürig, Stephen Ogle, Taru Palosuo, Marion Schrumpf, 
Thomas Wutzler, Klaus Butterbach-Bahl, Oleg Chertov, Alexander Komarov, 
Alexey Mikhailov, Annemieke Gärdenäs, Charles Perry, Jari Liski, Pete Smith and  
Raisa Mäkipää

Peltoniemi, M., Thürig, E., Ogle, S., Palosuo, T., Schrumpf, M., Wutzler, T., Butterbach-Bahl, K., Chertov, 
O., Komarov, A., Mikhailov, A., Gärdenäs, A., Perry, C., Liski, J., Smith, P. & Mäkipää, R. 2007. Models 
in country scale carbon accounting of forest soils. Silva Fennica 41(3): 575–602.

Countries need to assess changes in the carbon stocks of forest soils as a part of national 
greenhouse gas (GHG) inventories under the United Nations Framework Convention on 
Climate Change (UNFCCC) and the Kyoto Protocol (KP). Since measuring these changes is 
expensive, it is likely that many countries will use alternative methods to prepare these esti-
mates. We reviewed seven well-known soil carbon models from the point of view of preparing 
country-scale soil C change estimates. We first introduced the models and explained how they 
incorporated the most important input variables. Second, we evaluated their applicability at 
regional scale considering commonly available data sources. Third, we compiled references 
to data that exist for evaluation of model performance in forest soils. A range of process-based 
soil carbon models differing in input data requirements exist, allowing some flexibility to 
forest soil C accounting. Simple models may be the only reasonable option to estimate soil 
C changes if available resources are limited. More complex models may be used as integral 
parts of sophisticated inventories assimilating several data sources. Currently, measurement 
data for model evaluation are common for agricultural soils, but less data have been collected 
in forest soils. Definitions of model and measured soil pools often differ, ancillary model 
inputs require scaling of data, and soil C measurements are uncertain. These issues complicate 
the preparation of model estimates and their evaluation with empirical data, at large scale. 
Assessment of uncertainties that accounts for the effect of model choice is important part of 
inventories estimating large-scale soil C changes. Joint development of models and large-scale 
soil measurement campaigns could reduce the inconsistencies between models and empirical 
data, and eventually also the uncertainties of model predictions.

Keywords decomposition, greenhouse gas inventory, IPCC, national forest inventory, regional 
and national modeling, soil carbon, soil model
Addresses (corresp.) Peltoniemi & Mäkipää Finnish Forest Research Institute, Vantaa, Finland
(Addresses listed on next page)  E-mail raisa.makipaa@metla.fi, mikko.peltoniemi@metla.fi
Received 25 August 2006 Revised 23 April 2007 Accepted 4 July 2007
Available at http://www.metla.fi/silvafennica/full/sf41/sf413575.pdf

Silva Fennica 41(3) review articles



576

Silva Fennica 41(3), 2007 review articles

1 Introduction

According to the UN Framework Convention on 
Climate Change and the Kyoto Protocol, countries 
need to include changes in soil and litter carbon 
pools in their annual greenhouse gas inventory 
submissions (UNFCCC 1992, UNFCCC 1997). 
Reliable methods to estimate soil carbon stock 
changes are needed for reporting, and for the 
assessment of soil response to changing cli-
mate.

The Intergovernmental Panel on Climate 
Change provides guidelines for conducting these 
inventories and has ranked approaches from Tier 1 
to Tier 3 (IPCC 2003). The Tier 1 approach is the 
simplest for estimating changes and soil C stocks, 
requiring only country-specific data on forest 
land use. For forest lands, this method assumes 
no change in soil C stocks due to management. If 
there are changes in soil C stocks associated with 
other activities in forest lands than only land use, 
either a Tier 2 or Tier 3 approach is needed. Tier 
2 also uses simple empirical relationships that 
are derived from country-specific data. Tier 3 
approaches are completely country-specific, and 
presumably the most accurate.

The most straightforward way of preparing 
Tier 3 estimates would be repeated sampling of 
changes in soil C. However, presently, only a few 
countries, the UK (Bellamy et al. 2005), Belgium 
(Lettens et al. 2005a), and Sweden (Ståhl et al. 
2004), have soil measurements providing nation-
wide estimates of soil C stock changes. Establish-
ing such surveys in all countries is unrealistic 
because of high costs and extensive effort needed 
to collect the data for nationwide sampling. Costs 
increase greatly with increasing variation in soil 
properties, as is often the case in forest soils.

Flux-based measurements of ecosystems pro-
vide information on changes in carbon stocks 
as a whole (see e.g. Baldocchi 2003), but par-
titioning fluxes into vegetation and soil compo-
nents requires either modelling of soil carbon 
dynamics or measuring plant detritus inputs and 
heterotrophic soil respiration. The present grid 
of measurement stations is also too sparse for 
reliable national estimates with flux measure-
ments alone. Regional scaling has been made 
with satellite measured photosynthetically active 

radiation (PAR) and models of net ecosystem 
exchange (NEE), and in conjunction with mea-
surements made from research aircraft (Miglietta 
et al. 2007).

Changes in soil C stocks can also be estimated 
across a country by combining input data with 
process-based models (Ogle and Paustian 2005). 
This approach is another example of a Tier 3 
method, and is the focus of this review paper. 
The details of this approach vary. For example, 
Liski et al. (2006) presented a calculation based 
on aggregated forest inventory data and a dynamic 
soil model. Post et al. (2001) proposed a combina-
tion of process-based models and multiple data 
sources such as eddy-covariance measurements, 
forest inventory data, and soil measurements. 
Lagergren et al. (2006) calibrated ecosystem 
model Biome-BGC with eddy covariance meas-
urements, and used it in conjunction with forest 
inventory data to estimate the carbon balance of 
Swedish forests. Several countries have chosen, 
and are already using, either a fully or partly proc-
ess-based modelling approach for the nationwide 
reporting of changes of carbon in forest soils 
(UNFCCC 2006).

Authors´ addresses Peltoniemi & Mäkipää: Finnish 
Forest Research Institute, Vantaa, Finland; Thürig: 
Swiss Federal Institute for Forest, Snow and Landscape 
Research (WSL), Birmensdorf, Switzerland; Palosuo 
& Thürig: European Forest Institute, Joensuu, Finland; 
Ogle: Natural Resources Ecology Laboratory, Colorado 
State University, Fort Collins, USA; Schrumpf & Wutz
ler: Max-Planck-Institute for Biogeochemistry, Jena, 
Germany; ButterbachBahl: Institute for Meteorology 
and Climate Research, Forschungszentrum Karlsruhe 
GmbH, Garmisch-Partenkirchen, Germany; Chertov: 
St. Petersburg State University, St. Petersburg-Peterhof, 
Russia; Komarov & Mikhailov: Institute of Physico-
chemical and Biological Problems in Soil Science of 
Russian Academy of Sciences, Pushchino, Russia; 
Gärdenäs: Dept. of Soil Sciences, Swedish Univer-
sity of Agricultural Sciences, Uppsala, Sweden; Perry: 
USDA Forest Service, Northern Research Station, St. 
Paul, MN USA; Liski: Finnish Environment Institute, 
Helsinki, Finland; Smith: School of Biological Sci-
ences, University of Aberdeen, Aberdeen, UK



577

Peltoniemi et al. Models in Country Scale Carbon Accounting of Forest Soils

A few comprehensive soil model reviews have 
been published in recent years. McGill (1996) 
assessed the structure of 10 soil models, and found 
that the trend was toward kinetic compartmentali-
zation of SOM. Smith et al. (1997) compared per-
formance of nine SOM models against repeated 
long-term measurement from agricultural, grass-
land and woodland soils, including some models 
discussed in this review. Rodrigo et al. (1997) 
compared temperature and moisture functions of 
selected models, but only one of those models is 
included in this study (SOILN). Izaurralde et al. 
(2001) was the only review that compared models 
for the purpose of selecting the best performing 
model for a regional application.

All previous model comparisons were done for 
land-uses other than forests except for two wood-
land / forestry sites used in Smith et al. (1997). 
Therefore, our goal was to review existing soil 
models that are available for the estimation of 
carbon stock changes in forest soils, providing 
an overview to scientists and officials involved 
with national GHG inventories.

The objective of this study is to analyze how 
different soil carbon models can be applied to 
estimate short-term changes in soil carbon over 
large spatial scales. Specifically, 1) we review 
7 soil models used for estimating forest soil C 
stock changes (Century, ForestDNDC, ROMUL, 
RothC, SOILN, Yasso, and a statistical model 
Forcarb), 2) we evaluate their applicability at 
regional scale considering commonly available 
data sources, and 3) compile references to rele-
vant datasets that could be used for their evalu-
ation.

2 Models Estimating Soil 
Carbon Fluxes

2.1 Decomposition Process

Forest and agricultural soils differ in many 
respects; they experience different management/
disturbance regime, and there are differences in 
their vegetation and biota. Some authors have 
suggested that different model structures might 
be needed for forest and agricultural soils (Li et 
al. 2000, Chertov et al. 2001) but many models 

have been applied to both types of soil, although 
some with modified parameterization (Peng et al. 
1998, Eckersten et al. 1999, Kätterer et al. 1999, 
Falloon and Smith 2002, Falloon et al. 2002, Peng 
et al. 2002, Smith et al. 2006).

Decomposition is mediated mainly by the activ-
ity of soil microbes, fungi and fauna, but their 
specific population dynamics and explicit con-
tribution to decomposition is rarely described in 
soil models (McGill 1996). A few models provide 
a very coarse scale description of biological con-
trol: ROMUL regulates the translocation of SOM 
between soil layers with soil biota (Chertov et al. 
2001), and decomposition in SOILN (Eckersten 
and Beier 1998) and Qmodel (Rolff and Ågren 
1999, Ågren and Hyvönen 2003) is controlled 
by microbial biomass. Most models assume that 
the size of the microbial pool does not explicitly 
restrict decomposition, but rather that decompo-
sition is limited by variables known to be corre-
lated with microbial activity. Smith (2001, 2002) 
reviews the representation of decomposition proc-
esses in different SOM models.

In most models, microbial activity is expressed 
in the decomposition rates of model pools, which 
are typically first-order rate constants regulated by 
variables describing ambient conditions and prop-
erties of the soil matrix. Compounds belonging 
to more stable fractions of SOM require higher 
activation energies to decompose (Davidson and 
Janssens 2006). The complexity of degrading 
compounds creates a continuum of activation 
energies, which is usually approximated with 
several pools differing in turnover time. Empiri-
cal data and modelling studies also imply that 
the temperature effect on decomposition cannot 
be adequately approximated with only one 
soil pool (Kätterer et al. 1998, Davidson et al. 
2000, Knorr et al. 2005, Davidson and Janssens 
2006). All of the models included in this review 
describe decomposition of SOM with a multi-pool 
approach (Table 3).

Besides temperature, decomposition of litter or 
SOM can be affected by several variables, such 
as topography (mostly via moisture and tem-
perature), parent material and management (Jenny 
1941), litter quality, nitrogen or other macronu-
trients (Melillo et al. 1982, Prescott 1995, Berg 
2000), heavy metals (Berg and McClaugherty 
2003), and chemical weathering (Sverdrup 1990, 
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Sverdrup et al. 1995). SOM decomposition may 
also be influenced by chemical or physical pro-
tection through occlusion of SOM in complexes 
with clay mineral or encapsulation within soil 
aggregates (Oades 1988, Christensen 1996, Elliot 
et al. 1996, Six et al. 2002), or influenced by 
drought, flooding or freeze/thaw cycles (Davidson 
and Janssens 2006).

The complexity of the decomposition process 
and large uncertainties in empirical data make it 
difficult to develop a completely accurate model 
as well as to parameterize exceedingly sophisti-
cated models.

2.2 Process-based Models - Key Factors 
Affecting Decomposition

Below we describe how the most typical input 
variables (i.e. temperature, moisture, soil tex-
ture and nitrogen) influence the decomposition 
process as represented in six common models, 
including SOILN (Eckersten and Beier 1998), 
RothC (Coleman and Jenkinson 1996), ROMUL 
(Chertov et al. 2001, Bykhovets and Komarov 
2002), Century (Parton et al. 1987, Parton et al. 
1994), Yasso (Liski et al. 2005) and ForestDNDC 
(Li et al. 2000, Stange et al. 2000). The minimum 
required input information needed by the model 
users is presented in Table 1, and the model-spe-
cific influences on the decomposition process are 
described in Table 2. Model initialization is also 
discussed due to its importance for estimating 
accurate trends.

2.2.1 Temperature

In all revieved models, temperature affects a rate 
modifier that multiplies the decomposition rates 
of one or several compartments. Main differences 
among the models arise from use of air or soil 
temperature as the input data, exact formulation 
of the temperature models, and their time steps.

In SOILN, daily soil temperature of each soil 
layer is simulated with the water and heat model 
CoupModel (Jansson and Karlberg 2002) using 
information of daily air temperature and global 
radiation. The simulated soil temperatures are 
used as driving variables to calculate decompo-

sition rates. In SOILN there are three alternative 
functions to describe the effect of soil tempera-
ture on decomposition, i) the Q10, ii) the Q10 
after threshold, and iii) the Ratkowsky functions 
(Ratkowsky et al. 1982). The Q10 function, origi-
nally introduced by van ‘t Hoff and Arrhenius in 
late 19th century, implies that for each 10 degree 
increase in temperature, decomposition rates 
increase with the Q10 factor (Lloyd and Taylor 
1994). The Q10 after threshold means that the Q10 
relationship is applied at temperatures higher than 
a certain threshold, commonly 0 to 5 ˚C.

ForestDNDC uses daily minimum and maxi-
mum air temperature as inputs and implements an 
O’Neill response function to describe the effect 
of temperature on decomposition (Stange 2007). 
This function yields an exponential increase in 
decomposition at lower temperatures ranges, but 
it has a distinct temperature optimum and a sharp 
decrease at higher temperatures. The effects of 
moisture and temperature on decomposition are 
combined by multiplication in many decomposi-
tion models response functions, including Forest
DNDC (see e.g. review by Rodrigo et al. 1997). 
Moreover, in the Forest DNDC model, the advan-
tage of using a multiplier for moisture and temper-
ature effects on decomposition (i.e., continuity) 
is combined in a framework to evaluate the most 
limiting factor for microbial activity (Liebig´s 
law). This is achieved by adding reciprocal values 
of the respective response functions for moisture 
and temperature. Using this approach, the factor 
most limiting for decomposition (temperature or 
soil moisture) dominates the relationship (Li et 
al. 2000, Stange et al. 2000).

In RothC (Coleman and Jenkinson 1996), mean 
monthly air temperature (ºC) is used. Temperature 
effects are represented as a multiplicative rate 
modifier on the decomposition of active compart-
ments. The relationship is close to linear between 
temperatures 10 and 35ºC.

In ROMUL (Chertov et al. 2001), forest floor 
and soil temperatures are used to calculate non-
linear rate modifiers for decomposition rates of 
aboveground and belowground litter portions 
correspondingly. These soil temperatures can be 
simulated by the SCLISS generator (Bykhovets 
and Komarov 2002), which uses monthly air 
temperature and soil texture parameters as input 
information. Temperature corrections that depend 
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Table 1. Minimum required input data according to variables and temporal resolution.

 Yasso ROMUL SOILN RothC ForestDNDC CENTURY

Time-step Year Month, other 

time-steps also 

possible

Day Month Day, part of the 

routines hourly or 

even sub-hourly

Month (daily 

version exists)

Litter input data Amount of non-

woody, 

fine woody and 

coarse woody 

litter

Amount of leaves, 

branches, stem, 

coarse and fine 

roots

C and N content 

of fine litter, 

course litter, 

humus and 

optionally those 

of microbes

Amount of decom-

posable and resist-

ant plant material

Plant material 

transferred during 

senescence to 

above and below-

ground structural 

and metabolic 

litter pools

Similarly to 

ForestDNDC

Temperature (T) 

input

Annual average 

air T or effective 

T sum, monthly 

mean T (MMT) 

to calculate PET 

(May-Sep)

Mean monthly 

soil T in organic 

layer and in 

mineral layer or 

mean monthly air 

T given to SCLISS

Daily soil tempera-

ture of each layer 

as simulated with 

CoupModel

Mean monthly 

air T

Daily min, max 

or alternatively 

average daily 

temperature

Monthly min and 

max T, (canopy 

biomass to calculate 

soil T)

Moisture input Monthly precipita-

tion (PPT) 

May-Sep

Monthly PPT and 

hydrological soil 

parameters

(Bykhovets and 

Komarov 2002)

Soil moisture 

content, and soil 

water flows into 

and from the dif-

ferent soil layers 

(i.e. also infiltration 

and percolation 

flow). AET/PET 

as simulated with 

CoupModel

Monthly PPT and 

PET or open pan 

evaporation (Smith 

et al. 2005b, Smith 

et al. 2006)

Daily PPT, in case 

of the wetland 

model 

(Cui et al. 2005)

Monthly PPT from 

rainfall and snow, 

as well as irrigation 

inputs of water 

and losses from 

evapotranspiration, 

runoff and ground-

water flow

Texture input – Clay content 

(ROMUL). Loam 

and sand (SCLISS 

soil weather 

generator)

Hydraulic proper-

ties either 

measured or from 

a database (Jansson 

and Karlberg 2002)

Clay content Clay content Sand, silt and clay 

content

N input – N deposition data N deposition and 

fertilization, initial 

N content of differ-

ent plant parts

– N deposition and 

fertilization

N deposition 

and fertilization, 

organic amendment 

N inputs

Nutrients (excl. N) – – – – – P,S

Initialization Spin-up with 

steady state 

assumption or 

by allocating 

measured values 

with some 

assumptions

Measured or 

compiled data 

on SOM and 

N pools in 

organic layer and 

mineral topsoil

Measured C and 

N content of 

a mature forest 

in combination 

with steady state 

assumption

Either initialised 

to measured SOC 

(Smith et al. 

2005b, Smith et 

al. 2006) or run to 

equilibrium using 

estimated inputs

Can be initialised 

with measured 

SOC values 

(Li et al. 2000, 

Kesik et al. 2005)

Typically initial-

ized with spin-up 

(several 1000 years) 

under native vegeta-

tion, measured soil 

characteristics and 

mean climate for 

the site
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Table 2. Effect of environmental factors on modeled decomposition.

 Yasso ROMUL SOILN RothC ForestDNDC CENTURY

Effect of T and 

moisture on 

modelled decom-

position (D)

D-rates adjusted 

by empirical 

regression models 

based on litter bag 

experiment 

(Liski et al. 2003)

Empirical regres-

sion models based 

on laboratory data 

(Chertov et al. 

2001)

D-rates calculated 

using empirical 

functions and 

simulated values 

of daily soil 

temperature and 

moisture content

Soil moisture 

deficit and T 

affects rate 

modifier that 

multiplies the 

D-rates of active 

compartments 

(Coleman and 

Jenkinson 1996)

Combined 

moisture and tem-

perature factor 

used to modify 

potential D, 

nitrification or 

denitrification 

rates 

(Li et al. 2000, 

Stange et al. 2000)

Soil moisture and 

temperature effects 

on D modeled with 

DEFAC relationship 

(multiplier combin-

ing temperature and 

moisture effects)

Effects of texture 

on modeled 

decomposition

 – Affects stable 

humus mineraliza-

tion rate and soil 

moisture in 

SCLISS

Affects decom 

position rate, N 

leaching, denitri-

fication

Affects SOM 

stabilisation and 

soil water reten- 

tion (Coleman 

and Jenkinson 

1996)

Affects aera-

tion, ammonium 

absorption, water 

movement and 

soil moisture, 

decomposition 

etc.

Affects moisture 

availability (Meth-

erell et al. 1993) 

and decomposition 

rates (Parton et al. 

1987, Parton et al. 

1994)

Effect of N 

on modeled 

decomposition

– N dynamics 

calculated in 

close interaction 

with SOM 

(soil C) dynamics

Dynamically cou-

pled C and 

N model

– Explicit N model, 

algorithm partly 

derived from 

DNDC 

(Li et al. 1992, 

Li et al. 2000)

Dynamically 

coupled C and N 

model

Nutrients 

(excl. N)

– – – – – P,S optional 

sub-models

on forest type are used in some cases due to dif-
ference between standard meteorological data and 
the temperature of forest floor and soil.

In Century, soil temperature is modelled as a 
function of daily maximum and minimum air 
temperatures, along with the influence of canopy 
cover on the radiation budget (Metherell et al. 
1993). Temperature effects on decomposition 
vary across a range of temperatures according to 
empirically-derived relationships from decompo-
sition studies (Parton et al. 1987). The influence 
of temperature on decomposition is combined 
with moisture into a single multiplicative factor 
(Parton et al. 1994).

In Yasso (Liski et al. 2005), the effect of temper-
ature on decomposition is described with linear 
regression models that modify decomposition 
rates (Liski et al. 2003). The description of the 
effect of climate on decomposition in Yasso is 
based on geographically derived litterbag data. 
These regressions are scaled with decomposi-

tion rates at the reference location to estimate 
rate modifiers for decomposition in each model 
compartment. Temperature variables used in the 
regression models are mean annual temperature 
(MAT) or effective temperature sum (DD0).

2.2.2 Soil Moisture

The effect of soil moisture on decomposition 
in the models is closely related or similar to the 
effect of temperature on decomposition.

In SOILN, daily soil moisture content of each 
soil layer is simulated with the water and heat 
model CoupModel (Jansson and Karlberg 2002) 
and they are used as driving variables to calculate 
decomposition rates. CoupModel includes the 
main processes influencing soil water balance for 
high latitudes such as precipitation (rain, snow), 
evaporation (transpiration, interception and soil 
evaporation) and losses as surface run-off, per-
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colation and drainage. Decomposition rates are 
assumed to be optimal for a defined soil moisture 
range. The user defines this range by two thresh-
old values. The first threshold value is around 
the wilting point (i.e, minimum water content for 
optimal decomposition rate), while the second 
threshold is close to saturation (i.e., maximum 
water content for optimal decomposition rate). 
The relationship used to estimate the range of lim-
iting water contents can be described with a linear, 
concave or convex function. The user may also 
define specific relationships for different proc-
esses, such as decomposition and nitrification.

ForestDNDC uses total daily rainfall as input 
to calculate soil moisture values (Li et al. 1992, 
Li et al. 2000, Stange et al. 2000). The modelled 
amount of rainfall reaching the soil surface is 
influenced by interception (depending on LAI and 
rainfall history). Furthermore, winter storage of 
precipitation as snow is considered. Newer ver-
sions also account for surface runoff during heavy 
rainfall events. Actual soil moisture is calculated 
using a cascade model with determination of 
evapotranspiration losses. The agricultural ver-
sion of DNDC uses a linear function to describe 
the effect of soil moisture on decomposition, but 
the ForestDNDC version uses a Weibull function, 
which is allowed to vary from 0–1. These values 
are combined with a temperature factor to modify 
decomposition.

In ROMUL the monthly weight of moisture of 
organic horizons and mineral top soil are used 
to determine the influence or moisture availabil-
ity on decomposition. If these data are missing, 
then a statistical soil weather generator SCLISS 
(Bykhovets and Komarov 2002) can be used 
to calculate the moisture content based on the 
total monthly precipitation and hydrological soil 
characteristics. The calculation of potential eva-
potranspiration is based on the model that allows 
one to evaluate potential evapotranspiration using 
air temperature only (Blaney and Criddle 1950). 
Moisture of organic horizons affects a non-linear 
rate modifier for decomposition rates of above-
ground litter portions. These dependencies are 
evaluated from various experiments (Chertov et 
al. 2001). For belowground litter portions (root 
litter), the moisture of mineral topsoil is used to 
modify decomposition rates.

In RothC total monthly rainfall (mm) and 

monthly open pan evaporation (mm) (or PET, 
mm) (Smith et al. 2005b, Smith et al. 2006) are 
used to calculate topsoil moisture deficit (TSMD), 
as it is easier to obtain rainfall and pan evapora-
tion data, from which the TSMD is calculated, 
than monthly measurements of the actual topsoil 
water deficit. Decomposition constants of active 
compartments are multiplied by a rate modi-
fier that depends on cumulative monthly TSMD 
using a linear function within the typical range of 
TSMD. Outside the typical range, fixed minimum 
and maximum values are used.

In Century, soil moisture availability is simu-
lated based on input data for rainfall, snow and 
irrigation, after adjusting for interception within 
the canopy, and taking into account water losses 
from simulated storm runoff, groundwater flow, 
and evapotranspiration (Metherell et al. 1993). 
Decomposition rates in Century are influenced 
by moisture availability according to a calculation 
based on the moisture left over from the previous 
monthly time step and current rainfall divided 
by PET. This estimation is combined with the 
temperature influence on decomposition to form 
a single multiplicative factor (Parton et al. 1994). 
The factor ranges from 0 to 1, with simulated 
values below 1 reducing decomposition rates.

In Yasso, the effects of moisture on decomposi-
tion are included in the same regression models 
that describe the effect of temperature on decom-
position (Liski et al. 2003). These models are 
used to adjust the decomposition rates of model 
compartments. Moisture is estimated from a 
summer drought index calculated by subtracting 
potential evapotranspiration from precipitation.

2.2.3 Soil Texture

Soil texture has two main impacts on decompo-
sition in the ROMUL, RothC, ForestDNDC and 
CENTURY models. Texture influences decom-
position both by affecting soil moisture through 
soil water holding capacity and by affecting sta-
bilization of soil organic matter at higher clay 
contents.

SOILN model doesn’t use texture as an input 
parameter; instead the hydraulic properties like 
water retention curves, hydraulic conductivity and 
porosity are explicitly defined for each soil layer 
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in the water and heat model CoupModel. The 
relationships between hydraulic properties and 
simulated soil moisture content, water flow and 
soil temperature are described in the CoupModel 
documentation (Jansson and Karlberg 2002). 
SOILN does not take into account the stabilizing 
effect of soil texture on SOM.

Unlike the other models, Yasso does not account 
for the effects of texture on decomposition. In 
Yasso, it is assumed that most of the short-term 
changes occur in organic layer where texture is 
not important, and that the effects of soil texture 
on soil C dynamics are mostly the result of influ-
ences on productivity litter production, rather than 
from the direct effect on decomposition (Liski et 
al. 2005).

2.2.4 Nitrogen

The group of the models selected in this study is 
very diverse with respect to nitrogen modeling. 
SOILN, ForestDNDC, ROMUL and CENTURY 
explicitly include nitrogen in their framework 
coupled with soil C dynamics. These models 
require nitrogen input data such as atmospheric 
N deposition and N additions in fertilizers (Table 
1). By contrast, nitrogen is ignored in Yasso and 
RothC.

In SOILN, plant N uptake is controlled by the 
plant C:N ratios and plant biomass, and growth is 
limited by N availability. N availability depends 
on litter quality, decomposition rates, immobili-
zation and external inputs of nitrogen from fer-
tilization, atmospheric deposition and nitrogen 
fixation. In addition, processes are included that 
determine losses of N, such as nitrate leaching, 
and gas emissions of CO2 and NO2 (Johnsson et 
al. 1987, Eckersten and Beier 1998, Eckersten 
et al. 1998).

In ForestDNDC decomposition of SOM leads 
to the formation of inorganic ammonium, which 
can be processed by microbial activity into vari-
ous reactive forms (e.g., NO3

–, NO2
–, N2O, NO) 

and also to N2, volatilized as NH3 (depended 
on soil pH), chemo-denitrified (NO2

–)(depended 
on soil pH) or leached (depending on soil water 
flux, texture and plant N uptake). The algorithms 
used for simulating soil N transformations are 
described in Li et al. (2000).

In ROMUL, the various litter cohorts and 
soil organic matter pools have different nitro-
gen contents, which influence the rates of their 
decomposition. The equations for nitrogen, being 
a principal limiting factor of plant nutrition in 
forest ecosystems, are similar to the equations 
for carbon, but have some additional kinetic 
parameters, reflecting nitrogen retention in the 
soil system (Chertov 1990). The total amount of 
nitrogen available for plants is determined at the 
ecosystem level and it defines the forest growth. 
Nitrogen leaching and deposition, as well as gas 
emissions of CO2 are included.

In Century, carbon uptake is simulated through 
plant production, and this process is limited by 
nitrogen availability according to a maximum C:N 
ratio (Metherell et al. 1993). Thus, nitrogen avail-
ability affects the amount of nitrogen taken up by 
the plant and its subsequent litter quality, as well 
as decomposition. In turn, nitrogen availability is 
affected by the rate of decomposition, the amount 
of nitrogen immobilized, and the external inputs 
of nitrogen to the model, including atmospheric 
deposition, biological nitrogen fixation and ferti-
lization events. Parton et al. (1987) and Metherell 
et al. (1993) provide additional details.

Nitrogen is omitted in RothC, but is included 
in the Rothamsted Nitrogen Model (Bradbury et 
al. 1993), which has been further developed into 
the SUNDIAL model (Smith et al. 1996, Smith 
2002) and currently being extended for use in 
organic soils as the ECOSSE model (Smith et 
al. 2005a).

2.2.5 Model Initialization

For each time step, the values for the state vari-
ables of any process model are dependent on 
parameterization of the processes, inputs to the 
model, and previous values of the state variables. 
Consequently, initialisation of model pools is a 
potentially critical step during the parameteriza-
tion of a process-based model. The overall impor-
tance of initialisation will depend on the question 
being addressed, the time frame of the study, and 
the model structure.

The initialisation of model pools with measured 
data is not straightforward, since model pools do 
not necessarily represent fractions measurable 
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in the field (Table 4). Initialisation based upon 
measurements or on a subjective basis can lead to 
values for state variables that deviate considerably 
from those that would be achieved by running the 
model with any plausible combination of input 
parameters and data for estimating current trends. 
This can lead to simulations with excessively high 
loss or gain in carbon (in some models the trajec-
tory can even be chaotic). In many model applica-
tions, this behaviour is avoided with a spin-up to 
a steady-state under native vegetation and mean 
climate, followed by simulations of the historical 
land use and management according to survey 
records and expert knowledge. The assumption 
of a soil being in a steady state equilibrium with 
respect to current inputs is likely to be violated 
in most applications; therefore, historical data is 
crucial to produce a more realistic initialisation of 
state variables, and quantify the current trends and 
short-term changes in soil carbon (Foster et al. 
2003). Similarly, this assumption can be violated 
during the model calibration. The soil C pool of 
a calibration site(s) may be far from equilibrium, 
but still the model parameters are calibrated so 
that the modelled equilibrium state matches the 
measured C pool. Therefore, a further correction 
of the parameters and the pools is necessary to 
avoid the underestimation of century-term soil C 
accumulation (Wutzler and Reichstein 2007)

RothC can be initialized with spin-up runs and 
litter input data. In contrast to some of the other 
models, however, RothC can incorporate meas-
urements in this initialisation process. For exam-
ple, the size of the inert pool can be determined 
by 14C measurements or using an almost linear 
relationship between the size of the inert pool and 
bulk soil carbon stocks (Falloon et al. 1998a). The 
remaining amount of the measured SOM forms 
the active pools in the model, which are assumed 
to be in steady state equilibrium. The RothC is 
run to steady state using an approximate litter 
input, and is then adjusted to achieve a perfect 
match with initial bulk soil C using the propor-
tional difference between the measured carbon 
and that estimated using the first, approximate 
litter C inputs. The litter input corresponding to 
measurements (and past conditions) can be used 
to scale future litter input. RothC can also be run 
in ‘reverse mode’ to deduct the required input cor-
responding to measured bulk soil content (Cole-

man et al. 1997). There are also promising results 
to determine initial sizes of all carbon pools of 
the Roth-C model from soil samples using soil 
fractionation (Zimmermann et al. 2006a) or infra-
red-spectroscopy (Zimmermann et al. 2006b). 
However, these procedures have only been tested 
for agricultural soils at this time.

The most common procedure for initialisation 
of the Yasso model is using spin-up runs with 
historical litter input. On national level analyses, 
Yasso’s initialization dominated the uncertainty 
of soil C balance but the use of longer spin-up 
period clearly reduced its effect (de Wit et al. 
2006, Peltoniemi et al. 2006). Other options for 
the initialisation of the model are to allocate the 
measured values to model pools with some addi-
tional assumptions, or to calculate steady-state 
values analytically.

For SOILN, carbon or nitrogen for the different 
pools is often initialised by running the model 
several times for mature forests with stable fluxes 
(several spin-up runs). As a starting point for the 
spin-up runs, the sum of C and N of all pools 
in each layer equals the in-situ measured total 
sum of C and N. Total C and N is split into fine 
litter, coarse litter (i.e. woody litter), humus and 
microbes. Litter dominates in the surface layer(s), 
while in the mineral soil, litter is assumed to be 
proportional to root biomass distribution.

For the Century model, equations have been 
developed that provide a first approximation of 
initial pool sizes based on relationships derived 
from Burke et al. (1989). However, many appli-
cations begin with a spin-up to prevent chaotic 
behaviour.

The ForestDNDC model is initialised with 
fixed proportions for each of the pools. These 
proportions will change over time based on litter 
input and its C:N ratio. Use of spin-up runs for 
pool initialisation is also an alternative.

Although the ROMUL model can be initialised 
with spin-up runs and the steady state assump-
tion, the model developers recommend using 
measured or compiled data on SOM and N pools 
in organic layer and mineral topsoil (Chertov, 
personal communication 2006). This is preferred 
because the pools correspond to soil layers that 
can be determined in the field. Model developers 
have compiled a database of initial values by 
forest site/type, tree species, age class, and area 
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of consideration (Komarov and Chertov 2007). 
Initial SOM and nitrogen pools of disturbed sites 
with unknown history can be initialised using 
forest successional series marked by vegetation 
composition.

2.3 Statistical Models of Soil Carbon

Another option for estimating changes in soil 
carbon stocks is to use common forest inven-
tory variables and statistical methods. Accord-
ing the UNFCCC, this is also considered a Tier 
3 approach. An example of such a statistical 
approach to monitor soil carbon stocks is the 
U.S. Forcarb model, described by Smith and 
Heath (2002). Estimates for soil organic carbon 
are derived with statistical models from the 
STATSGO database and forest inventory data 
using the methodology described by Johnson and 
Kern (2002) and more recently by Amichev and 
Galbraith (2004). Fundamentally, soil organic 
carbon stock changes at the national level are then 
estimated as a function of change in land cover 
and forest resources, including forest type and 
land use (US-EPA 2006).

At the regional scale, many parameters included 
in process-based soil models (e.g., soil mois-
ture and temperature) co-vary with more gen-
eral explanatory variables such as forest type, 
time since disturbance and location (Smith and 
Heath 2002). Therefore, this approach is likely 
to provide parallel trends as the process-based 
models.

3 Regional Soil Carbon 
Modeling

3.1 Overview on Data Sources

Information on land management, anthropogenic 
and natural disturbances are key inputs for the 
models. Small land-use changes may lead to large 
changes in soil carbon, e.g. land use change from 
cropland production to forest causes a relatively 
large increase in soil C stocks compared to many 
land use and management activities (Post and 
Kwon 2000). Frequent disturbances induced by 

forest management (harvests, tillage), and natural 
disturbances (such as fire, pests) have an impor-
tant effect on litter input subsequent years after 
the event (Gärdenäs 1998, Liski et al. 2002, Pel-
toniemi et al. 2004, Thürig et al. 2005). However, 
the direct effect of some disturbances on SOM is 
still controversial (Johnson and Curtis 2001).

National forest inventories (NFI) are carried in 
several countries over the world to provide repre-
sentative data on e.g., forest (and other land) area, 
stand structure, soil type and timber resources 
(Tokola 2006). Together with land use surveys, 
and forest management records they provide the 
underlying input data on anthropogenic activity 
in forested lands (e.g. USDA 2005). Thus, they 
provide a valuable source of input data as well as a 
framework for scaling model results (Vetter et al. 
2005). Advantages of NFI data are that typically 
they cover a large area, in some cases the records 
span several decades. Temporal resolution, how-
ever, is often limited (1–10 years). Changes in the 
forests resulting from changes in growing condi-
tions (e.g. climate change), harvesting or other 
disturbances, are measured but the information on 
the causes remains often limited. Inventory data 
(with appropriate biomass and biomass turnover 
models) constitute a representative nation-wide 
data source for independent soil modules, such as 
Yasso or RothC, that are not able to simulate plant 
production and litter input (see e.g. de Wit et al. 
2006, Liski et al. 2006, Smith et al. 2006).

Field measurements of forest inventories may 
not capture land-use changes or disturbances 
(thinnings, harvests, fire, etc) with sufficient pre-
cision and accuracy. Inventory grids are typically 
too coarse in comparison with what would be 
required to detect rare events occurring on limited 
area. Additional forest management records may 
be used to supplement NFI data, such as reported 
harvests or timber purchase statistics.

Remotely-sensed data provide spatial informa-
tion to improve, for example, inventory estimates 
on growing stocks and land-use, or to produce 
information on vegetation cover to derive biomass 
estimates (Rosenqvist et al. 2003, Tomppo 2006). 
For example CORINE land cover data or the 
PELCOM database have been used as a basis for 
model input data on land use and for up-scaling 
of measured soil carbon pools (e.g. Vleeshouwers 
and Verhagen 2002, Lettens et al. 2005a, Lettens 
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et al. 2005b, Schmit et al. 2006) (Meesenburg 
et al. 1999). Digital elevation models (DEM) 
could also be used to provide information on 
topographic position, aspect and slope, which 
influence temperature and thermal regimes. In 
addition, edaphic characteristics are required by 
several models, including soil texture. The use of 
these data sources is important when plot level 
data are scaled over larger areas.

3.2 Scaling Model Functions and Input Data

Scaling decisions are a critical component of the 
inventory development. The resulting operational 
scale of the process-based model and associated 
input data will determine the spatio-temporal 
resolution of a model application, which could 
range from finely resolved scales such as m2 
and minutes to coarser scales such as 10s of 
km2 and decades. In turn, the model application 
will determine the scale at which soil C stock 
trends can be interpreted. Interpreting trends at 
an inappropriate scale can introduce large biases, 
referred to as ecological fallacies (Clark 2003). 
Thus, scaling decisions will determine the level 
of detail available for reporting soil C trends as 
well as its uncertainty, which will be the basis for 
informing policy decisions.

Much of the experimental research used to 
generate models is conducted at relatively small 
spatial resolutions, such as a forest stand, and 
short time periods of weeks to a few years. Conse-
quently, models developed from this information 
can be 1) applied repeatedly at a finer scale (e.g., 
a stand with daily time step), or 2) the model can 
be scaled to meet the spatio-temporal domain of 
the input data (Rastetter et al. 1992, Rastetter et 
al. 2003).

Repeated application of a model on finer scale 
often requires scaling of the input data to meet 
the operational scale of the model. For exam-
ple, monthly mean temperature may need to be 
estimated for a daily time step. If scaling is not 
done, non-linear relationships between input and 
modeled output may cause biased estimates for 
the spatio-temporal domain of analysis.

Scaling models to a larger resolution can also 
create biases. For example, Ogle et al. (2006) 
demonstrated how increasing the spatial resolu-

tion of a model application by using coarser-
scale parameters introduced significant bias into 
estimates of soil C change. Essentially, coarser 
scale parameters did not adequately represent the 
underlying regional heterogeneity in their analy-
sis. Consequently, rescaling the model input or 
the model functions needs to be done with careful 
consideration of the uncertainties.

In many cases, input data sets are incomplete 
in time or space, for example, data may be col-
lected only from a small number of plots for short 
period of time, which are subsequently scaled to 
a larger region. In these cases, interpolation and 
extrapolation can be used to estimate input values 
for missing data with techniques such as geosta-
tistics (Kyriakidis 2001). Errors will inevitably 
be generated through these scaling exercises, and 
need to be quantified as part of the uncertainty in 
model results.

All models are developed for a certain spatio-
temporal domain, and subsequently they neglect 
processes operating on a coarser domain. Increas-
ing the spatio-temporal domain of a model appli-
cation (e.g., from forest stand to a watershed or 
larger region) will impose additional processes 
on a model analysis. Ecosystems are structured 
in a hierarchical manner and different processes 
tend to operate and shape the structural patterns 
found within each level of the hierarchy (O’Neill 
et al. 1986, Holling 1992). Large scale processes 
may be considered invariant at a finer scale and 
treated as a constant if the system is relatively 
stable (Wessman 1992). For example, erosional 
processes or leaching are not likely to create 
significant heterogeneity for soil C stocks in a 
forest stand, over a short time period, but they will 
have a significant effect at a larger spatial scale 
where soil or dissolved organic C is redistributed 
by wind or water from the original positions to 
depositional sites (Harden et al. 1999, Liu et al. 
2003, Kortelainen et al. 2006). Therefore, results 
from the models included in this review will likely 
have additional uncertainties unless they have 
been further developed or linked with another 
model representing the larger scale processes.
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3.3 Model Selection: Influence of Data 
Availability

Model selection and development is the first step 
when developing forest inventories for soil C; 
this process has been documented thoroughly 
by Ogle and Paustian (2005). While any of the 
models included in this review could potentially 
be used for a national scale analysis, selection is 
constrained by the availability of model input and 
evaluation data.

Input data provide detail on spatial heteroge-
neity in initial conditions as well as associated 
change over time. These data characterize abiotic 
and biotic conditions as well as anthropogenic 
activity, and are fundamental to simulate varia-
tion in ecosystem process rates in a large-scale 
analysis. Although some of the variables affecting 
litter and SOM dynamics (such as soil texture, 
proportion of rocks) can be treated as static on 
each site, their inclusion in a regional analysis is 
often viewed as critical to extend the application 
range of the model (McGill 1996).

Fully process-based modeling approaches for 
ecosystems (see e.g. Chen et al. 2000), which 
simulate plant production, microbial decomposi-
tion and associated processes to provide estimates 
of changes in all C pools [typical application 
approach for Century, ForestDNDC, ROMUL 
with forest process-based model of growth and 
element cycling EFIMOD (Komarov et al. 2003), 
and SOILN] have a tendency to require more input 
data than if soil pools are only modelled. For the 
latter, soil models are used in connection with 
measured inventory data (typical approach for 
RothC and Yasso), and appropriate biomass and 
biomass turnover models. Ultimately, availability 
of data dictates the selection between these two 
approaches.

With detailed forest inventory data, statistical 
models, such as Forcarb in US, may be used 
to estimate change in soil C stocks. However, 
this method is not transferable to new conditions 
without a large measurement effort, and is not 
typically used for forecasting soil C stock changes 
because it is predicated on measurements from the 
past that may not represent future conditions.

3.4 Model Input Data Requirements and 
Sources of Data

Climatic data from weather monitoring stations 
are available in most countries. Assuming that 
microclimatic conditions in (a sample of) forests 
can be estimated with sufficient precision and that 
the soil or air temperatures can be adequately esti-
mated by ancillary models, availability of climate 
data is not likely to limit model selection. The 
exceptions, however, may be the very detailed 
information required for several soil layers in 
SOILN and the fine time resolution of the models 
SOILN and ForestDNDC.

Input data on soil texture and nitrogen are more 
likely to become limitations for model use than 
climatic data. These data are typically collected 
in soil surveys and in experimental studies (which 
may also provide data on soil C). Experimental 
soil studies at plot level may not provide sufficient 
coverage, or a link to other input data required 
by the models.

Soil texture (e.g., clay content) is needed in 
Century, ForestDNDC, ROMUL, and RothC, and 
it is most often collected in surveys. However, in 
forest soils, this property varies widely, and plot 
averages may be consisted of very few samples. 
The input soil data requirements are greatest for 
SOILN, including hydraulic properties of each 
soil layer, but a database of hydraulic properties 
is provided for various soil textural compositions 
and land uses (Jansson and Karlberg 2002). If 
data on soil texture is missing, quality or cover-
age is limited, or its effect on soil C dynamics 
is assumed to be negligible, Yasso or a similar 
model can be used that does not require these 
input data.

The other potential limitation is the availability 
of nitrogen input data. Surveys usually provide 
information on average N concentration or C:N 
ratio in the upper soil layers, which may be used 
as an input parameter to initialize model nitro-
gen pools (in Century, ForestDNDC, ROMUL, 
SOILN). If N data are not directly available, corre-
lation between site fertility and N could allow an 
approximate estimation of initial N status of soil 
(Komarov and Chertov 2007). The predictions of 
C and N with Century, ForestDNDC, ROMUL, 
SOILN also require information on nitrogen inputs 
such as atmospheric deposition and fertilization. 
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Nitrogen fertilization is less common in forest, 
and data may be available from timber companies 
to the extent that fertilizers are used. Atmospheric 
N deposition is reported as NO3

– and NH4
+, and 

these data are typically collected on large scales 
that could be used as inputs to the models requir-
ing this information (see e.g., on-line data set 
from Holland et al. 2005).

4 Soil Model Evaluation

Besides availability of input data, the perform-
ance of the model can affect the model selection 
(Ogle and Paustian 2005). Evaluation data are 
used to test a model’s performance, which along 
with an assessment of composition and sensitivity 
determine the adequacy of a model for reporting 
C stock changes (Prisley and Mortimer 2004). 
Specifically, the performance of soil models is 
evaluated by comparing simulation results to field 
measurements of stocks (see e.g. Smith et al. 
1997) or fluxes of carbon.

An example of soil model evaluation for 
regional application is given by (Izaurralde et al. 
2001). They selected the model that performed 
best among six candidates by comparing model 
simulations to measurements in 7 long-term 
experiments. They used the selected model for a 
regional analysis of SOC changes in agricultural 
soils for two ecodistricts in Alberta, Canada. 
Besides, for model selection, evaluation of model 
performance can also be included as a compo-
nent of the uncertainty, providing information 
on model error (Falloon and Smith 2003, Ogle 
et al. 2007).

4.1 Comparability of Simulations and 
Empirical Data

Soil models vary in their definitions of carbon 
pools (Table 3) and the depth in the profile that is 
included in the model estimation of carbon stocks 
(Table 4). Similarly, soil inventories apply no con-
sistent definitions for sampled soil pools, layers, 
and depth (Table 5). Testing model predictions 
will clearly be influenced by varying definitions 
of measurable depth in soil inventories, which 

limits the usefulness of data for comparisons with 
model results (Table 5 and Table 6). Some of the 
models (ROMUL, SOILN, RothC, ForestDNDC) 
facilitate comparisons to data of varying depths 
by allowing for an adjustable simulation depth 
during parameterization (Table 3).

Simulating distinctive pools of litter, an organic 
layer, and mineral soil layers could allow for more 
detailed comparisons with measurements. Some 
models (ForestDNDC, ROMUL, SOILN) split 
decomposing matter to individual pools (litter, 
organic, and mineral), which also loosely cor-
respond to vertical distribution of SOM. A newer 
model which was developed from Century also 
includes a separate humified litter pool (Nalder 
and Wein 2006). In ForestDNDC, distinction has 
been made due to its importance for soil hydrol-
ogy, aeration and mineralization: the organic layer 
is simulated separately from the mineral soil (Li 
et al., 2000). In ROMUL and ForestDNDC, the 
simulated organic layer pools are equivalent to a 
measurable pool. Simulating separate pools that 
are measurable for the litter and organic layer are 
especially relevant in boreal forests where the 
forest floor is distinctive and thick. Moreover, 
turnover rates of organic matter decrease with 
depth, which means that litter and organic layer 
contribute the most to the short term changes 
(Gaudinski et al. 2000). The changes of C in dif-
ferent soil layers may be even in opposite direc-
tions (e.g. Bashkin and Binkley 1998, Heidmann 
et al. 2002, Vesterdal et al. 2002). Even with a 
model that simulates measurable pools, compar-
ing model results with existing measured data is 
often complicated because definitions of pools 
are not consistent, or are not even reported. For 
instance, among the soil inventories referred in 
this study, only Bellamy et al. (2005) explicitly 
mention that they separated the litter from the 
organic layer.

Attempts have also been made to character-
ize kinetic pools of SOM by chemical (Berg et 
al. 1991, Henriksen and Breland 1999), physi-
cal fractionation (Oades 1989, Elliot and Cam-
bardella 1991, Cambardella and Elliot 1993, 
Oades 1993), and infrared spectroscopy (Zim-
mermann et al. 2006b, Zimmermann et al. 2006a). 
If these methods prove to be useful in future, 
they will most likely be model-specific. This 
may limit their usefulness in evaluating several 
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Table 3. List of pools in soil models.

 Yasso ROMUL SOILN RothC ForestDNDC CENTURY

Stand – – Plant: roots, 

stem, leaves 

(current year 

and older) and 

grains

– 3 vegetation 

layers (upper- 

story, understory, 

ground growth)

Plant production 

submodel with 

leaves, fine roots, 

fine branches, large 

wood, and coarse 

roots

Litter 2

(fine woody litter 

and coarse woody 

litter)

2 or more: Pools 

for both above-

ground and 

belowground 

litter for different 

compartments 

of different tree 

species. Division 

of senescent plant 

material into litter 

pools based on 

nitrogen and ash 

contents

1 or 2 per soil 

layer, 10 to 

15 soil layers

2

[resistant and 

decomposable 

plant material; 

RPM & DPM 

(Coleman and 

Jenkinson 1996)]

3 per soil layer

(very labile litter, 

labile litter and 

resistant litter) 

per layer 

(Li et al. 2000)

Metabolic and 

structural pools for 

both aboveground 

and belowground 

litter. Division of 

senescent plant 

material into litter 

pools based on 

lignin/N ratio

SOM 5 (extractives, 

celluloses, lignin-

like compounds, 

2 humus)

6 (or more if litter 

specified for 

different tree 

species)

1 humus pool 

and optional 

1 microbe pool 

per soil layer 

(10–15 layers)

3 SOM pools:

BIO, HUM & 

IOM

2 humads and 

humus per layer

3 SOM pools: 

active, slow and 

passive SOM

Pools divided 

between 

organic and 

mineral soil 

layers?

No Yes Yes No Yes, 2 layers in 

organic soil and 

2 in mineral soil

No

models as potential candidates for a regional 
analysis. Fractionation techniques may also be 
useful for model parameterization (Skjemstad et 
al. 2004), and initialisation of carbon pools (see 
also Section 2.2.5).

Overall, soil surveys should provide high qual-
ity data and include error assessments of measured 
stocks and changes (Falloon and Smith 2003). 
Thus, ideally, all parameters needed to determine 
soil carbon stocks (C concentration, bulk density 
and stone content) should be measured to a suf-
ficient soil depth, including the organic layer at 
forest sites, and with enough repetitions per unit 
area to represent the spatial variability of soil 
carbon stocks. As can be seen from in Table 5 
and Table 6, parameters like bulk density or stone 
content are often not directly determined when 
soil samples have been taken in the past. As a con-

sequence, changes in soil carbon are often only 
expressed as changes in C concentrations (e.g. 
Bellamy et al. 2005, Kelly and Mays 2005).

Since models usually predict total amounts of 
carbon in the soil, C concentrations first have 
to be converted into stocks before they can be 
applied for model evaluation. This can be done by 
using various available pedotransfer functions to 
estimate bulk densities, which are often based on 
parameters such as soil texture (usually also only 
estimated in the field) and C concentrations (Tam-
minen and Starr 1994). This technique has been 
applied in a number of large-scale studies on soil 
C changes in agricultural soils (e.g. Heidmann et 
al. 2002, Sleutel et al. 2003). The stone content 
can only be determined in the field although direct 
measurements are difficult and estimates often 
erroneous (Eriksson and Holmgren 1996, Wirth 
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Table 4. Specific model assumptions, limitations and planned improvements.

 Yasso ROMUL SOILN RothC ForestDNDC CENTURY

Simulation depth Organic layer 
+ 1 m mineral 
soil

Organic layer 
and 1 m mineral 
soils

Any depth, 
commonly 
1.5–3 meters

Any depth to 1m Routinely 50 cm, 
but can be 
modified to go 
down to e.g. 1.5 m

20 cm

Limitations Only for upland 
forest soils

Only for well or 
excessively 
drained mineral 
soils 

Needs a lot of 
input information, 
never been applied 
to peat soils

Only for upland 
forest soils 

Needs a lot of 
input informa- 
tion 

Only for top 20 cm, 
no peatlands, does 
not separate the 
humified portion 
of the litter from 
mineral soils 
(Kelly et al. 1997)

Planned 
improvements

Modifications to 
model structure 
and further devel- 
opment of the cli-
matic dependency

Model for organic 
soils under 
development

CoupModel: new 
plant pool coarse 
roots, new harvest 
regimes modules 

Model for organic 
soils under 
development 
(Smith et al. 
2005a)

Version for Medi-
terranean forest 
under develop- 
ment

New model using 
Century-based 
algorithms with 
humified litter 
pool separate from 
mineral soil (Nalder 
and Wein 2006)

Measurability 
of pools

Only extractives, 
celluloses and 
sums of other 
pools measurable

Yes, pools or their 
sums are measur-
able

No, conceptual 
pool approach 
which cannot 
directly be meas-
ured. Total sum 
of N and C can 
be compared with 
measured ones

Yes (Skjemstad et 
al. 2004, Shirato 
and Yokozawa 
2006, Zimmer- 
mann et al. 2006a)

No, conceptional 
pool approach, 
cannot directly 
be measured

Comparison of 
modeled SOC 
and measured C 
in SOM, as well 
as modeled and 
measured litter 
pools possible. 
Conceptual sub-
pools for litter and 
soil organic C not 
directly measurable

Model 
application / 
evaluation

(Kaipainen et al. 
2004, Peltoniemi 
et al. 2004, 
Palosuo et al. 
2005, Thürig 
2005, de Wit 
et al. 2006, 
Liski et al. 2006)

(Smith et al. 
1997, Chertov 
et al. 1999, 
Chertov et al. 
2002, Chertov 
et al. 2003, 
Mikhailov et al. 
2004, Chertov 
et al. 2006)

Forest sites
(Eckersten et al. 
1995, Eckersten 
and Beier 1998, 
Beier et al. 2001, 
Gärdenäs et al. 
2003)
Evaluation 
(Tiktak and van 
Grinsven 1995, 
Wolf et al. 1996)

Forest sites
(Coleman et al. 
1997, Smith et al. 
1997, Romanya 
et al. 2000)
Regional / conti-
nental application 
(Falloon et al. 
1998b, Falloon et 
al. 2002, Smith et 
al. 2006)

Upland forest 
soils (Li et al. 
2000, Stange et al. 
2000, Butterbach-
Bahl et al. 2001).
Update for forested 
wetlands (Zhang et 
al. 2002, Cui et al. 
2005)
Tropical forests 
(Kiese et al. 2005).
Model evaluation
(Kesik et al. 2005, 
Miehle et al. 2006)

(Kelly et al. 1997, 
Smith et al. 1997, 
Peng et al. 1998)

Uncertainty or 
sensitivity 
analysis

(Liski et al. 2005, 
Peltoniemi et al. 
2006, 
Monni et al. 
2007)

Komarov and 
Chertov 2007)

(Eckersten et al. 
2001)

In unpublished 
reports – available 
from P. Smith

Most sensitive 
factor method 
or Monte Carlo 
approach (Li et al. 
2004), applications 
(Kesik et al. 2005, 
Kiese et al. 2005)

None have been 
published

Transferability of 
model 
to new country

Yes (Palosuo et al. 
2005, Thürig et al. 
2005, de Wit et al. 
2006)

Yes (Nadporozhs-
kaya et al. 2006, 
Shaw et al. 2006)

Yes, see (Ecker- 
sten et al. 1995, 
Eckersten and 
Beier 1998)

Yes, applied region-
ally and globally 
(Post et al. 1982, 
Jenkinson et al. 
1991, Wang and 
Polglase 1995, Fal-
loon et al. 1998a, 
Tate et al. 2000, 
Falloon and Smith 
2002, Smith et al. 
2005b, Smith et al. 
2006)

Yes (Stange et al. 
2000, Zhang et al. 
2002, Kesik et al. 
2005, Kiese et al. 
2005)

Yes
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Table 5. Repeated soil inventories at regional or country scale and information on data quality. (St: sampling time, 
Sd: soil depth sampled, Snp: Sample number per Plot, Pn: plot number, Pr: paired resampling, Bd: bulk density, 
Sc: stone content, Si: soil information as concentration only [g C kg–1] or per area [C ha–1]).

Country/ Land use St Sd Snp Pn Pr Bd, Si
region   [m]    Sc

Great Britain1

England, 

Wales

forest, 

grassland 

cropland

1978, 1994, 

1995, 2003* 

0.15 25+ per 

400 m2

5662 Y n g C kg–1

Denmark2 cropland 1987, 1998 0.5 1 336 Y e t C ha–1

Belgium3 forest, 

grassland 

cropland

1990, 2000# <0.3–>1.0 differs LSU 289 LSU N m, e t C ha–1

Belgium4 forest,

grassland 

cropland

1960,

1990, 2000

ca. 0.3 differs 

per LSU

289 LSU N m,e t C ha–1

Belgium5

Flanders

cropland 1989–91,

1992–95,

1996–99

0.24 

(1.0)

total of 

210 000 

samples

7 APU N e t C ha–1

Belgium6 

West Flanders

cropland 1952,1990,

2003

ca. 0.3 6+ per  

50 m2

116 Y m,e t C ha–1

Ireland7 

southeastern 

part

grassland 1964,1996 0.1 15, 25 per 

400 m2

191, 220 N n g C kg–1

Finland 

southern part8
forest 1965–1993 0.1 / 0.3 8–25 54 N Sc m g C kg–1

Sweden9 forest 1983–1987, 

1993–2002

2003–2012

0–0.05, 

0.45–0.55, 

0.60–0.65 

min. soil 

layers 1, 

humus 1–5

23 100 Y e,e t C ha–1

1 Bellamy et al. 2005, 2 Heidmann et al. 2002, 3 Lettens et al. 2005a, 4 Lettens et al. 2005b, 5 Sleutel et al. 2003, 6 Sleutel et al. 2006, 
7 Zhang & McGrath 2004, 8 Tamminen & Derome 2005, 9 (Olsson 1999, Olsson et al. personal communication) 
* dependant on land-use, + bulked for C analyses, # for forests only 2000 data available
e: estimated from pedotransfer functions; m: measured; n: no / not determined; y: yes
LSU: landscape units derived from soil and land-cover data; APU: agropedological units

4.2 Large-scale Datasets of Soil Carbon 
Changes

Traditionally, long-term soil C studies focused 
on agricultural sites, where the soil organic 
matter content was important as a measure for 
soil fertility. Many of these studies pre-date the 
global change debate. The need for monitoring 
soil C contents across land-uses and large spatial 
scales only became important during the last 
few decades with rising interest in quantifying 
terrestrial carbon sources and sinks (Houghton 
et al. 1983).

The existing field experiments evaluating 
changes in European soil C at regional or coun-

et al. 2004). A practical approach that is easy to 
apply in inventories is to measure the steel rod 
penetration depth at several points in a plot and 
convert it to average stone content with empirical 
equations (Viro 1952, Tamminen 1991). Since the 
stone content influences total carbon stocks in the 
soil by reducing the available fine-soil volume 
(Leifeld et al. 2005), its exclusion from analyses 
will lead to erroneous results, especially in stone-
rich forest sites (Jia and Akiyama 2005).
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try scales is scarce overall and forested areas are 
less represented in these studies than agricultural 
land. Currently, four regional or country scale 
studies with repeated measurements for changes 
in forest soil properties have been reported (Table 
5). Large scale surveys are valuable for model 
evaluation because they provide measurements 
made with coherent methods over large spatial 
coverage, which may constitute notable climatic 
gradients or other variables of importance, which 
are included in the models.

Although sample numbers per plot are gener-
ally limited in these experiments, average changes 
in subsets of data may be significant allowing 
for meaningful comparison of model predictions 

and measurements. Generally, paired re-sam-
pling is necessary to detect change, and it allows 
smaller sets of data to be compared to simulations. 
Unpaired sampling with no control plot can lead 
to a large amount of unexplained variation due to 
differences in historical management and other 
factors influencing soil C stocks (Garten and 
Wullschleger 1999).

A regional study in southern Finland evalu-
ated changes in soil properties based on repeated 
unpaired sampling of 54 plots during 12–28 years 
(Tamminen and Derome 2005). The changes in 
organic layer content (%) were assessed down 
to 30 cm but changes in carbon (%) were ana-
lysed only for organic layer, which decreases 

Table 6. Repeated forest soil inventories at plot/ecosystem scale (St: sampling time, Sds: soil depth sampled, 
Snp: Sample number per Plot, Pn: plot number, Bd: bulk density, Sc: stone content, Ol: organic layer, Si: 
soil information as concentration only [g C kg–1] or per area [C ha–1], Da: at least average temperature and 
rainfall data available, L: data on annual small litterfall available).

Country/ Forest type St Ol Sds Snp Pn Bd, Si Da L
region    [m]   Sc

New 

Zealand1 

Central 

North 

Island

Pinus 

radiata, 

replanted 

1997

before and 

after harvest 

in 1995/6 

and 2000

ni ≤ 2.0 5–30+ 

per 400m2

30 m t C ha–1 ni ni

Germany2 

Solling

Fagus 

sylvatica 

and 

Picea abies

1966–1995 y 0.5 3–6+ 2–6 ni t C ha–1 y y#

United 

States3 

Camp 

Branch 

Watershed

mixed oak 1976, 2002 n 0.5 1 11 ni g C kg–1 ni ni

United 

States4 

southeast 

deciduous 

and pine, 

regrowth 

after differ-

ent harvest 

techniques

before and 

ca. 16 years 

after harvest

y, n 0.3–1.0 varying 4 forest 

sites, 

varying plot 

numbers

m,e t C ha–1 y/ni ni◊

United 

States5 

Lower 

Michigan

mixed oak, 

mixed oak-

maple, 

mixed oak-

basswood

11 times 

between 

2001–2003

n 0.2 8+ per 450 

m2

3 fertilized/ 

unfertilized 

per forest

N g C kg–1 ni y

1 Oliver et al. 2004, 2 Meesenburg et al. 1999, 3 Kelly & Mays 2005, 4 Johnson et al. 2002, 5 Waldrop et al. 2004
* dependant on land-use, + bulked for C analyses, # available from other studies in the same forests, ◊ data on biomass available
e: estimated from pedotransfer functions; m: measured; n: no; y: yes; ni: no information
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the usability of data in evaluation of models that 
cannot simulate organic layer explicitly. Changes 
in organic matter content of organic layer (nplots 
= 54) and 0–30 cm mineral soil (nplots = 32) were 
significant, as were the changes of N and C:N in 
organic layer.

Nationwide soil data from Belgium (Lettens et 
al. 2005a, Lettens et al. 2005b) have been used 
to report soil C changes with unpaired repeated 
sampling. The change assessment was based on 
datasets of a number of individual soil surveys 
that represented specified landscape unit (LSU). 
For each LSU the average carbon content was 
then obtained from all soil profiles within this 
LSU and compared among different years of 
data collection (Lettens et al. 2005a, Lettens et al. 
2005b). Significant changes in soil C in forested 
LSUs were rare due to large variability (Lettens 
et al. 2005a).

In England and Wales, Bellamy et al. (2005) 
used a repeated paired soil sampling along a grid 
covering the entire region. However, only the top 
15 cm was collected, and most of the land was not 
forested. Average of changes of soil C in groups 
of both coniferous and deciduous woodland were 
significant; group sizes were not reported (Bel-
lamy et al. 2005).

Swedish soil survey provides representative and 
repeated samples from a grid covering the whole 
nation (Olsson 1999, Ståhl et al. 2004). Measure-
ments are conducted in conjunction of NFI, and 
they are concentrated on forest soils where stand 
growth exceeds 1 m3a–1; soils under other land-
uses are not measured. Third inventory cycle has 
started in 2003, and is scheduled to end in 2012 
(Olsson, M. personal communication 2007).

4.3 Stand-scale Studies

Most studies evaluating changes in soil carbon are 
on the plot scale, and again forests are less repre-
sented than agricultural sites. The meta-database 
EuroSOMNET, (http://www.rothamsted.bbsrc.
ac.uk/aen/eusomnet/expts/eurodb.htm) summa-
rizes information about 110 long-term soil organic 
matter studies (Powlson et al. 1998, Smith et al. 
2002) of which only two were located on forested 
land: a coniferous forest stand in Russia (started 
in 1965) and a stand of natural forest regeneration 

in UK (started in 1883). These data have already 
been used for comparison with model results of 
RothC and Century (Falloon and Smith 2002).

Long-term studies in unmanaged old growth 
forests are scarce and based on a review of recently 
published studies, we are only aware of the long-
term study at Hubbard Brook experimental forest 
(Fahey et al. 2005). Fahey et al. (2005) did not 
detect a significant change in SOM.

Other studies on forest soil carbon mainly focus 
on afforestation and on other disturbances like 
harvest, windthrow or fire followed by forest re-
growth. It is likely that recently disturbed systems 
have the largest changes in soil C, and thus they 
may provide interesting test cases for models. 
Potential studies providing data for comparison 
have been summarized in recent literature (John-
son and Curtis 2001, Paul et al. 2002, Waldrop et 
al. 2004), while some additional experiments are 
included in Table 6.

4.4 Chronosequences in Model Evaluation

Since it can take decades before changes in soil 
carbon stocks are detectable (Johnson et al. 2002, 
Paul et al. 2002), chronosequence studies have 
often been used instead of time series data to 
assess management effects across time (Johnson 
and Curtis 2001). The assumption underlying 
chronosequence studies is that all sites are com-
parable and differences among sites are due to 
the parameter of interest (e.g., stand age, manage-
ment). Since this assumption cannot be validated, 
chronosequence studies are associated with an 
unpredictable error due to site selection.

Chronosequences are likely to be valuable for 
model comparisons in future, providing that they 
are successful in isolating the variable of interest 
as the main determinant of differences between 
the sites. Johnson and Curtis (2001) and Paul 
et al. (2002) summarised a number of available 
chronosequence studies, and more recent studies 
analyzing the effects of afforestation and manage-
ment on soil carbon stocks include Vesterdal et 
al. (2002), Thuille and Schulze (2006), and Mund 
and Schulze (2006).
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4.5 Future Prospects

A number of monitoring programs have started in 
recent years at various spatial scales and are now 
waiting for the first re-sampling. CarboEurope IP 
and NitroEurope IP may provide data for model 
comparison at the plot scale in the near future. 
A variety of model input parameters are being 
measured and intensive soil analyses conducted 
at six European forest sites (http://www.carboeu-
rope.org/, http://www.neu.ceh.ac.uk/). Depending 
upon the extent, suitability and quality of plot 
level data (Table 3), these results may be used 
either for model calibration or testing. The com-
bination of knowledge on the process and cali-
bration in several representative sites from these 
studies may lead to enhanced predictive power of 
the models included in this review.

At the European scale, the soil inventory of 
the International Co-operative Programme (ICP) 
based on sampling with a grid density of 16 x 16 
km2 has been repeated after ten years following 
the first sampling. After processing samples col-
lected in 2006, these results will provide a unique 
large-scale dataset that will likely be useful for 
model evaluation (BioSoil 2006).

5 Discussion

Development of forest carbon inventories is 
largely dependent on available data. We reviewed 
six process-based and one statistical model for 
estimating soil C stock changes, assessed how 
they incorporate input data, and listed references 
to studies that could potentially be used for model 
evaluation.

The models included in this review have been 
calibrated and applied in different regions, have 
been developed to simulate only certain ecosys-
tem types, and require varying level of detail for 
input data (Table 1 and Table 4). Consequently, 
the methodology for applying these models in 
national GHG inventories will be somewhat 
unique. For example, models incorporating a 
module for ecosystem production may be used 
to prepare simultaneous estimates of biomass and 
litter production, which are dynamically linked 
to soil processes. Models restricted to simulation 

of soil processes only, require input data on litter 
production.

The models with fewer requirements in respect 
to input data, such as Yasso or RothC, may be 
the only option for some countries given their 
resource availability. Models such as Century, 
ROMUL, ForestDNDC, and SOILN, may be 
more accurate due to a greater level of detail 
represented in their structure. However, the input 
data requirements may be too great for their 
application. Regardless, it is recommended that 
inventory compilers consider and even test mul-
tiple models for which the necessary input data 
are available for their country.

Most of the models in this review are applicable 
on upland forest soils, while only the wetlands 
version of DNDC has been applied on peat lands 
(Zhang et al. 2002, Li et al. 2004). In the future, it 
is anticipated that versions of RothC and ROMUL 
will also be available for wetlands (Table 4). 
If model that is used in the soil C inventory is 
not applicable on peat soils, an alternative is to 
use IPCC Tier 1 method with default factors, or 
possibly the Tier 2 approach with habitat spe-
cific emission factors that are obtained with the 
flux measurements. However, use of same model 
across all land use categories, would increase the 
coherency of inventory. For example, change in 
land-use would not require changing the model, 
and re-calculating the time series (IPCC 2006).

At present, the number of published data sets 
that could be used for soil model evaluation is 
scarce (Table 5 and Table 6), but more mea-
surements will become available in near future. 
Besides for measurements of soil carbon, evalu-
ation of soil models requires comprehensive data 
on factors that influence SOM, as well as input 
and parameterization data. It seems that most of 
the existing studies provide sufficient information 
to evaluate only the simplest soil models without 
the need to use average or assumed values for 
some input variables. Hopefully, in future, more 
soil studies and inventories will collect and pub-
lish data on ancillary variables such as data on 
site history, stand description, climate, texture, 
and nitrogen inputs.

Process-based modelling of soil carbon dynam-
ics can be used to produce soil C change estimates 
for countries with different resources and levels 
of input data, since a wide range of models with 
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differing input data requirements exists. Large 
uncertainties are involved in predicted soil C 
change estimates, comparisons of predictions 
between different countries, estimates prepared 
with different methodologies, and in comparisons 
to empirical data. Therefore, uncertainties of pre-
dicted soil C change estimates should be always 
assessed. Whenever possible, models and other 
methods should be developed in parallel.
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