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1 Introduction

The Betula genus is distributed throughout most 
of Europe, where it is mainly represented by 
two stand-forming tree species, Betula pubescens 
Ehrh. and Betula pendula Roth. In the Iberian 
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Peninsula, these two taxa are freely hybridized, 
and their taxonomy is somewhat confused, with 
each possessing a number of different nomen-
clatural identities (Castroviejo et al. 1990). Of the 
two taxa, Betula pubescens is the more oceanic, 
westerly distributed taxon while Betula pendula 
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is rarer and occupies more easterly and southerly, 
high altitude, mesic locations (Stevenson 2000). 
In Galicia, in north-western Spain, Betula pubes-
cens Ehrh. (also referred to as Betula alba L. 
and Betula pubescens subsp. celtiberica Rothm. 
& Vasc. – Castroviejo et al. 1990) grows from 
0–1700 m above see level, although it is more 
abundant in the north-eastern mountains of this 
region at altitudes above 400–500 m. Betula 
pubescens requires high moisture all year round. 
Therefore, in the south of Galicia, where the sum-
mers are dry, it appears naturally only in areas 
near the streams or in wet locations. This species 
may be considered a fast-growing pioneer tree, 
which readily colonises open ground originated 
by human activity (burning, cutting or grazing) or 
natural disturbances. In Galicia there are currently 
32 000 hectares of stands that include Betula 
pubescens as the main tree species (Xunta de 
Galicia 2001). The management of broadleaf spe-
cies, including birch, is important for preserving 
biodiversity. Although birch is a native broadleaf 
species which grows well on soils of low fertility, 
no studies have been carried out to date to asses 
the basic productivity of the birch stands in this 
region, which is of primary concern in making 
forest management decisions.

To quantify site productivity, foresters usu-
ally evaluate the relationship between tree height 
and age. A specific model of this relationship is 
known as site index (S, usually defined as the 
dominant height of a population of trees at a 
specific base or reference age). Although true site 
productivity may not be fully represented by site 
index, S is the most widely accepted method for 
estimating site productivity of even-aged forests. 
The development of dominant height over time 
may be modeled using self-referencing functions 
(Northway 1985), which use the current states of 
the considered phenomena (in this case height 
and age), to determine their past or predict their 
future states (Cieszewski 2003). For this purpose, 
so called “panel data” (i.e., pooled cross-sectional 
and time series data) are required. A pooled data-
base blends characteristics of both cross-sectional 
and time series data. Like cross-sectional data, 
it describes each of a number of individuals. 
Like time series data, it describes each single 
individual over time. Pooled data are important 
because they contain the information necessary 

to deal with both the inter-temporal dynamics and 
the individuality of the entities being investigated 
(Dielman 1989, p. 2). These sequences may be 
obtained by repeated measurements on permanent 
sample plots, or by stem analysis in which the 
past growth of trees is reconstructed from the 
annual growth ring patterns of the tree. The latter 
enables a faster way of constructing site curves. 
Its primary disadvantage is that height growth of 
individual trees may not represent height growth 
of stands, depending on the criterion used to 
select the trees.

The dominant height-age relationship can be 
modeled using either static or dynamic site equa-
tions. Static equations have the following general 
form (omitting the vector of model parameters): 
Y = f(t,S), where Y is the value of the function 
(e.g., predicted height) at age t, and S is a fixed 
base-age (of say, 20 years) site index. Dynamic 
site equations have general form (again omitting 
the vector of model parameters): Y = f(t,t0,Y0), 
where Y is the value of the function at age t, and 
Y0 is the reference variable defined as the value of 
the function at age t0. Advantages of dynamic site 
equations have been pointed out in several studies 
(e.g., Cieszewski and Bailey 2000, Cieszewski 
2001, 2003): they are base-age-invariant, and 
define both height-growth and site index models 
as special cases of the same equation, two desir-
able properties in most applications. The invariant 
or unchanging property of dynamic equations 
refers to predicted heights: any number of points 
(t0,Y0) on a specific site curve can be used to make 
predictions for a given age t and the predicted 
height Y will always be the same. This is valid 
for both forward and backward predictions, which 
include the path invariance property, ensuring that 
the result of projecting first from t0 to t1, and then 
from t1 to t2, is the same as that of the one-step 
projection from t0 to t2. Bailey and Cieszewski 
(2000) noted that some models that have been 
referred to as ‘base-age invariant’ or ‘reference-
age invariant’ do not have these comprehensive 
invariance properties.

Bailey and Clutter (1974) formalized the base-
age invariance property and presented a tech-
nique for dynamic equation derivation that is 
known in forestry as the Algebraic Difference 
Approach (ADA), and that essentially involves 
replacing a base-model’s site-specific parameter 
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with its initial-condition solution. However, the 
concept of base-age-invariance of Bailey and 
Clutter (1974) also involves the estimation of 
the model parameters using a base-age-invariant 
(BAI) method (e.g., Bailey and Clutter 1974, 
García 1983, DuPlat and Tran-Ha 1986, 1997, 
Tait et al. 1988, Bégin and Schütz 1994, Gregoire 
et al. 1995, Gregoire and Schabenberger 1996, 
Cieszewski et al. 2000, Hall and Bailey 2001), 
which does not depend on the selection of any 
base age and which allows the use of all the data 
available. The main limitation of the ADA is that 
most models derived with it are either anamorphic 
or have single asymptotes (Bailey and Clutter 
1974, Cieszewski and Bailey 2000).

Cieszewski and Bailey (2000) introduced a 
generalization of the ADA, the Generalized Alge-
braic Difference Approach (GADA), which can 
be used to derive the same models derived by the 
ADA. The main advantage of the GADA is that 
the base equations can be expanded according to 
various theories about growth characteristics (e.g., 
asymptote, growth rate), allowing more than one 
parameter to be site-specific, and also the deri-
vation of more flexible dynamic equations (see 
Cieszewski and Bailey 2000, Cieszewski 2001, 
2002, 2003). This approach also includes simu-
lation of concurrent polymorphism and multiple 
asymptotes, important properties of site equations 
(Cieszewski 2002).

The objective of the present study was to develop 
a base-age invariant equation, sensu Bailey and 
Clutter (1974), which realistically describes the 
dominant height growth of single-species, even-
aged birch natural stands in Galicia.

2 Data

In the winter of 1998–1999 a network of 124 
permanent plots was established in even-aged, 
birch-dominated stands (85% or more of the 
standing basal area consisting of birch – Betula 
pubescens). The plots were located throughout 
the area of distribution of this species in Galicia, 
and were subjectively selected to represent the 
existing range of ages, stand densities and sites. 
The plot size ranged from 200 m2 to 1000 m2, 
depending on stand density, in order to achieve 

a minimum of 30 trees per plot. Although the 
smallest plot size (200 m2) may appear to be too 
small, only 2 plots were of this size. More than 
50 trees were measured in these plots, which were 
selected to include extremes of site and stand 
conditions. The rest of the plots were larger than 
500 m2. In the cases where was possible, two 
undamaged dominant trees were destructively 
sampled, constituting a final sample of 214 domi-
nant trees. These trees were selected as the first 
two dominant trees found outside the plots but in 
the same stands within ±5% of the mean diameter 
at 1.3 m above ground level and mean height of 
the dominant trees (considered as the 100 larg-
est-diameter trees per hectare). An exchange of 
trees over time within this group of dominant 
trees could be expected in forest stands (Eriksson 
et al. 1997). This so-called “rank effect” may be 
a problem when using height growth for single 
trees, reconstructed by means of stem analysis, 
for site curve modelling. Because of the strong 
light-demanding behaviour of birches the rank 
effect was assumed to be of minor importance 
and was thus neglected in this study. Therefore, 
according to Tennent and Burkhart (1981), the 
two trees selected in each stand following the 
above procedure were considered adequate for 
representing mean dominant height development 
of the stand with reasonable fidelity. The trees 
were felled leaving stumps of average height 0.20 
m; total bole length was measured to the nearest 
0.01 m. The logs were cut at approximately 1 m 
intervals until the diameter was 7 cm and at 2 

Table 1. Total tree height statistics given in meters (age 
class 5 = 3–7 years, etc.).

Age No of Mean Standard Minimum Maximum
class obsevations  deviation value value

5 800 2.50 1.40 0.3 6.9
10 611 5.97 1.81 1.1 11.8
15 401 8.77 2.30 2.0 15.6
20 273 11.33 2.53 3.6 17.8
25 116 13.33 2.53 7.5 20.9
30 44 13.74 3.77 8.3 24.4
35 52 16.62 2.33 8.9 20.9
40 27 17.35 1.46 14.2 19.8
45 15 18.71 2.53 14.8 22.9
50 3 18.17 2.64 16.4 21.2
55 5 18.14 1.19 16.8 19.8
65 1 15.85  15.9 15.9
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m intervals thereafter. The number of rings was 
counted at each cross sectioned point and then 
converted to stump age. As cross-section lengths 
did not coincide with periodic height growth, we 
adjusted the height/age data from stem analysis 
to account for this bias using Carmean’s method 
(Carmean 1972), and the modification proposed 
by Newberry (1991) for the topmost section of 
the tree, based on earlier studies (Dyer and Bailey 
1987, Fabbio et al. 1994). The data were fur-
ther examined for evidence of trees with past 
height growth abnormalities. Summary statistics 
including number of observations, mean, standard 
deviation, minimum, and maximum values of the 
selected data for modelling mean dominant height 
throughout the life of the stand were calculated 
for total tree height grouped by age classes (Table 
1).

3 Methods

Cieszewski (2003) proposed a simplified approach 
of mixed-effects model for site curve develop-
ment based on an adaptation of the nonlinear 
mixed-effects model defined by Lindstrom and 
Bates (1990). The method of Cieszewski (2003), 
which we employed in this study, is based on 
a one-point principle, i.e., it involves finding a 
model form that can describe the data well using 
only one parameter that varies with sites. If more 
than one parameter has to be site-specific, the 
varying parameters must be correlated with each 
other and defined as functions of fixed param-
eters and just one common varying parameter. 
After such re-parameterization, all except the 
varying parameter are uncorrelated parameters 
of the base model, and can be defined as pure 
fixed effects. The varying parameter is the only 
parameter related to the random site effects (Lind-
strom and Bates 1990), and can be defined as a 
mixed-effect parameter (including both fixed and 
random effects) comprising the sum of the global 
mean for this parameter (ψ) (plus a site-specific 
effect (ζi). The next steps involve: i) applying the 
GADA to ψ + ζi defined as X (a theoretical vector 
variable defining site quality with mean ψ and 
site-specific adjustments ζi with unknown distri-
butional properties and an unknown magnitude 

of values); ii) solving for X; iii) substituting the 
solution for X in the explicit three-dimensional 
site equation (Y = f(t,X)) for initial conditions t0 
and Y0, (Y = f(t,t0,Y0)), where Y0 comprises for 
each individual the sum of the observed height 
at age t0 plus a site-specific effect e0i interpreted 
as the random measurement and environmental 
errors); and iv) fitting in one stage using a stochas-
tic regression approach, or a varying parameter 
regression with desired fitting criteria. In the final 
fitting procedure, the estimated heights (i.e., Y0 
at t0) obtained by fitting a curve to the observed 
trend in the data for each individual growth series 
are used as predictors rather than the observed 
heights. This direct use of data, as constants, does 
not violate regression assumptions because the 
measurement and environmental errors associated 
with these data are estimated simultaneously with 
all the other parameters of the model (Cieszewski 
2003).

3.1 Models

A number of researchers have pointed out desira-
ble attributes of site quality equations (Bailey and 
Clutter 1974, Gadow and Hui 1999, Cieszewski 
and Bailey 2000, Cieszewski 2002, 2003). The 
most frequently listed criteria are: polymorphism, 
sigmoid growth pattern with an inflexion point, 
horizontal asymptote at old ages, logical behavior 
(height should be zero at age zero and equal to site 
index at the reference age; the curve should never 
decrease), theoretical basis or interpretation of 
model parameters derived by analytically tracta-
ble algebraic operations, base-age invariance, and 
path invariance. The fulfillment of these attributes 
depends on both the model construction method 
and the statistical procedures used for model fit-
ting, and cannot always be achieved.

With these criteria in mind, we examined dif-
ferent three-parameter base models and tested 
several variants for each one using the simplified 
approach of the mixed-effects model of Ciesze-
wski (2003). Both one and two parameters were 
considered to be site-specific. Some of the models 
tested were discarded in the first steps because of 
their poor performance when applied to the data, 
especially those which considered only one site-
specific parameter in the base model. Therefore, 
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at least two parameters had to vary with site qual-
ity to fit all data well, while one parameter was 
common for all sites without compromising the 
overall fit before it was used for derivation of the 
dynamic equations using the GADA. Equations 
that include two site-specific parameters allow 
simulation of concurrent polymorphism and mul-
tiple asymptotes, which are both desirable char-
acteristics of site equations (Cieszewski 2002). 
Although this may be of secondary importance, 
equations that possess these characteristics are 
more flexible, and better describe a wide variety 
of height-age trends.

We finally focused our efforts on two dynamic 
equations. Using general notational convention, 
a1, a2… an denoted parameters in base models, 
while b1, b2… bm were used for global param-
eters in subsequent GADA formulations. All the 
GADA based models have the general implicit 
form Y = f(t,t0,Y0,b1,b2…bm).

The first model tested is based on the function 
proposed by Bertalanffy (1949, 1957) and studied 
by Richards (1959), whose integral form can, for 
simplicity, be represented as

Y = a1[1 – exp(–a2t)]a3 (1)

where a1 is an asymptote or limiting value, a2 is 
often called a ‘rate parameter’, and a3 is often 
referred to as ‘an initial pattern parameter’. This 
model is very flexible and has been frequently 
used for site-index curve development (e.g., Burk-
hart and Tennent 1977, Powers and Oliver 1978, 
García 1983, Biging 1985, Diéguez-Aranda et 
al. 2005).

To derive a model with both polymorphism 
and variable asymptotes from Eq. 1, more than 
one parameter has to be a function of site pro-
ductivity. When the parameter a2 varies with site 
productivity none of the other two parameters a1 
or a3 can be used (together with a2) to model the 
site productivity response, because when a1 or a3 
is a function of X and the parameter a2 is also a 
function of X, the model cannot be solved for X in 
a closed-form solution (Cieszewski 2004). Thus, 
in the model derived from Eq. 1 using the GADA, 
both the asymptote a1 and the shape parameter a3 
are assumed to be dependent on X. To facilitate 
such derivation, the base equation is re-parameter-
ized into a form more suitable for manipulation of 

these two parameters (using exp(a1’) rather than 
a1 and taking the natural logarithm – ln – of the 
function) as follows:

Y = exp(a1’)[1 – exp(–a2t)]a3

ln(Y) = a1’ + a3 ln[1 – exp(–a2t)]

The site parameters can be conditioned to be 
consistently proportional to each other’s inverse 
over the site productivity dimension by the fol-
lowing definitions:

a1’ = X and a3 = b2 + b3 / X, while a2 = b1

which defines the following GADA formula-
tion:

ln(Y) = X + (b2 + b3 / X) ln[1 – exp(–b1t)] (2)

For this base equation, the solution for X involves 
finding roots of a quadratic equation and select-
ing the most appropriate root for substituting 
into the dynamic equation. The selection of the 
most appropriate expression for X may depend 
on the equation parameters that in turn depend 
on the data and the domain of the applicable ages 
(Cieszewski and Bailey 2000). The solution for X 
in Eq. 2 with initial condition values t0 and Y0 is

X Y b L b L Y b L0 0 2 0 2 0 0
2

3 0
1

2
4= − ± −  −






ln( ) ln( ) 


 (3)

where L0 = ln[1 – exp(–b1t0)]

Selecting the root most likely to be real and 
positive (i.e., that involving addition rather than 
subtraction of the square root), and substituting 
it into Eq. 2 results in the following dynamic 
equation that provides polymorphic curves with 
variable asymptotes:

Y Y
b t

b t

b b X

= − −
− −











+

0
1

1 0

1

1

2 3 0exp( )

exp( )

/

 (4)

The second model may be viewed as a special 
case of the log-logistic class of models, which 
are equivalent to Hossfeld models (Cieszewski 
2000) and have a long history in describing a 
wide variety of population dynamics. Monserud 
(1984) applied a log-logistic model to describe 
the height growth of inland Douglas-fir in the 
northern Rocky Mountains (United States of 
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America) based on data from stem analysis of 
dominant trees. Cieszewski (2000, 2001, 2002, 
2003) examined several GADA formulations 
using the log-logistic model as a base equation, 
generally expressed as

Y
a

a u
=

+ −
1

21 exp( )
 (5)

where a1 is the asymptote parameter, a2 is the 
half-saturation parameter that defines the value 
of exp(–u) at which Y(u) = a1/2, and u is usu-
ally a linear combination of log-transformations 
of the independent variable(s) (Monserud 1984, 
Cieszewski 2000, 2001, 2002).

Within the different forms investigated, the 
GADA based formulation by Cieszewski (2002) 
was found to perform particularly well. It consid-
ers the above-mentioned u as a logarithmically 
transformed function of age, so that u = a3 lnt. 
Therefore, Eq. 5 can be simplified as the Hossfeld 
(1822) model

Y
a

a t a
=

+ −
1

21 3
 (6)

Cieszewski (2002) replaced a1 with a constant 
plus the unobserved site variable X, and a2 by 
b2 / X, while a3 = b3, becoming the GADA for-
mulation

Y
b X

b X t b
= +

+ −
1

21 3/
 (7)

The solution for X involves again finding roots 
of a quadratic equation. With initial condition 
values t0 and Y0 it is

X Y b b Y b Y t b
0 0 1 1 0

2
2 0 0

1

2
4 3= − ± − +





−( )  (8)

Selecting the root most likely to be real and 
positive (i.e., that involving addition rather than 
subtraction of the square root), and substituting 
it into Eq. 8 results in the following dynamic 
equation that provides polymorphic curves with 
variable asymptotes:

Y
b X

b X t b
= +

+ −
1 0

2 01 3/
 (9)

3.2 Analysis

Parameter estimation for site models involves 
many different statistical considerations such as 
fitting criteria, error structures and independence 
of errors, as well as homogeneity of variance. An 
effective system for parameter estimation must be 
based on identifying individual trends represented 
in the data (Bailey and Clutter 1974, García 1983, 
Cieszewski et al. 2000, Cieszewski 2003). These 
trends can be modeled by considering that indi-
viduals’ responses all follow a similar functional 
form with parameters that vary among individu-
als (local parameters) and parameters that are 
common for all individuals (global parameters). 
In practice both base-age specific (BAS) and 
base-age invariant (BAI) methods can be used. 
The assumption behind the BAS methods, which 
use selected data (i.e., site indices or heights at 
the given base age) as site-specific constants, is 
that the data measurements simultaneously do and 
do not contain measurement and environmental 
errors (on the left and right hand sides of the 
model respectively; e.g., Curtis et al. 1974, Mon-
serud 1984), which is clearly untenable (Bailey 
and Clutter 1974). The assumption behind the 
BAI methods, which estimate site-specific effects, 
is that the data measurements always contain 
measurement and environmental errors (both on 
the left and right hand sides of the model) that 
must be modeled (Cieszewski 2003). In the BAI 
methods, the observation units – study plots or 
trees – of the panel data are assumed to constitute 
a random sample from a population of inter-
est, while the observations within each unit are 
not random. Among the different BAI parameter 
estimation techniques reported in the introduc-
tory section of the present study, we estimated 
the random site-specific effects simultaneously 
with the fixed effects using the dummy variables 
method described by Cieszewski et al. (2000). In 
this method the initial conditions are specified as 
identical for all the measurements belonging to 
the same tree. The initial age can be, within limits, 
arbitrarily selected, even for each tree; however, 
age zero is not allowed. The height corresponding 
to the initial age is then simultaneously estimated 
for each tree along with all of the global model 
parameters during the fitting process. Unlike the 
traditional technique (BAS method) that requires 
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an arbitrary choice of base age prior to fitting 
the model, and then forcing the model through 
the chosen height/age point (site index), the BAI 
methods recognize that each measurement is made 
with error and, therefore, it seems unreasonable 
to force the model through any given measure-
ment. Instead, the curve is fitted to the observed 
individual trends in the data. With this method 
all the data can be used, and there is no need to 
make any arbitrary choice regarding measurement 
intervals (i.e., it is a BAI method).

There are particular problems associated with 
the estimation of regression equations describing 
the behavior of individuals over time. In a single 
time series equation we often encounter the prob-
lem of autocorrelated errors. In a single cross-sec-
tional regression equation we may have problems 
with a non-constant error variance. When combin-
ing cross-sectional and time series data we may 
find both problems occurring simultaneously. In 
addition, we may find that cross-sectional distur-
bances for different individuals at the same point 
in time may be correlated. Such contemporaneous 
correlation is an added problem specific to the 
analysis of pooled data (Dielman 1989, p. 2).

In the general formulation of the nonlinear 
mixed-effects model used in this study the error 
terms eij are assumed to be independent and 
identically distributed with zero mean. Never-
theless, because of the longitudinal nature of the 
data set used for model fitting, serial correlation 
(i.e., correlation between the residuals within 
the same individual) was expected. To account 
for this possible autocorrelation we modeled the 
error terms using a continuous-time autoregres-
sive error structure (CAR(x)). This error structure 
permits the model to be applied to irregularly 
spaced, unbalanced data (Gregoire et al. 1995, 
Zimmerman and Núñez-Antón 2001), both of 
which are characteristics of many forestry data 
sets (West et al. 1984). The CAR(1) expands the 
error terms in the following way:

e d eij
t t

ij ij
ij ij= +−

−
−

1 1 1
1ρ e

where eij is the jth ordinary residual on the ith indi-
vidual (i.e., the difference between the observed 
and the estimated heights of the tree i at age 
measurement j), d1 = 1 for j > 1 and it is zero for 
j = 1, ρ1 is the first-order autoregressive parameter 

to be estimated, and tij – tij–1 is the time distance 
separating the jth from the jth–1 observations 
within each tree, tij > tij–1. In CAR(2) the error 
terms are expanded as:

e d e d eij
t t

ij
t t

ij
ij ij ij ij= + +−

−
−

−
− −

1 1 1 2 2 2
1 2ρ ρ e iij

consequently, d2 = 1 for j > 2 and it is zero for j ≤ 2, 
ρ2 is the second-order autoregressive parameter 
to be estimated, and tij – tij–2 is the time distance 
separating the jth from the jth–2 observations 
within each tree, tij > tij–2. The error terms for 
continuous-time autoregressive error structures 
of higher-order would be expanded similarly. In 
these cases eij are now independent and identi-
cally distributed.

Visual examination of relevant graphs provided 
valuable insight into the statistical properties of 
the data. To evaluate the presence of autocor-
relation and the order of the CAR(x) to be used, 
graphs representing residuals versus lag-residu-
als from previous observations within each tree 
were examined visually. The dummy variables 
method including the CAR(x) error structure was 
programmed using the SAS/ETS® MODEL pro-
cedure (SAS Institute Inc. 2004), which allows 
for dynamic updating of the residuals. To exam-
ine if cross-sectional correlation existed, we first 
ordered the residuals in ascending order by age 
and height, and then examined visually the graphs 
of residuals versus lag-residuals from previous 
observations within the same age. The hetero-
scedasticity was also examined visually, by plot-
ting residuals as a function of predicted values, in 
order to investigate possible weighting factors.

3.3 Model Comparison

Comparison of the estimates for the two models 
tested was based on numerical and graphical 
analyses of the residuals. Two statistical criteria 
were examined: coefficient of determination for 
nonlinear regression (R2) and root mean square 
error (RMSE). Although there are several short-
comings associated with use of the R2 in nonlin-
ear regression, the general usefulness of some 
global measure of model adequacy would seem 
to override some of those limitations (Ryan 1997, 
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p. 424). The expressions of these statistics are 
summarized as follows:

R r

Y Y

n p

Y Y

i ii

n

i i

2 2

2
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=

=
−

−
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ˆ

( ˆ )
RMSE

where rY Yi î
 is the correlation coefficient between 

the measured (Yi) and estimated (Ŷi ) values of 
the dependent variable, n is the total number of 
observations used to fit the model, and p is the 
number of model parameters.

Because the quality of fit does not necessarily 
reflect the quality of future prediction (Myers 
1990, p. 168), assessment of the validity of the 
model with an independent data set is recom-
mended (Kozak and Kozak 2003). Due to the 
scarcity of such data, several methods have been 
proposed (e.g., splitting the data set or cross-
validation, double cross-validation), although 
they seldom provide any additional information 
compared with the respective statistics obtained 
directly from models built from entire data sets 
(Kozak and Kozak 2003). Thus, because decisions 
have to be made with available information, it 
is better to wait to obtain new data before such 
validation is carried out.

The final step in evaluating the different fitted 
models involved visual examination of the residu-
als against the estimated values, and the fitted 
curves for different site indices overlaid on the 
profile plots of the trees. Visual inspection is 
an essential point in selecting the most accurate 
model because curve profiles may differ consid-
erably, even though goodness-of-fit statistics are 
similar.

3.4 Selection of Reference Age for 
Site Quality Evaluation

Practical use of the model to estimate site quality 
from any given pair of height and age requires the 
selection of a base age to which site index will be 
referenced. Inversely, site index and its associated 
base age may be used to estimate dominant height 
at any desired age. Therefore, the selection of a 
base age becomes an important issue when only 
one observation of a new individual is available. 

The base age should be selected so that it is a 
reliable predictor of height at other ages, taking 
into account the erratic height growth at young 
ages but considering that a young base age will 
help in earlier decision making of the silvicultural 
treatments to be applied to the stand.

In order to address the first consideration, dif-
ferent base ages and their corresponding observed 
heights were used to estimate heights at other ages 
(both forward and backward) for each tree. The 
results were compared with the values obtained 
from stem analysis, and the relative error in pre-
dictions (RE%) was then calculated as follows:

RE% =
− −

=∑ ( ˆ ) / ( )Y Y n p

Y

i ii

n 2
1 100

where Yi, Ŷi  and Y  are the observed, predicted 
and average values of the tree height, respec-
tively; n is the total number of observations used 
to fit the model; and p is the number of model 
parameters.

It is important to note that the statistic described 
in this section is only meaningful if the site-
specific parameters are discarded because of the 
lack of repeated data within the same individual. 
Otherwise, the site-specific parameters could 
be estimated and all the predictions would be 
identical whatever base age was selected (this is 
the essence of the BAI method used for model 
fitting).

4 Results and Discussion

We first fitted Eqs. 4 and 9 using nonlinear least 
squares without expanding the error terms to 
account for autocorrelation. A trend in residuals 
as a function of age-lag-residuals within the same 
tree was evident in both equations, as expected 
because of the longitudinal nature of the data 
used for model fitting. Fig. 1 (first row) provides 
an example with Eq. 9. After correction for auto-
correlation using a second-order continuous-time 
autoregressive error structure, the trends in residu-
als disappeared (Fig. 1 third row). The fitted curve 
shapes were not significantly altered as compared 
with the models fitted without considering such 
correction. It should be noted that, from a practi-
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cal point of view, the autocorrelation parameters 
are generally ignored when using the site model 
for predicting height and site index. The quanti-
ties eij–1 and eij–2 will probably not be known 
unless one is working with stem analysis data or 
with repeated measurements on the same plot, in 
which case they could be determined and used to 

predict a future value. The main purpose in using 
the autocorrelation error structure was to obtain 
consistent estimates of the parameters and their 
standard errors.

The parameter estimates for each model and 
their corresponding goodness-of-fit statistics are 
shown in Table 2. All the parameters were signifi-

Table 2. Parameter estimates and goodness-of-fit statistics for the two models tested.

Model Parameter Estimate Approx. t-value Approx. RMSE R2

   Std. Err.  p-value

Eq. 4 b1 0.0480 0.0013 38.3 <0.0001 0.5043 0.9892
 b2 –1.37 0.28 –4.9 <0.0001
 b3 8.65 0.89 9.7 <0.0001
 ρ1 0.940 0.012 79.4 <0.0001
 ρ2 0.852 0.013 65.1 <0.0001
Eq. 9 b1 19.8 1.7 11.7 <0.0001 0.5050 0.9892
 b2 758 148 5.1 <0.0001
 b3 1.40 0.02 80.9 <0.0001
 ρ1 0.942 0.012 81.1 <0.0001
 ρ2 0.847 0.013 63.7 <0.0001

Fig. 1. Residuals versus: Age-Lag1-Residuals (left 
column), Age-Lag2-Residuals (middle column), and 
Age-Lag3-Residuals (right column) for Eq. 9 fitted 
without considering the autocorrelation parameters 
(first row), and using continuous-time autoregressive 
error structures of first and second order (second and 
third rows, respectively).
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cant at the 1% level (including the site-specific 
parameters for each tree). The two models pro-
vided similar results, as indicated by the graphs 
that represent the fitted curves for different site 
indices overlaid on the trajectories of the observed 
heights over time (Fig. 2) and the goodness-of-fit 
statistics (Table 2). These models explained 98.9% 
of the total variance, and provided a random pat-
tern of residuals around zero with homogeneous 
variance and no detectable significant trends, both 
for predicted heights and site indices at a reference 
age of 20 years (Fig. 3 exemplified with Eq. 9). 
The use of two-site-specific parameter equations 
allowed simulation of concurrent polymorphism 

and multiple asymptotes, a desirable characteris-
tic of site equations (Cieszewski 2002).

Graphs showing bias and root mean square 
errors in the height estimates for different age 
classes were analyzed (Fig. 4). Both models 
behaved similarly for juvenile and intermedi-
ate age classes, and also appeared to describe 
dominant height growth realistically for older age 
classes. Selection of the model was thus based on 
visual inspection of the graph of the fitted curves 
for different site indices overlaid on the trajecto-
ries of the observed heights over time (Fig. 2). 
In this figure a slight underestimate of dominant 
height at old ages can be inferred for Eq. 4.

Fig. 2. Curves for site indices of 5, 9, 13 and 17 m at a reference age of 20 years overlaid on the trajectories 
of the observed heights over time for Eq. 4 (left) and Eq. 9 (right). The fittings were carried out using 
the dummy variables method and correcting autocorrelation with a second-order continuous-time 
autoregressive error structure.
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Fig. 3. Residuals versus: predicted heights as an illustration of potential heteroscedasticity (left), and site 
indices at a reference age of 20 years (right) for Eq. 9 fitted with a second-order continuous-time 
autoregressive error structure.
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Thus, from the two dynamic equations finally 
evaluated for height growth prediction and site 
classification of birch stands in Galicia, Eq. 9, 
i.e. the GADA formulation derived by Ciesze-
wski (2002) from the Hossfeld (1822) model by 
considering parameters a1 and a2 as related to site 
productivity, was selected:

Y
X

X t
= +

+ −
19 8

1 758
0

0
1 40

.

/ .  (10)

where Y is the predicted height (meters) at age t (years),
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
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−. . . 

 
and Y0 and t0 represent the predictor height and 
age. Note that the site-specific parameters are dis-
carded in a way similar to that used to discard the 
autocorrelation coefficients (Cieszewski 2001), 
because the general use of the model involves 
making predictions using observed height and its 
associated measurement age in new individuals.

As already mentioned, dynamic equations 
derived with the GADA allow direct prediction 
of heights at any age from any other reference 
height and age. Therefore, to estimate the domi-
nant height (Y) of a stand for some desired age 
(t), given site index (S) and its associated base 
age (tS), substitute S for Y0 and tS for t0 in Eq. 10. 
Similarly, to estimate site index at some chosen 
base age, given stand height and age, substitute 
S for Y and tS for t in Eq. 10.

Eq. 10 fulfills most of the desirable properties 
that a site equation should possess, that is: it con-
stitutes a parsimonious, three parameter, dynamic 

site equation; it shows no trends in residuals; it 
predicts height equal to site index at base age 
and, although it is not defined for age zero *, the 
height limit when age tends to zero is zero; it is 
polymorphic with sigmoidal curve shapes and 
varying asymptotes; and it has the base-age and 
path invariance properties providing consistent 
predictions. Furthermore, it has been fitted using 
a base-age invariant method that accounts for 
site-specific and global effects, while addressing 
the error structure of the data.

The present investigation was based primarily 
on trees of height at 20 years of between 4 and 18 
m. The ages ranged from 2 to more than 45 years. 
Therefore, the curves may be used over the entire 
rotation of the species in the region of study. The 
asymptotic values of the curves for site indices of 
5, 9, 13 and 17 m at a reference age of 20 years 
resulted 23.0, 25.9, 29.1 and 32.4 m, respectively, 
which seems realistic. The curves should be used 
for ages greater than 5 years, since for younger 
ages erratic height growth may lead to erroneous 
classifications.

In selecting the base age, it was found that an 
age of 20 years was superior for predicting height 
at other ages (Fig. 5). Therefore, it is proposed 
as the base age to which site index will be refer-
enced in order to classify the stands according to 
its productivity.
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Fig. 4. Bias and root mean square error (RMSE) in height estimation for Eqs. 4 and 9 by 5-year age classes.

* This is not a fundamental property, albeit an identical 
model which is defined for t = 0 is the generalization 
of this equation in Cieszewski (2001) (Eq. 21 in the 
original publication).
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Finally, the curves generated using Eq. 10 were 
compared with the curves developed by Eriksson 
et al. (1997) for pure and mixed stands of Betula 
pendula and Betula pubescens in Sweden, to 
evaluate possible similarities in dominant height 
growth of birch stands at contrasting latitudes in 
Europe. A wider spectrum of site qualities was 
found in Sweden than in Galicia (site indices of 
between 3.5 and 21 m at a reference age of 20 
years compared with site indices of between 4 
and 18 m at the same reference age, respectively). 
The better site qualities found in Sweden may be 
explained by the presence of some birch stands 
on abandoned farmland (Karlsson et al. 1998), i.e. 
on relatively fertile soils, whereas in Galicia the 
stands are mainly growing on relatively unfertile 
forest soils. Furthermore, the poorest site quali-
ties found in Sweden may be explained by the 
shorter annual growth period in boreal areas. The 
two site quality systems for intermediate qualities 
were also compared (Fig. 6). The curves are quite 
similar until ages of 25–30 years, but culmination 
of growth is reached at younger ages in the Gali-
cian stands. Nevertheless, these trends should be 
corroborated using the trajectories of the observed 
heights over time, used to develop the site quality 
curves for the two regions analyzed.
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