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This study deals with the prediction of the basal area diameter distribution of a stand without 
using a complete sample of diameters from the target stand. Traditionally, this problem has 
been solved by either the parameter recovery method or the parameter prediction method. 
This study uses the parameter prediction method and the percentile based diameter distribu-
tion with a recent development that makes it possible to improve these predictions by using 
sample order statistics. A sample order statistic is a tree whose diameter and rank at the plot 
are known, and is referred to in this paper as a quantile tree. This study tested 13 different 
strategies for selection of the quantile trees from among the trees of horizontal point sample 
plots, and compared them with respect to RMSE and the bias of four criterion variables in a 
dataset of 512 stands. The sample minimum was found to be the most promising alternative 
with respect to RMSE, even though it introduced a rather large amount of bias in the criterion 
variables. Other good and less biased alternatives are the second and third smallest trees and the 
tree closest to the plot centre. The use of minimum is recommended for practical inventories 
because its rank is probably easiest to determine correctly in the field. 
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1 Introduction 
The development of the forestry applications of 
horizontal point sampling, (i.e., relascope sam-
pling, angle count sampling) has had a considerable 
effect on small area forest inventory in Finland. 
The measurement of basal area led, first, to the 
use of so-called relascope tables (stand volume 
models) and second, since the 1970s, basal area 
diameter distribution models were developed as 
the basis of the calculation of stand volume in a 
small area forest inventory system (Nyyssönen 
1954, Kilkki and Siitonen 1975, Päivinen 1980, 
Kilkki et al. 1989). With a basal area diameter 
distribution, the frequency of a diameter class was 
expressed in terms of basal area instead of number 
of stems, being consistent with the horizontal point 
sampling, where each sampled tree corresponded 
to a fixed basal area instead of a fixed number of 
stems. The parameter prediction approach was 
used and predictor variables, such as basal area 
and basal area weighted median diameter (DGM), 
were assessed at the stand level in the field. In 
fact, the use of basal area diameter distributions 
has been a Finnish speciality and not until in the 
end of the 1990s had it been studied elsewhere 
(Gove and Patil 1998). Correspondingly, in the NFI 
of Finland a horizontal point sample plot (HPS 
plot) based inventory system was established in 
the beginning of 1960s (NFI4). 

The advantage of the basal area weighted sam-
pling of trees is clear when compared to the sam-
pling without weighting and it leads to improved 
accuracy of both basal area and volume estimates 
with a given number of measured trees (Sukvong 
et al. 1971, Matérn 1972). The situation is also 
the same for diameter distribution models. For 
example, in the study by Maltamo and Mabvurira 
(1999), stem frequency and basal area diameter 
distributions led, in the same study material, to 
the relative RMSE’s of volume of 10.56 % and 
2.56 %, respectively. However, the difference 
resulted mainly from the variable used in the 
scaling of the distribution (stem number in the 
former and basal area in the latter case), not from 
the weighting itself.

The disadvantage of horizontal point sampling 
is imprecise estimates of small diameter class 
frequencies. The angle count sampling, as such, 
provides unbiased estimates of stand character-

istics (Bitterlich 1984). However, according to 
Vuokila (1959), the estimates of trees smaller 
than approximately 10 cm are imprecise, i.e., 
have considerable variance. It also means that 
the description of stand structure, measured with 
total number of stems or energy wood volume, is 
imprecise, as the number of small trees has a large 
effect on them. Furthermore, predicting stand 
development and thinning removals using such 
highly uncertain information on small classes is 
imprecise and may even be unrealistic (Maltamo 
and Kangas 1998, Kangas and Maltamo 2003). 

To improve the ability of a basal area diameter 
distribution to describe stand structure character-
istics other than volume, Siipilehto (1999) pro-
posed an additional measurement of stem number 
be used in the parameter prediction. Apparently, 
it considerably improved the obtained estimate of 
stem number. However, it also improved the esti-
mate of volume. Another approach is to calibrate 
the predicted distribution with stem number by 
means of calibration estimation (Kangas and Mal-
tamo 2000a, see also Mehtätalo 2004a) in order 
to obtain estimates which are compatible with 
both measured basal area and stem number. More 
recently, a parameter recovery approach based on 
Weibull distribution has also been developed for 
this situation (Mehtätalo and Nyblom, forthcom-
ing). The problem with the above-mentioned stud-
ies is that the stem number used in the modelling 
is known without error, whereas with the practical 
applications it is measured with error. In practical 
work, stem number is often visually assessed, and 
practical studies have shown that the accuracy of 
such measurement is very low, including RMSE’s 
as high as 80 % (Kangas et al. 2002). If such 
estimates are used in the calculation of stand vari-
ables the advantage of using stem number is only 
marginal (Haara and Korhonen 2004), even if the 
measurement errors are accounted for (Mehtätalo 
and Kangas 2005). However, some recent studies 
have shown that practical measurement of stem 
number may be highly useful in special situa-
tions, e.g., when predicting the amount of energy 
wood (Kaartinen 2005). In the study of Kaartinen 
(2005), RMSE’s of energy wood assortments 
were decreased to less than half when calibrated 
with the field measured stem number of energy 
wood sized trees. However, the dataset of this 
study was quite small. 
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One special attempt to improve the description 
of stand structure by using basal area diameter 
distribution and without measuring the number 
of stems was presented by Maltamo et al. (2003), 
using a most similar neighbour (MSN) model. In 
the MSN approach, the prediction is based on one 
or a few stands which are selected from among 
a large set of measured stands. The selection is 
based on a similarity measure, which is obtained 
through a canonical correlation analysis. Maltamo 
et al. (2003) placed as much weight as possible 
upon the accurate prediction of stem number by 
using only characteristics of the stand structure 
as dependent variables in the canonical correla-
tion analysis. As a result, the RMSE and bias of 
stem number decreased without any decrease in 
the accuracy of the estimates of stand volume. 
However, the practical application of this kind of 
model is questionable for many situations, since 
the availability of modelling data (or previously 
measured data) is necessary for the end user of 
the model.

Recently, Mehtätalo (2005) developed an 
approach that utilizes sample trees whose diam-
eter and rank on the plot are known, in order to 
improve the prediction of the diameter distribu-
tion based on stand characteristics. These trees 
are called sample order statistics or quantile trees. 
Special cases of sample order statistics are sample 
minimum, maximum and median diameters, but 
any sample order statistics can be used as well, 
for example the diameter of the 4th smallest tree 
of a sample of 14 trees. Sample order statistics 
are interpreted as measured percentiles of the 
stand. In the quantile tree approach, a fixed set 
of diameter percentiles is first predicted by using 
the parameter prediction approach. These predic-
tions are subsequently improved using the meas-
ured percentiles, i.e., the quantile trees. The idea 
is illustrated in Fig. 1 with one measured quantile 
tree, but the method can be generalized to several 
trees, which can be collected either from one or 
several plots. Mehtätalo and Kangas (2005) used 
this approach to find an optimal measurement 
strategy for a single stand with respect to the 
accuracy of the total and sawtimber volume. How-
ever, no attention was paid to the small trees, and 
the quantile trees were selected randomly from 
among the sample trees of the plot. However, it 
might be advantageous to measure the sample 

order statistics in that part of the diameter dis-
tribution which is originally most inaccurate or 
which is important to be estimated accurately. 

The aim of this study is to compare different 
strategies to choose the quantile trees to be meas-
ured. Special attention is paid to the description 
of small diameter classes and especially to the 
accuracy of stem number prediction in evaluat-

Fig. 1. The idea of the quantile tree approach. The 
dashed line connecting the open circles shows the 
cumulative distribution function based on predict-
ing 12 diameters of predefined percentages using 
a priori estimated PPM models. The minimum 
diameter in a sample of 12 trees has been observed 
to be 15 cm. Based on the rank 1:12 and the pre-
dicted c.d.f., it is interpreted as a measurement of 
the 7th diameter percentile and plotted at point 
(15, 0.07). The horizontal difference between the 
observed diameter and the PPM prediction is an 
observed residual (horizontal line), which can be 
partitioned to a predicted stand effect (solid part) 
and a random residual (dashed part), according 
to the error variances of our PPM models and 
the sampling error in the quantile tree. Thus, the 
solid part is our prediction of how much the 7th 
percentile in this particular stand deviates from the 
PPM prediction. As the stand effect is correlated 
with diameters at other percentages, we can also 
predict stand effects for them to obtain an improved 
prediction for the diameter distribution (the solid 
line connecting the black circles).
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ing the strategies. In addition, the accuracy of 
obtained results is examined in relation to stand 
characteristics and the practical measurements of 
quantile trees are discussed.

2 Material

This study used a dataset collected from perma-
nent sample plots by the Finnish Forest Research 
Institute between 1976 and 1992 (Gustafsen et al. 
1988). The stands were a sample from those stands 
of the 6th and 7th national forest inventories that 
were located on mineral soils and on forest land. 
In each stand, 3 permanent circular plots were 
established. The plot size varied between stands 
and was determined so that at least 120 sample 
trees per stand were measured in southern Finland 
and 100 sample trees per stand in northern Fin-
land. The tree species and the diameter at breast 
height were recorded from all trees belonging to 
the sample plot. This study used Scots pine trees 
from 512 stands. The same data were also used 
by Kangas and Maltamo (2000c).

For comparisons between predicted and actual 
diameter distributions of the stands, the assumed 
true total volume, energy wood volume and saw-
timber volume were calculated for each stand 
using the volume functions of Laasasenaho 
(1982), based on tree diameter only. The energy 
wood consists of trees which will be used for 
energy production. The diameter of those trees 
varies between 4 and 10 cm (see Kaartinen 2005) 
and sawtimber trees were those with a diameter 

of 16 cm or more. In addition, the true number 
of stems (1/ha), DGM, age and site fertility class 
were known from each stand. In the subsequent 
analysis, these estimates are assumed to be true 
values for the stand, even though they are esti-
mated from the three circular plots. Table 1 shows 
a summary of the dataset.

In order to be able to simulate quantile trees, 
HPS plots were generated at the center of each 
circular sample plot of the data. When establish-
ing HPS plots on small circular plots, one must 
take into account that some of the trees that 
should belong to the HPS plot may be outside the 
circular plot. Assuming that the diameters of trees 
around the circular plot of radius r do not exceed 
the maximum diameter of the plot, Dmax, using a 
basal area factor q fulfilling the condition 

q D r≥ ( )50
2

max

results in that all trees of the HPS plot are within 
the circular plot. As basal area factors smaller 
than one are unrealistic in practical inventories, 
the factor on each plot was determined as

q D r= ( )





max , max1 50
2

i.e. as small a value of the factor as possible was 
used but not values below 1. On some plots, this 
resulted in quite large basal area factors, the 
maximum value being 7.35. However, in order 
to compare the results to those of Kangas and 
Maltamo (2000c), these stands were retained in 
the data. 

Table 1. Minimum, mean and maximum values of some variables in the dataset.

 Min Mean Max

DGM 5 15.6 35
Basal area 1.14 12.1 32.74
Stand age 15 67.2 183
Number of stems per ha 86.6  1193 4237
Energy wood volume per ha 0 8.4 43.5
Sawtimber volume per ha 0 38.7  181.4
Total volume per ha 4.2  66.3  201.4
Total number of measured trees per stand 15 86 154
Number of trees per HPS plot 1 10.2 24
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3 Methods
3.1 Prediction of Diameter Distribution

Let us assume that Y1,Y2,…,Yn is a random sample 
of tree diameters from a forest stand, where 
the sampling probability is proportional to the 
squared diameter of the tree. Assuming that trees 
are randomly located in the stand and no spatial 
autocorrelation exists in diameters, a sample of 
this kind is obtained from a HPS plot. The rth 
smallest observation of the sample, denoted by 
Yr:n, is a random variable that is called the rth 
sample order statistic. For example, minimum, 
median and maximum diameters of a sample are 
special cases of sample order statistics. 

A sample order statistic can be interpreted as 
an observed 100p’th percentile of the diameter 
distribution FY. If the expected value of the order 
statistic is known, p’ can be calculated by writing 
it into the distribution function as 

p F E YY r n' := ( ) 

Thus, Yr:n can be interpreted as an unbiased meas-
urement of the 100p’th percentile of the basal area 
weighted diameter distribution. However, the meas-
urement includes an error resulting from that it was 
measured from a sample. In order to calculate the 
expectation and variance of a sample order statistic, 
we need to know its probability distribution. If FY 
is the basal area weighted diameter distribution 
of the stand, the density of Yr:n is (Casella and 
Berger 2002: 229, Reiss 1989: 21)

f y

n
r n r

f y F y F

r n

Y Y
r

Y

:
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! !
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−( ) −( ) ( ) ( )  −
−
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n r( ) 
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which can be used to calculate E(Yr:n) and 
var(Yr:n), given that the diameter distribution 
FY(y) is known (see Mehtätalo 2004b, 2005). 

Borders et al. (1987) suggested a percentile-
based approach in the description of stand struc-
ture. In their approach, the diameter distribution of 
a stand is described using percentiles d1,d2,…,dk 
that correspond to fixed values p1,p2,…pk of the 
cumulative diameter distribution and a continuous 
distribution function is approximated by interpo-

lating between these percentiles. With the use of 
linear interpolation, the percentile based diameter 
distribution can be expressed as 

F y a b y
y d
d y d
y d

iY i i i i

k

( ) ≈ +
<
≤ <

≥




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
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=+

0

1
1

1

1, ,....,k −1

where bi = (pi+1 – pi) / (di+1 – di) and ai = pi – bidi. 
The percentile-based distribution can be inter-
preted either as a distribution-free method, where 
the distribution is obtained through interpolation 
between percentiles, which are interpreted as 
stand variables (Kangas and Maltamo 2000b). On 
the other hand, the distribution can be interpreted 
as a mixture of uniform distributions (Mehtätalo 
2004b), which is a parametric distribution. The 
parameters of this distribution are the percentiles, 
which can be predicted, for example, by using the 
parameter prediction method (PPM).

By using PPM with the percentile based diam-
eter distribution, the percentiles d1,d2,…,dk of a 
target stand are predicted using field measure-
ments of the predictors. Assuming that the model 
is correct and ignoring the estimation errors of the 
parameters, this approach offers expectations of 
the percentiles conditional to the values of stand 
characteristics. 

As the observed sample order statistic can be 
interpreted as a measurement of the p’th per-
centile, it includes additional information about 
the percentiles of the stand. Mehtätalo (2005) 
showed how these two sources of information 
can be combined using linear prediction theory. 
The idea of the method is presented in Fig. 1. For 
a formal presentation, let us define the vectors 
d = ( d1,d2,…,dk)’ and p = (p1,p2,…,pk)’. The PPM 
model of the percentiles can be written as

d = d x + eE ( ) ( )2

where d includes the 100pth percentiles of the 
stand, E(d | x) includes the PPM predictions of 
percentiles based on the vector of stand vari-
ables, x, and e is the vector of stand effects 
(i.e. residuals) with expectation 0 and estimated 
variance-covariance matrix D. In the traditional 
PPM approach, predictions E(d | x) are used as 
the predicted parameters of the distribution. In 
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our approach, we will also predict the vector of 
stand effects, e. 

For simplicity, the prediction method is 
described in the case of one measured sample 
order statistic per stand only. However, the method 
can be generalized to the case of several sample 
order statistics per stand, which can be measured 
either from one or several plots. When the meas-
urements are collected from several plots, each 
sample plot is treated as a separate sample, and 
the ranks are determined only among the trees 
of that plot, not among all trees of the stand. If 
several quantile trees are measured from same 
plot, the correlation of sample order statistics 
from the same plots needs to be accounted for. 
For prediction of stand effects in this case, see 
Mehtätalo (2005).

Let us first assume that one of the predefined 
percentiles was measured from a sample plot, i.e. 
p’ equals exactly the mth element of p as p’ = pm. 
In addition to the terms corresponding to those 
of model (2), the measured percentile includes 
a measurement error term, e and the measured 
percentile can be written as:

Y E Y er n r n m: : |= ( )+ +x e

where E(Yr:n | x) = E(dm | x). Terms em and e are 
the stand effect and measurement error, respec-
tively. From a purely statistical point of view, they 
are just mutually independent random variables 
with expectations of zero and variances of σ e

2 
and σe

2 = var(Yr:n | x,e), respectively. Term σe
2 is 

the error variance of the measured quantile tree. 
It is the variance of distribution (1), where the 
diameter distribution based on true stand effects 
of (2) is used as FY. As it is not known, we 
rely on predictions through an iterative approach 
described below and ignore the prediction errors. 
The expectations, variances and covariances of 
unobserved vector d and observed scalar Yr:n can 
be written as

d x

x

d x

x
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where c is the mth row and σ e
2 is the mth diagonal 

element of D. The empirical best linear predictor 
of d is

ˆ : :
d d x

x
c= ( )+

− ( )
+

E
Y E Yr n r n

eσ σe
2 2

and the prediction variance is 

var ˆ ' ( )d d D cc−( ) = −
+
1

3
2 2σ σee

However, as p’ never equals any element of p 
exactly, interpolations are needed in the calcula-
tion of E(Yr:n | x), c and σ e

2 (see Mehtätalo 2004). 
The interpolations are analogous to those needed 
when a stem curve based on fixed polar coordi-
nates is predicted with the use of diameter meas-
urements from arbitrary heights (Lappi 1986). 

As the true diameter distribution FY would 
be already needed in the calculation of E(Yr:n), 
var(Yr:n) and p’ (Eq. 1) the prediction needs to 
be carried out iteratively. At the first iteration, the 
diameter distribution based on predicted percen-
tiles E(d | x) is used as FY to calculate a prediction 
of the first step. The obtained prediction is used 
as FY and the prediction is carried out again. 
This is iterated until the iteration does not have 
a remarkable effect on the predictions. However, 
sometimes the prediction does not converge or 
the obtained set of percentiles is not monotonic 
after some iteration step. In these cases, either 
the PPM predictions E(d | x) or a prediction based 
on a reduced set of measurements can be used 
(Mehtätalo and Kangas 2005). In this study, the 
former approach was selected. The percentage 
of unsuccessful iterations varied from 1.8% with 
one sample tree per stand to 7.4% with six sample 
trees per stand. About 8% of the failures resulted 
from the iteration not being converged within 
50 steps and the rest of the 92% resulted from 
the distribution not being monotonic after some 
iteration step.

In this study, the percentile models of Mal-
tamo and Kangas (2000b) were used for 
prediction. These models predict the 0th,10th,…
80th,90th,95th and 100th percentiles of the diam-
eter distribution by using basal area, basal area 
median diameter (i.e. the 50th percentile of the 
basal area weighted diameter distribution), stand 
age and site fertility class as predictors. The 
estimated variance-covariance matrix of stand 
effects, D, is published in Mehtätalo (2004a). 
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All diameters, including the predicted percentiles 
and measured quantile trees, are used in the loga-
rithmic scale until final predictions are obtained. 
Before transformation of these predictions to the 
arithmetic scale, half of the prediction variance, 
obtained from the diagonal of (3) is added to the 
predictions. To obtain a continuous distribution 
function between the final predictions, Späth’s 
rational spline was used (Späth 1974, Lether 
1984, see Kangas and Maltamo 2000c) using 
values 30 and 25 for the tautness parameters. This 
spline was used instead of linear interpolation 
because it resulted in a more accurate estimation 
of the number of stems and total volume and made 
it possible to compare our results against the study 
of Kangas and Maltamo (2000c). 

3.2 Strategies for Selecting Quantile Trees

A total of 13 strategies were used in selecting 
the sample order statistics from the three HPS 
plots available from each stand. Each strategy 
in Table 2 describes how measurements from a 
single plot are selected. The selection rule was 
based either on the distance between the tree loca-
tion and the plot center or on the rank of the tree 
among the trees of the sample plot. We assumed 
no more than six quantile trees per stand would 
be measured. Thus, those strategies requiring one 
or two trees per plot to be measured were carried 

out by using 1, 2 or 3 plots, resulting in 2, 4 or 6 
trees per stand, and the strategies requiring three 
trees per plot were carried out by using one or two 
plots, resulting in either 3 or 6 trees per stand to 
be measured. With a given strategy and number of 
plots to be measured, each measurement strategy 
was replicated as many times as possible using 
the three plots available from each stand. Thus, 
for example, strategy 1S with one plot per stand 
was replicated three times but strategy 1S with 
three plots could be replicated only once. The 
strategies that used randomly selected quantile 
trees were replicated 50 times. In a few stands, 
the number of trees on the HPS plot was smaller 
than the strategy would have required (e.g., two 
trees on a plot where the strategy would require 
three trees to be measured). In these cases, all the 
trees of the plot were used.

3.3 Comparison of Predictions

The predicted diameter distributions were trans-
formed to a stand table using one cm diameter 
classes and the predicted number of stems per ha, 
as well as predicted energy wood, saw timber and 
total volumes per ha were calculated in a similar 
manner to that which was used to calculate the 
assumed true values. For each of these criteria, 
the bias and relative root mean squared error were 
calculated using equations 

Table 2. The strategies used.

Name Description Simulated numbers of sample trees, and corresponding
  numbers of replications per stand in parentheses

1C The tree closest to the plot center 1 (3), 2 (3), 3 (1)
1S The smallest tree of the plot 1 (3), 2 (3), 3 (1)
2S The 2nd smallest tree of the plot 1 (3), 2 (3), 3 (1)
3S The 3rd smallest tree of the plot 1 (3), 2 (3), 3 (1)
12C The 1st and 2nd closest trees to the plot center.  2 (3), 4 (3), 6 (1)
12S The 1st and 2nd smallest trees of the plot 2 (3), 4 (3), 6 (1)
13S The 1st and 3rd smallest trees of the plot 2 (3), 4 (3), 6 (1)
23S The 2nd and 3rd smallest trees of the plot 2 (3), 4 (3), 6 (1)
123C Three closest trees to the plot center 3 (3), 6 (3)
123S Three smallest trees of the plot 3 (3), 6 (3)
Sa The tree closest to saw timber limit 1 (3), 2 (3), 3 (1)
La The largest tree of the plot 1 (3), 2 (3), 3 (1)
Ra Randomly selected trees from the three plots 1 (50) ,2 (50), 3 (50), 4 (50), 5 (50), 6 (50)
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bias =
−( )∑

=
X X

n

i i
i

n ˆ
1
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RMSE %
ˆ

( ) =
−( )∑

=100

2

1
X X

n
X

i i
i

n

where X̂i and Xi are the predicted and (assumed) 
true values of the criterion variable in stand i, 
respectively, and X is the mean of the true values 
over all stands.

4 Results

4.1 Overall Performance of the Strategies

In all the strategies, the RMSE of the number of 
stems decreased steadily as the number of quan-
tile trees increased (Fig. 2). The absolute bias in 
the number of stems increased, but this increase 
did not override the effect of decreasing the vari-
ance. Selection of the closest or smallest trees of 
the plots (Strategies 1C and 1S) resulted in the 
lowest RMSE of the number of stems and of these 
two strategies, the former clearly gave a lower 
absolute bias. The accuracy of the energy wood 
prediction could also be clearly improved with 
the use of quantile trees. For example, measuring 
the second smallest tree from three plots reduced 
the relative RMSE of energy wood volume from 
46.5% to 41%. Selection from among the small-
est trees of the plots (Strategies 1S, 2S and 3S) 
resulted in the lowest RMSE and also decreased 
the absolute bias of energy wood volume. 

With respect to the accuracy of volume predic-
tion, the situation was not as clear. The volume 
prediction without quantile trees was already very 
accurate and the use of quantile trees resulted 
in only minor changes in the accuracy. In par-
ticular, the use of only one plot per stand usually 
increased the RMSE of volume regardless of the 
number of sample trees per plot and improve-
ments occurred when the number of sample plots 
increased from 1 to 2 or 3. The situation is similar 
also with sawtimber volume and seems to result 

mainly from an increase in the absolute bias 
when the number of plots is increased from 0 to 
1. The reason for this phenomenon may be a trend 
or large scale heterogeneity in the total volume 
within a stand, which causes bias in estimates 
when measurements from one plot only are used. 
Selection from among the smallest or largest trees 
of the plots (Strategies 1S, 2S, 3S and La) resulted 
in the lowest RMSEs of volume and sawtimber 
volume, while strategies 1C, 12C, 123C, Sa, La 
and Ra resulted in the lowest absolute biases. 

Kangas and Maltamo (2000c) used the same 
dataset (called INKA data in their study) and 
same criterion variables when they compared the 
methods of percentiles, Weibull, and k-nearest 
neighbours (k-nn) in the prediction of diameter 
distribution. They found the k-nn approach to 
be the best compromise between RMSE:s of 
the number of stems, volume, and sawtimber 
volume (Kangas and Maltamo 2000c). The rela-
tive RMSE:s were 23.20, 2.04 and 13.52 per cent 
and biases –23.20, –0.10 and –0.45 trees per ha, 
respectively. In this study, at least two quantile 
trees were needed to result in a corresponding 
accuracy of the number of stems (strategies 1C 
and 1S). An equally low RMSE of volume could 
be obtained only by using two closest trees from 
three sample plots and the RMSE of the sawtim-
ber volume was lower only when the largest trees 
were used as quantile trees.

In relation to the RMSE’s of all four criteria, 
the strategy using smallest trees of the plots (1S) 
performs best but it causes rather large increases 
in absolute biases. The lowest biases result from 
using strategies where quantile trees are not 
selected systematically from the extremes of the 
sample (Strategies 1C, 12C, 123C, Sa and Ra). 
However, the decrease of strategy 1S in the RMSE 
criterion is so high that it overrides the effect 
in the bias. Thus, if low absolute bias is not an 
issue, measuring the smallest tree of an angle 
count sample could be a good strategy in practi-
cal inventories.

4.2 Dependency of the Performance on 
Stand Properties

In the studies of Kangas and Maltamo (2002) 
and Mehtätalo and Kangas (2005), the optimal 
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Fig. 2. The effect of increasing the number of quantile trees on the RMSE and bias of the number of stems, volume, 
sawtimber volume and energy wood volume using different strategies in selecting the quantile trees. 
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measurement strategy of a stand was found to 
depend on stand characteristics. Thus, also in 
this study, RMSEs of criterion variables were 
plotted against stand characteristics. This part of 
this study only reports on the results of strategies 
where the number of sample trees per plot was 
one (see Table 2). Lowess smoothers were fitted 
to the data of root mean squared errors using R 
function ‘loess’ with value 1 of the smoothing 
parameter. The value of the smoother using no 
quantile trees was subtracted from the obtained 
values to make the plot more easily readable. 
The strategy that gives the lowest RMSE varies 

greatly with respect to stand characteristics, and 
in certain situations it seems profitable not to use 
quantile trees at all (Fig. 3). 

As basal area and DGM are correlated, con-
sideration of performance of strategies against 
DGM and basal area simultaneously gives a more 
realistic view of the performance than separate 
consideration of Fig. 3. Thus, the data was clas-
sified into six classes according to basal area and 
DGM. Fig. 3 and corresponding figures about 
the other criterion variables were used to deter-
mine appropriate class limits. The strategies were 
ranked in each class according to the RMSEs and 

Fig. 4. The effect of increasing the number of quantile 
trees on the bias of energy wood volume using dif-
ferent strategies in strata 11 < DGM < 18 cm, basal 
area > 12 m2/ha (upper graph) and DGM > 18, basal 
area > 12 m2/ha. 

Fig. 3. Smoothed change in the RMSE of energy wood 
volume caused by the use of quantile trees accord-
ing to strategies given in the figures with respect to 
DGM and basal area.
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standard deviations of the criterion variables. 
When one compares the RMSE and standard 

deviation of all criteria (Tables 3 and 4), one can 
see that the standard deviation behaves more logi-
cally than the RMSE, the reason being that quan-
tile trees selected from the tails of the distribution 
have a remarkable effect on the biases. In such 
a subpopulation of stands where the percentile 
model is biased, a strategy that causes an opposite 
bias cancels the bias and performs very well, but 
in another subpopulation, the same strategy may 
perform very poorly because the biases are of 
the same sign. An example of this is strategy Sa 
in Fig. 4. This is why both RMSE and standard 
deviation are considered below. 

The results of Tables 3 and 4 are not very easy 
to interpret because a large part of the variation 
is random. This effect is especially strong in the 
case of criterion variables where the differences 
between strategies are small. However, statistical 
tests that would have shown the significance of the 
differences could not be easily carried out because 
of interdependencies between observations of the 
data. Thus, in order to separate the essential dif-
ferences from the unimportant ones, total order 
was calculated for each cell of Tables 3 and 4 as 
follows. First, to obtain a relative performance 
value for each strategy with respect to each cri-
terion in a given class, each RMSE (or standard 
deviation) value was divided by the RMSE (or 
standard deviation) of the best strategy in that 
class. Secondly, these values were summed over 
the criterion variables in order to obtain a total 
performance for each strategy in a given class. 
Finally, the strategies were ordered with respect 
to this sum so as to obtain the total order. 

The total order of strategies shows that the 
strategy that uses the smallest tree is among the 
two best strategies in 8 classes out of 12 classes 
in tables 3 and 4, and the performance seems not 
to depend on stand characteristics. Other good 
strategies include those that use the second and 
third smallest trees. Also the strategy using the 
closest tree performs well, except for the class of 
largest DGM and basal area, where this strategy 
is surprisingly the worst one. The strategy that 
uses the largest trees performs well in stands with 
small DGM. 

Measuring the smallest or closest trees of a plot 
as quantile trees results in the largest improve-

ments in the accuracy of the number of stems, 
especially in stands with a small basal area. The 
energy wood volume also seems to be most accu-
rately estimated by using the smallest, second 
smallest or third smallest trees as quantile trees, 
even though in the class of smallest DGM and 
basal area the strategy of not using quantile trees 
performs best with respect to RMSE. With respect 
to the RMSE of the total volume and sawtimber 
volume, the strategy that uses the largest trees 
as quantile trees is among the best strategies, 
regardless of the stand properties but the strategies 
which select the smallest trees also perform well, 
especially in stands with large DGM. As the dif-
ferences between strategies with respect to these 
two criteria are small, they do not contribute very 
much to the total order. 

5 Discussion

This study examined how the choice of quantile 
trees affects the accuracy of stand characteristics 
derived from stand measurements and predicted 
diameter distribution. This was done by compar-
ing different strategies to measure additional trees 
from different parts of the diameter distribution. 
The basic assumption was that the diameter of 
the basal area median tree (50 % percentile) was 
known and measured. Special attention was paid 
to those forest characteristics that depend on an 
accurate description of small diameter classes, 
such as the number of stems and the energy wood 
volume. However, stand total and sawtimber vol-
umes were considered, as well. The results were 
slightly contradictory, but the main conclusion 
was that the best alternative is to carry out addi-
tional measurements from among the smallest 
trees of the HPS plot. 

In general, the most accurate strategies were 
the ones where either some of the smallest trees 
of the HPS plot or the closest tree to the centre of 
the plot was measured. In many cases, the closest 
tree is among the smallest ones since small trees 
are measured in the horizontal point sampling 
only near to the plot centre. From among all pos-
sible quantile trees, the smallest tree is perhaps 
the easiest alternative to be correctly determined 
in the field without measuring the diameters of 
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Table 3. The order of strategies where one tree/plot was selected according to the RMSE of the four criterion 
variables. Abbreviation “No” means no quantile trees used, the other abbreviations are in Table 2. The table 
is based on simulated realizations where the number of quantile trees was equal to or less than 3.

  Basal area < 12      Basal area > 12

DGM < 11  n = 141        n = 23

 RMSEN 1S Cl 2S Ra La 3S Sa No 2S 1S 3S Cl Ra La Sa No
 RMSEEnergy No 3S Cl 2S 1S Ra Sa La No Cl 3S 1S 2S Ra Sa La
 RMSEVolume La Sa No Ra 3S Cl 2S 1S No Cl Ra Sa La 1S 3S 2S
 RMSESawtimber La Sa Ra 1S 2S Cl 3S No La Sa Ra 3S 2S 1S Cl No
 Total order Cl 1S La 3S 2S No Ra Sa La 1S Sa 2S Cl 3S Ra No

11 < DGM < 18  n = 82       n = 96

 RMSEN Cl 2S 1S 3S Ra No La Sa No La Cl 3S 1S Ra Sa 2S
 RMSEEnergy 3S Sa 2S Ra 1S La Cl No 2S 3S 1S Sa Ra La Cl No
 RMSEVolume La Cl Ra Sa 3S No 2S 1S No La Cl 1S 3S Ra Sa 2S
 RMSESawtimber Sa La Ra Cl 3S 2S 1S No La Cl Sa Ra No 1S 2S 3S
 Total order La Sa Cl Ra 3S 2S 1S No La Cl 1S No 3S Ra 2S Sa

DGM > 18  n = 54       n = 125

 RMSEN Cl 1S 2S Ra 3S No La Sa 3S La 1S Ra 2S No Cl Sa
 RMSEEnergy 2S Cl 1S La 3S Ra No Sa 2S 1S 3S Sa La Ra Cl No
 RMSEVolume Cl 2S 1S 3S No Ra La Sa 3S 1S 2S La Ra Sa No Cl
 RMSESawtimber 2S Cl No 3S 1S Ra La Sa La 3S No 1S Ra 2S Sa Cl
 Total order Cl 2S 1S 3S Ra No La Sa 3S 1S 2S La Ra Sa No Cl

Table 4. The order of strategies where one tree/plot was selected according to the standard error of the four criterion 
variables. For clarification, see Table 3.

  Basal area < 12     Basal area > 12

DGM < 11  n = 141       n = 23

 seN 1S Cl 2S La Ra Sa 3S No 2S 1S 3S Cl La Sa Ra No
 seEnergy Cl 3S No 2S 1S Ra La Sa Cl 2S 3S 1S Ra Sa La No
 seVolume La Sa 3S No Ra Cl 2S 1S No 1S 2S Sa Cl 3S La Ra
 seSawtimber La Sa Ra 1S 2S Cl 3S No La Sa 3S 2S 1S Cl Ra No
 Total order Cl 1S La Sa 2S 3S Ra No 2S 1S 3S Cl La Sa Ra No

11 < DGM < 18  n = 82       n = 96

 seN 2S 3S Cl Ra 1S La Sa No 1S La 3S No 2S Cl Ra Sa
 seEnergy 3S Cl Ra 2S No La 1S Sa La No Cl 3S 1S 2S Ra Sa
 seVolume 3S La Ra Cl 2S No Sa 1S 1S La No 3S Cl 2S Ra Sa
 seSawtimber La Sa Ra Cl 1S 2S 3S No La Cl 2S 1S 3S No Ra Sa
 Total order 3S La Cl Ra 2S Sa 1S No La 1S No 3S Cl 2S Ra Sa

DGM > 18  n = 54       n = 125
  

 seN 1S Cl 2S Sa Ra 3S La No 2S 1S 3S Ra La Sa Cl No
 seEnergy 2S 1S Cl La Sa 3S Ra No 2S 1S 3S La Ra Sa Cl No
 seVolume 1S Sa 2S Cl Ra 3S La No 2S 3S 1S La Sa Ra No Cl
 seSawtimber Sa 2S 1S Ra Cl 3S La No La 3S 1S No 2S Sa Ra Cl
 Total order 2S 1S Sa Cl Ra 3S La No 3S 1S 2S La Sa Ra No C
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other trees of the HPS plot. This is because it is 
necessarily rather close to the plot center and all 
trees that are far from the center are necessarily 
larger than it. There is a tradition in Finland to 
assess minimum diameter at the stand level as 
a part of the inventory by compartments so as 
to support the prediction of basal area diameter 
distribution (see e.g. Päivinen 1980). However, 
finding a population minimum from a stand is not 
very easy; finding a minimum of a small sample 
plot is much easier. Thus, measuring the smallest 
trees of HPS plots as quantile trees is supported 
both by reduction in RMSE and by the practical 
issues discussed above. 

The use of large trees as quantile trees did 
not lead to as satisfactory results as the use of 
smaller trees did, even though they were useful in 
the prediction of volume and sawtimber volume. 
The reason may be that basal area diameter dis-
tribution already gives much weight to larger 
trees. Thus, even though the largest trees reduce 
the standard deviation of volume prediction, the 
reduction is so small that an increase in bias 
cancels it. In addition, the basal area median tree 
was expected to be known, which also may have 
the effect that no additional information could be 
obtained from the largest end of the distribution 
by using quantile tree measurements. 

When the results of this study are compared 
to those of the study by Maltamo et al. (2003) it 
can be seen that the use of quantile trees did not 
improve accuracy of stem number as much as 
did the MSN based non-parametric application 
where stem number was given special attention. 
In the study by Maltamo et al. (2003), the use of 
the same percentile models as in this study led to 
an RMSE of stem number of 26.77%, while with 
the MSN method, it was as low as 18.39% in a 
dataset that is a subset of the data of this study. 
On the other hand, in this study the use of quantile 
trees also improved the prediction of sawtimber 
volume, whereas in the case of MSN, the accuracy 
decreased. The reason for the worse results in the 
prediction of stem number may be that in this 
study, an existing model was calibrated, whereas 
in the study by Maltamo et al. (2003) a whole 
diameter distribution model was constructed. 
Thus, there are methods that produce higher accu-
racy with respect to some criterion variables, but 
the quantile tree approach, which only utilizes 

the information measured from the target stand, 
seems to be a rather safe approach with respect to 
all criterion variables used, and seems to produce 
a prediction that is rather good for any part of the 
diameter distribution. In addition, paying more 
attention to the accuracy of the stem number in 
the modelling stage could probably lead to the 
percentile models providing higher accuracy in 
relation to the number of stems.

In Finland, there is increasing pressure to 
change the current small area forest inventory 
system, which is based on a field inventory of 
forest area by stands. This system has been found 
to be inefficient, expensive and inaccurate for 
modern information needs. The main ways to 
develop inventory have been the use of remote 
sensing methods and optimization of field mea-
surements. In the case of remote sensing, lidar 
based applications, in particular, have provided 
very promising results (e.g. Maltamo et al. 2006). 
In fact, more accurate stand level variable esti-
mates have been produced than in the case of the 
current field assessment based system. However, 
especially in stands with very valuable tree stock, 
there is also a need for a highly detailed descrip-
tion of stand structure and timber assortments. In 
such cases, the approach used in this study and in 
Mehtätalo and Kangas (2005) may be the optimal 
way to derive sufficient information. 

The result that extreme quantiles improve pre-
dictions more than intermediate quantiles is also 
an interesting result from a theoretical point of 
view. The distributions of intermediate order sta-
tistics are more symmetric and closer to normal 
distribution than those of extreme order statistics, 
which are skewed. Asymptotically, the distribu-
tion of intermediate sample order statistics is a 
normal distribution, while the distributions of 
minima and maxima are asymptotically extreme 
value distributions (Reiss 1989). As the prediction 
method is based on an assumption about linearity, 
it should work best under normality. Because of 
the correlation structure of the percentile models, 
a measured minimum diameter larger than the 
corresponding PPM prediction tends to narrow 
the distribution from both ends, and a small mini-
mum, correspondingly, tends to make it wider. 
Since the distribution of the minimum is skewed 
to the right, extremely large minimums are more 
probable than extremely small minimums. Corre-
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spondingly, extremely small maximums are more 
probable than extremely large maximums. This is 
why the method more likely narrows the predicted 
distribution than makes it wider, especially when 
extreme order statistics are used. This explains 
why extreme order statistics increased the biases 
more than intermediate ones. 

In the original percentile models, the standard 
errors increased steadily the more the predicted 
percentile differed from the known percentile, 
50% (Kangas and Maltamo 2000b). The extreme 
percentiles were the most difficult ones to model. 
This is due to both the nature of the extreme statis-
tics (above) and the fact that the percentiles closer 
to 50% also correlate more with it. Therefore, 
additional information from these parts of the dis-
tribution is likely to improve the results more than 
information from the intermediate parts of the 
distribution. Thus, even though the assumptions 
behind the method are better fulfilled by using 
intermediate order statistics, the greater informa-
tion content of extreme order statistics make them 
more useful than the intermediate ones. 

As measurements of order statistics from the 
same sample are correlated, two quantile trees 
from the same plot do not provide as much infor-
mation as two order statistics from different plots. 
This can be seen, for example, in that with an 
equal number of quantile trees per stand, strate-
gies 1S and 2S give lower RMSEs than strategy 
12S (Fig. 2). In addition, a trend in stand structure 
within the stand may cause the quantile trees to 
decrease the accuracy when measured from one 
plot only, as was seen in the case of total and 
sawtimber volume (Fig 2). Thus, most informa-
tion would be achieved by measuring one quantile 
tree from several plots. 

It may sometimes be necessary to measure 
more trees than one per plot in order to sort them 
correctly. In this case, one would be willing to use 
all measured diameters as quantile trees. How-
ever, this would make the strategy used depend-
ent on the sample obtained. For example, if we 
originally aim at using the smallest tree of the plot 
but need to measure also the second smallest one 
because of a small difference in diameter between 
these two trees, the measured second smallest 
tree is likely to be abnormally small. Using both 
the measured trees would then lead to purposive 
sampling, which should generally be avoided 

(Gregoire 1998). Thus, we warn about using this 
strategy before studying its effects on accuracy. 
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