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The aim was to produce models for a large number of stand characteristics of Norway spruce 
dominated stands. A total of 227 national forest inventory based permanent stand plots, 
dominated by Norway spruce (Picea abies), were used in modelling eight stand variables as 
a function of the stand mean biological age and site characteristics. The basic models were 
able to characterize the average development of the modelled stand variables, but resulted 
in a relatively high RMSE. Basal area (G) and stem number (N) were the most inaccurate, 
having a RMSE of 34–41%, while that of mean diameter and height characteristics varied 
between 16–20%. The expectations and error variances of the basic models were calibrated 
with known stand variables using linear prediction theory. The best linear unbiased predic-
tor (BLUP) with a single stand variable used for calibration proved to be ineffective for 
unknown G and N, but relatively effective for the unknown mean characteristics. However, 
calibration with one sum and one mean characteristic proved to be effective, and additional 
calibration variables enhanced the precision only marginally. The BLUP method provided 
a flexible approach when characterizing the relationships between a large number of stand 
variables, thus enabling multiple use of these models because they were not fixed to a specific 
inventory system.
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1 Introduction
Typically the need for modelling individual stand 
characteristics, or relationships between such 
characteristics, arises from the fact that different 
variables are assessed or that changes occur in 
inventory practices over time. In order to avoid 
having to carry out laborious measurements in 
practical forest management planning inven-
tory work, the description of a stand structure is 
simplified to cover a number of mean and sum 
characteristics. Thus, in such case prediction of 
the breast height diameter (dbh) distribution is 
needed in order to be able to use Finnish simula-
tion systems, such as MELA and MOTTI. Both 
are forestry models designed for decision support 
systems. MELA (see DemoMELA 2004) was 
designed 1970s for regional and national timber 
production analysis, while MOTTI (see MOTTI-
ohjelmisto s.a.) was published in 2005 for stand 
level analysis. Both these models needs distribu-
tion models for the initial structure of the stands 
because they are based on tree-level modelling. 
In Finland, the typical variables characterizing 
dbh and height distributions are either i) basal 
area ha–1 (G), basal area-median tree includ-
ing measured dbh (dgM) and height (hgM), or ii) 
number of trees ha–1 (N), mean height (H) with 
the corresponding mean diameter (D), if H > 1.3 m 
(see Solmun… 1997, Kuvioittainen… 1998). The 
latter variables are typically assessed in young 
stands up to the first thinning stage using fixed 
area samples, and the former in more advanced 
stands using relascope sampling. Stand total age 
(T) is determined from the visually assessed 
median tree by counting the number of branch 
whorls or by boring to the pith at breast height. 
In the latter case, the number of years elapsed up 
until 1.3 m height is reached have to be added. 
The average age additions can be obtained from 
a table by species, site types and degree days 
(Solmun… 1997). Sometimes stem number is 
required in addition to basal area and basal area-
weighted variables (Kuvioittainen… 1998). Also, 
dominant age (Tdom) and dominant height (Hdom) 
are included in the same instructions. 

Nowadays, each of the above-mentioned stand 
characteristics is visually assessed on a species-
specific basis if their dimensions seem different. 
Thus, stand total basal area or stem number and 

the tree species proportions can be calculated 
from the given characteristics. Otherwise, the 
mean characteristics are common for all the spe-
cies, and the given sum characteristics are stand 
total basal area or stem number. In this case, the 
species present are characterized on the basis of 
their proportions of basal area or stem number, 
depending on which one is assessed (Solmun… 
1997).

Predicting dbh distributions for young stands 
is problematic because the existing models are 
based on basal area and basal area-weighted 
characteristics (e.g. Päivinen 1980, Kilkki et al. 
1989, Maltamo 1997). The more recent distri-
bution models aim to enhance accuracy using 
stem number as an additional independent vari-
able in addition to dgM and G (Siipilehto 1999, 
Kangas and Maltamo 2000). The only distribu-
tion model for a seedling stand has been devel-
oped for planted Norway spruce utilizing mean 
height and stem number as input variables for the 
height distribution (Valkonen 1997). Alternative 
basal area-dbh distribution models are applied in 
the MELA and MOTTI simulation systems, and 
some of them include stem number as an input 
variable. Thinning rules may call for the relation-
ship between basal area and stem number. Stem 
number based thinning originally arose from the 
assumption that it is easier for a machine driver to 
control number of stems than basal area, which is 
left growing after thinning (Niemistö 1992). The 
MELA simulation system applies stem number 
based first thinnings, but basal area based later 
thinnings (Siitonen et al. 2001). Thinning direc-
tions for Metsähallitus included rules based on 
basal area and, alternatively, on stem number 
(Hokajärvi 1997).

The relationships between some stand char-
acteristics can be mathematically defined. For
example, the quadratic mean 

D dbh nq = ∑ 2 /

can be defined directly from stand basal area 
and stem number as D G kNq = / , in which 
k = [π / (2 · 100)2]. Thus, basal area is given by 
G = Dq

2 kN and stem number by N = G / (Dq
2 k). 

Due to above relationship, Dq has been used for 
forestry applications. Unfortunately, Dq is not 
assessed in the Finnish field work because it is 
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not an easily defined mean, unless both stem 
number and basal area is known. Sometimes the 
above equation for G or N has been applied as a 
‘trivial transformation’ with D or dgM instead of 
Dq resulting in bias in basal area or stem number, 
respectively. More recently, models for G and 
dgM using D and N as independent variables were 
developed for the MELA simulation system in 
order to avoid such bias (Nissinen 2002). 

In Norway, Eid (2001) computed Dq directly 
from N and G, when he developed models for qua-
dratic mean diameter and stem number. Models 
were adapted to available variables obtained from 
relascope, photo and visual inventories, while the 
earlier models published by Næsset (1995, 1996), 
which included crown closure, were applicable in 
photo inventories. Models adapted to field inven-
tories by Andreassen (1988) have become out 
of date for current inventories. Existing Finnish 
models (Nuutinen 1986, Niemistö 1992, Nissinen 
2002) and inventory practices called for new and 
supplementary models. Because the above-men-
tioned mathematical relationships could not be 
directly utilized with the Finnish forest manage-
ment planning data, it seemed not worthwhile 
formulating relationships of the issued stand vari-
able with other stand variables that would have 
fixed it to a specific inventory system. Instead, all 
stand characteristics have a logical dependence on 
stand age, which is also an essential variable for 
forest management planning.

The aim of this study was to develop prediction 
models for a number of stand characteristics. We 
selected Norway spruce (Picea abies (L.) Karst.) 
dominated stands to present the method, but simi-
lar models are needed for Scots pine and birch 
dominated stands as well. The stand characteris-
tics included were basal area and number of stems 
per hectare, mean and dominant diameter and 
the respective height, as well as the diameter and 
height of the basal area-median tree. The models 
were intended to have two important properties: 
1) prediction should be available with a limited 
number of known characteristics (e.g. stand age 
and some site properties), and 2) it should be pos-
sible to calibrate the prediction with an arbitrary 
set of the above-mentioned variables whenever 
they are known.

2 Material and Methods
2.1 Modelling Data

The data were obtained from national forest 
inventory (NFI) based permanent sample plots 
in advanced stands (Hdom ≥ 5 m) and seedling 
stands (Hdom < 5 m). Norway spruce dominated 
stands were selected as the modelling data. The 
7th NFI-based permanent sample plots mainly 
consisted of a cluster of three circular plots within 
a stand. The total number of tallied trees was 
about 100–120 per stand. The smallest trees were 
not measured, if they were considered unsuitable 
for growing (e.g. had inadequate growing space). 
A smaller radius has been applied within each 
circular plot in order to select one-third of the 
sampled area for height (and other more detailed) 
measurements (see Gustavsen et al. 1988). For 
the purpose of the present study, each cluster 
of three plots was combined in order to obtain 
reliable stand characteristics. Näslund’s (1936) 
height curve was fitted by stand and by tree spe-
cies. The height characteristics (H, hgM, Hdom) 
were obtained from the fitted height curve corre-
sponding to the respective diameters D, dgM, and 
Ddom. The first measurement of advanced stands 
and the second measurement of seedling stands 
were used as cross-sectional modelling data. The 
numbers of Norway spruce dominated advanced 
and seedling stands were 206 and 21, respectively. 
Data were restricted to consist of D > 0.5 cm and 
G > 0.5 m2ha–1, which resulted in the omission of 
four of the original observations. The means and 
variations of the most important variables of this 
study are given in Table 1.

The most typical site for Norway spruce was 
Myrtillus type (MT) mesic heath (see Cajander 
1925). Better sites included four grove Oxalis-
Mianthemum (OMaT) and 95 grovelike Oxalis-
Myrtillus type (OMT) stands, while the less fertile 
site included only four stands of Vaccinium type 
(VT) sub-xeric heath. Although these site types 
are typical in Southern Finland, these abbrevia-
tions are used throughout this paper to represent 
the corresponding sites in the whole country 
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2.2 Model Construction and Fitting

The structure of the models was assumed to be 
multiplicative (e.g. Nuutinen 1986, Eid 2001). 
The models were fitted using multiple linear 
regression after logarithmic transformations. The 
following eight dependent variables were fitted 
simultaneously: 1) total basal area (G, m2 ha–1), 
2) total stem number (N, ha–1), 3) arithmetic mean 
diameter (Ds, cm), 4) basal area median diameter 
(dgMs, cm), 5) dominant diameter (Ddoms, cm), 6) 
mean height (H, m), 7) basal area-median height 
(hgM, m), and 8) dominant height (Hdom, m). The 
basic models represented the average develop-
ment of each stand variable over the stand total 
(biological) age. The common structure of the 
candidate model was as follows:

ln(Y) = a0 + a1 ln(T) + a2 Tk + a3 ln(DD) + a3 
Origin × Tk + aj Sitej + ε 

(1)

where
T = total age (yrs), and the candidate power k was 

either –0.5 or –1
DD = degree days (i.e. average annual sum of the 

mean temperatures above +5 °C)
“Origin” is a dummy (value either 0 or 1) for artifi-

cial regeneration methods and
“Site” consists of dummy variables associated with 

a certain site (j) defined as forest types by 
Cajander (1925), and the supplementary site 
characteristic such as stoniness and paludifica-
tion

a0–ai are estimated parameters of the model and 
ε  is the random error

The models for the sum characteristics (ln(N), 
ln(G)) were formulated for the stand totals. 
Norway spruce specific characteristics were 
determined on the basis of the species propor-
tion, P (0 < P ≤ 1), such that the logarithm of P was 
added to the model (e.g. ln(Gspruce) = ln(Gtotal) 
+ ln(PGspruce)). This approach ensured that the 
model i) corresponded more or less to the ‘poten-
tial’ of the site, ii) avoided useless variation/errors 
caused by mixed species, and iii) the species-spe-
cific random error of the logarithmic model could 
be directly calculated for calibration purposes. 
The breast height mean characteristics were trans-
formed to stump level (Ds, dgMs, Ddoms) using the 
equation ds = 1.25 × dbh + 2.0 according to Laasa-
senaho (1975). This was done in order to ensure 
continuous development of the mean diameters 
in relation to stand age and mean heights. How-
ever, the basal area was not transformed to stump 
height because, as it is a sum characteristic, the 
analytic form could not be derived from the stump 
height mean diameter. Additionally, respective 
transformation with an intercept and a multiplier 
would have caused bias after back transformation 
in mixed stands. 

The origin of a stand was assumed to affect the 
development of stand characteristics. In order to 
avoid overestimating the effect of artificial regen-
eration, it was assumed to enhance particularly 
the early development of a stand but to diminish 
along with increasing age (e.g. due to thinnings). 
Therefore, the origin dummy was divided either 
by stand age or its square root depending on the 
better fit in terms of RMSE and residual varia-
tion against stand age. Dummy variables were 
also used for characterizing significant differences 
caused by different site types. Stoniness and palu-
dification were also taken into account because of 
their retarding effects on growth and yield. 

Models were multivariate, i.e., several models 
were fitted simultaneously (systems of equa-

Table 1. Stand variables of the modelling data including 
Norway spruce dominated stands.

Model data Mean Std Min Max
 (n = 227)

DD 1112 127 732 1348
T 71.4 35.3 13 168
G 15.7 7.3 0.9 30.9
N 1210 599 328 3242
Gtot 18.0 7.8 0.9 36.7
Ntot 1365 624 328 3328
D 12.4 4.8 2.0 27.0
H 10.7 4.3 2.3 23.8
dgM 17.2 6.5 3.0 35.0
hgM 14.2 5.4 3.0 27.1
Ddom 22.8 7.3 5.4 37.3
Hdom 16.4 5.6 3.8 29.6
Gsp% a) 0.877 0.156 0.116 1.00
Nsp% b) 0.891 0.139 0.267 1.00

a) Proportion of Norway spruce out of the stand total basal area
b) Proportion of Norway spruce out of the stand total number of 

stems
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tions) to the same dataset. Due to the correlation 
between different models, the fitting of the indi-
vidual models separately would not be efficient 
estimation approach (Zellner 1962). Error struc-
ture of the ordinary least square (OLS) fit was 
utilized in re-estimating parameters of correlated 
response variables using the seemingly unrelated 
regression (SUR) method. In our case re-estima-
tion was possible because there were some inde-
pendent variables that were not common for all 
the models (Zellner 1962). Estimation was made 
using SYSLIN procedure in SAS package (SAS/
ETS User’s Guide 1993) giving the estimated 
cross-model error variance-covariance structure 
as an output.

2.3 Model Application and Validation

The error terms of statistical models are random 
variables. The cross-model error variance-cov-
ariance matrix is valuable when calibrating the 
expected value using linear prediction theory (e.g. 
Lappi 1991). The best linear unbiased predictor 
(BLUP) for variable x1 is

ˆ ( )x x1 1 12 22
1

2 2 2= + −( )−µ µσ Σ

where
x1 is a scalar (dependent unknown variable) and
x2 is a vector, (known stand variables)
σ12 is a row vector (covariances between unknown 
dependent and known variables), and
Σ22 is the variance-covariance matrix of x2 (between 
known variables)

The variance of the calibrated dependent vari-
able x1 is:

var( ˆ ) ( )x x1 1 11 12 22
1

12 3− = − ′−σ σ σΣ

where
σ11 is a scalar (initial variance of the residual error of 
the dependent variable), and
σ12´ is a transpose of the row vector σ12

When assuming the residual errors of the loga-
rithmic models to be multinormally distributed, 
half of the error variance (sε2 / 2) had to be added 
to the intercept in order to avoid bias when trans-

forming back to the original scale. Thus, in the 
applied method, the variance (3) was recalculated 
whenever the calibrating variable for prediction 
(2) was changing. 

When developing the structure of the models, 
the RMSE of the fitted model was examined as 
well as the residual variation of each model with 
respect to its expected value, temperature sum, 
and stand age. In addition, model behaviour was 
checked visually in order to ensure logical behav-
iour of the models when using a wide range of 
independent variables, especially stand age. The 
effect of calibration was examined with respect 
to RMSE, i.e. the square root of Eq. (3). The 
models could be calibrated with any combina-
tion of the presented variables. However, in order 
to restrict the combination to the most relevant 
ones, the examples of the model application given 
here focused on calibrating basal area weighted 
characteristics (dgM, hgM and G) with arithme-
tic stand characteristics (D, H and N), and vice 
versa. Finally, the biases were calculated in the 
original scale after back-transformation. Some 
examples are given to show changes in residual 
errors resulting from calibration. 

3 Results

3.1 Estimated Models

In order to be able to benefit for the SUR estima-
tion, some of the independent variables should 
not be common for all the models. The SUR 
method proved to be advantageous, e.g. some 
of the independent variables became significant, 
while they were insignificant (or only marginally 
significant, 0.05 < P < 0.1) in the original OLS fit. 
These variables were degree days in the model 
for G, and stoniness in the models for D and dgM. 
Using mainly the same variables and transforma-
tion in the models ensured logical behaviour of 
the models. The curves for diameters or for the 
corresponding heights did not cross each other 
(i.e. D < dgM < Ddom and H < hgM < Hdom). If we 
focus on model behaviour at the age when height 
(H, hgM) crossed breast height, 1.3 m (i.e. thresh-
old for dbh), then the corresponding diameter 
(D, dgM) received a reasonable value of 0.6−0.7 
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cm, while G was 0.2−0.5 m2 ha–1 and N varied 
between 2500−4000 ha–1.

The most typical site for Norway spruce is 
MT mesic heath (Cajander 1925) and therefore 
formed the basic level of the models. Dummy 
variables were formed for grove and grovelike 
sites (denoted as OMT+) and for sub-xeric heath 
(VT). The effect of site fertility on the stem 
number or basal area was clear and could be 
explained on the basis of the differences in growth 
potential with respect to the site classes. Thus, 
increasing fertility resulted in more rapid develop-
ment and greater basal area (Fig. 1a), but a lower 
number of stems ha–1 at the given age (Fig. 1b). 
The number of stems was about 26% lower on 
OMT+ compared to the basic level of MT. The 
VT site did not significantly differ from the MT 
site as regards stem number, while the basal area 
was only 57% of that on MT (Table 2, Fig. 1a). 

Site type had an obvious effect on the stand 
dimensions. Thus, on OMT the diameters (D, 
dgM, Ddom) and heights (H, hgM, Hdom) were 
about 20−30% higher than on MT, while on the 
VT site these diameters were about 20% lower 
and the heights about 25% lower (Table 2). Fig. 
1d shows that hgM on the grovelike OMT site 
was even higher than Hdom on the mesic MT site 
when the age of the stand was above 40 yrs. The 
growth of spruce is known to be relatively poor 
on sub-xeric VT sites, as can be seen in Fig. 1d. 
For example, the dominant height (Hdom) on the 
VT site was about the same as the arithmetic mean 
height (H) on the OMT site, while Hdom on OMT 
was 54% higher than on VT. 

The structure of the data was such that plant-
ing only occurred among the rather young stands 
(mean age 28 yrs and max age 79 yrs), while 
the oldest stands (up to 168 yrs) were naturally 
regenerated. Thus, the risk of overestimating the 
response of artificial regeneration methods among 
older stands (beyond the data) was obvious if a 
plain dummy had been used. Instead, the effect of 
planting was modelled as a function of age. This 
effect was more obvious on the arithmetic means 
than on the basal area weighted means (Table 2, 
Fig. 1c). Finally, artificial regeneration did not 
show any significant effect on the dominant tree 
characteristics. In 20-year-old stands, planting 
enhanced the diameters (increase in D was 1.2 cm 
and in dgM 0.4 cm). Later on the planting effect 
diminished such that in a 100-year-old stand the 
increment was 0.9 cm and 0.24 cm in D and dgM, 
respectively. Respective differences in H and hgM 
were 101 cm and 37 cm at the younger stage and 
85 cm and 31 cm at the older stage. 

The considerably higher arithmetic means in 
planted stands reflected evidence from the lower 
proportion of small trees compared to naturally 
regenerated stands. In conclusion, the diameter 
and height distributions became more peaked as 
a result of artificial regeneration. However, the 
differences evened out with increasing age, and 
the logical explanation was the commonly used 
thinning method, selection from below. 

Finally, whether the sites were exceptionally 
stony or there were signs of paludification were 
taken into account. These factors typically reduce 
the actual yield from the potential yield of the 

Table 2. SUR models for stand characteristics. All the estimated parameters were highly significant (P < 0.001) 
unless shown by ** (P < 0.01) or * (P < 0.05).

Model ln(G) ln(Ds) ln(dgMs) ln(Ddoms) ln(N) ln(H) ln(hgM) ln(Hdom)

Intercept 1.5010 –0.2359 0.2187 0.5952 9.1266 –6.3478 –5.4207 –4.2363
ln(T) –0. 7212    –0.4696   
T–1 –81.6405 –31.9044 –29.078 –25.303  –38.438 –34.939 –30.432
ln(DD) 0.8136 0.5092 0.4815 0.4599  1.326877 1.2296 1.0754
Planted T–1 8.3498 4.4787 0.9572*   5.0247 1.3477** 
OMT+ 0. 2057 0.2217 0.2349 0.1962 –0.3044 0.2042 0.2002 0.1567
VT –0. 5685 –0.2349** –0.2216** –0.2403**  –0.3198** –0.2914** –0.2743**
Stony –0. 1713** –0.0770** –0.0628** –0.0754*  –0.1145** –0.0926** –0.0929**
Paludified  –0.1143** –0.1421 –0.1335 0.2396* –0.1317 –0.1623 –0.1527
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Fig. 1. a and b. The effect of site on the stand sum characteristics by stand age (T, yrs). Curves for G (m2 ha–1) 
correspond to OMT planted (− −), OMT (- - -), MT (—) and VT (– - – -) stands (Fig. 1a). Stem number curves 
(N, ha–1) represent MT paludified (− −), MT (—), OMT paludified (– - – -) and OMT (- - -) sites (Fig. 1b).

c and d. Mean diameter (cm) and height (m) characteristics by stand age, T (yrs). Effect of planting (dotted 
line) was shown on D and dgM, while Ddom was not affected by the origin (Fig 1c). Mean heights: H (dotted), 
hgM (solid) and Hdom (dashed line) on Cajanderian site types from the bottom to the top representing VT, 
MT and OMT (Fig. 1d). 
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site in question. The estimated retarding effect of 
stoniness and paludification on most of the stand 
variables was between 6–24%. An exceptional 
increase in the number of stems was probably due 
to enhanced germination on the moist surface of 
the ground (see Fig. 1b).

3.2 Calibrating the Model

The covariances and correlations coefficients of 
the cross-model error, as well as the error vari-
ances of the models, are given in Table 3. The 
correlation scatter plot showed close to linear 
dependence between residual errors of the models 

(Fig. 2). Stem number was negatively correlated 
with the other stand variables, except basal area, 
and the correlation coefficients were generally 
the lowest (absolute values of r between 0.22 and 
0.58). The second lowest correlations were found 
between basal area and the other stand variables 
(r = 0.31−0.55). Both of these sum characteristics 
typically vary greatly due to differences in man-
agement activities. However, additional variation 
due to mixed tree species was prevented by mod-
elling the stand total basal area and stem number. 
Naturally, the individual mean characteristics 
were highly correlated. The highest correlation 
was found between hgM and Hdom (r = 0.93), while 
the highest between the diameters were those 

Fig. 2. Correlations of the cross-model residual errors for basal area (G), stem number (N), mean 
dbh (D), basal area median dbh (dgM), mean height (H) and basal area median height (hgM).
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between dgM and Ddom (r = 0.89) and D and dgM 
(r = 0.80) (Table 3). 

BLUP was flexible because any of the known 
stand variables could be used for calibrating the 
estimate of the dependent variable, the stand age 
being the only stand variable required. The cali-
bration efficiency of the individual stand variables 
in terms of RMSE is given in Table 4. The initial 
RMSE (16−41%) was substantially diminished 
after model calibration. When calibrated with 
the three stand variables (N, D and H), RMSE 
diminished from 34% to 18% for G and from 
18−19% to 11% for dgM and hgM. Respectively, 
RMSE for N decreased from 41% to 24% and 
those for D and H from 19−21% to 11% when 
calibrating with dgM, hgM and G. It was obvious 
that calibrating the sum variables (G, N) with only 
one stand characteristic was not efficient; RMSE 

decreased by only 3−6 percentage units. On the 
other hand, calibration with two variables (sum 
and mean characteristic) resulted in almost the 
same accuracy as calibration with an additional 
third variable. Nevertheless, there was clearly 
improved accuracy of the calibrated mean when 
only one calibrating mean characteristic was used; 
at its best, calibration with only dgM decreased 
RMSE of hgM from 18.7% to 8.5%, and that 
of Ddom from 16.4% to only 7.5% (Table 4). A 
more relevant example from the forest manage-
ment planning standpoint, calibrating dgM with 
D, resulted in a RMSE of 11%. 

The dominant diameter and dominant height 
were also calibrated either with arithmetic (RMSE 
of 11%) or basal area weighted characteristics 
(RMSE of 6%) (Table 4). In the present study, 
Ddom and Hdom were not applied for calibration 

Table 3. Cross model error covariances above the diagonal, variances on the diagonal (in bold) and correlation 
coefficients below the diagonal (italics) for Norway spruce.

 G N D dgM H hgM Ddom Hdom

G 0.11788 0.05478 0.02509 0.01977 0.03768 0.03090 0.02821 0.03218
N 0.38493 0.17178 –0.04461 –0.04288 –0.03149 –0.02775 –0.02461 –0.01563
D 0.39470 –0.58134 0.03427 0.02719 0.03433 0.02536 0.02231 0.01995
dgM 0.31307 –0.56246 0.79849 0.03384 0.02612 0.03063 0.02693 0.02365
H 0.53580 –0.37092 0.90523 0.69327 0.04196 0.03136 0.02371 0.02607
hgM 0.48111 –0.35798 0.73227 0.89015 0.81866 0.03498 0.02701 0.02948
Ddom 0.49962 –0.36099 0.73285 0.89016 0.70379 0.87808 0.02705 0.02457
Hdom 0.55343 –0.22271 0.63636 0.75910 0.75146 0.93056 0.88197 0.02869

Table 4. RMSE (%) for uncalibrated (number of x2 = 0) and calibrated (number of x2 = 1−3) models. A missing 
numeric value indicates its use as a calibrating variable (x2). 

Model n of x2

 0 1 1 2 3 1 1 2 3

 RMSE, % RMSE, % RMSE, % RMSE, % RMSE, % RMSE, % RMSE, % RMSE, % RMSE, %

G 34.3 31.7 31.5 18.0 17.7 - 33.5 - -
N 41.4 - 33.7 - - 38.3 35.3 24.3 24.3
D 18.5 15.1 - - - 17.0 11.2 10.8 10.8
dgM 18.4 15.2 11.1 10.8 10.8 17.5 - - -
H 20.5 19.0 8.7 7.8 - 17.3 14.8 13.1 11.3
hgM 18.7 17.5 12.7 12.6 10.6 16.4 8.5 7.5 -
Ddom 16.4 15.3 11.2 11.1 11.1 14.2 7.5 6.4 6.3
Hdom 16.9 16.5 13.1 12.7 11.0 14.1 11.1 9.5 5.5

Note: RMSE, % = 100 1 1var( ˆ )x x−  (see Eq. 3)
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because they are not the most typically recorded 
stand variables in the commonly used forest 
management planning systems. However, their 
calibration potential was briefly checked. As a 
conclusion, calibrating additionally with Ddom 
and Hdom improved the precision only for the 
basal area weighted variables; RMSE% for G, 
dgM and hgM decreased to values 16.2, 6.5 and 
5.3%, respectively. However, the accuracy in the 
arithmetic variables was hardly changed. Exam-
ples are given of the relative error variation in N 
and G of the basic and calibrated models in Fig. 
3. In addition, the effect of calibration in D and 
dgM are shown in Fig. 4.

The expected values of the basic models are 

unbiased in the modelling data. However, the 
logarithmic transformation caused a slight bias at 
the original scale because the applied bias correc-
tion (se

2 / 2) was based on a normal distribution, 
but the distributions of the dependent variables 
were more or less skewed. BLUP models with 
three calibrating variables (N, D, H) were less 
than 0.10% biased for the basal area weighted 
means, and 0.12% biased for dominant tree char-
acteristics, when the bias was calculated from 
the original scale after back transformation. In 
addition, basal area was overestimated by 2.3%. 
When calibrating with G, dgM and hgM, a 1.9% 
underestimation was found in N, while 0.2% and 
0.3% bias was found in D and H, respectively. 

Fig. 3. Relative prediction errors (%) with respect to 
expected value of the basic models (o) for N and 
G, and after calibrating the models with three stand 
characteristics (l).

Fig. 4. Relative prediction errors (%) with respect to 
expected value of the basic models (o) for D and 
dgM, and after calibrating the models with three 
stand characteristics (l).
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In this case Ddom and Hdom were unbiased. The 
considerably higher bias in the sum characteristics 
partly resulted from the bias in the species propor-
tion, because the proportion of G did not coincide 
with the proportion of N. Additional models for 
the species-specific relationships between these 
proportions might help reduce the biases in G 
and N.

4 Discussion

The models presented in this paper were fitted 
together in order to study error covariances and 
re-estimate the parameters using the SUR method. 
Some of the model parameters were not statisti-
cally significant in the OLS fit, but became sig-
nificant in the SUR re-estimation, thus giving a 
more compatible family of models. The estimated 
parameters for the independent variables were 
nicely in line between the models. A specific 
factor had a logical effect on a number of stand 
variables. For example, the effect of stoniness 
or paludification had a relatively constant effect 
on the mean characteristics, while the effect of 
temperature sum or a specific site type was the 
highest on the arithmetic means and the lowest on 
the dominant tree characteristic. Thus, differences 
in site fertility had a relatively greater effect on 
the lower part of the dbh or height distributions. 
Artificial regeneration clearly affected the lower 
part of the distribution by decreasing the range 
of diameters (e.g. Uuttera and Maltamo 1995, 
Siipilehto 2002). 

The main advantage of the applied approach 
was in the flexible calibration procedure (e.g. 
Lappi 1991). The only important independent 
variables were the total age of the stand and the 
average temperature sum corresponding to the 
location of the stand. Additional dummy variables 
described the origin and site factors. Formulation 
of the prediction equations was relatively similar 
to the procedure used by Nuutinen (1986) for hgM, 
while she modelled dgM recursively by applying 
hgM as its predictor. The relationships between 
the stand characteristics resulted in relatively high 
and linear correlations between the residual errors 
of the models.

BLUP is theoretically based on the linearly cor-

related random errors between the models. The 
calibrating effect is related to the error covariance, 
but inversely related to the error variance of the 
calibrating variable. Thus, e.g. if the known D is 
overestimated, then the unknown dgM is expected 
to be overestimated due to positive correlation 
between their random errors. All the measured 
stand variables could be used for calibration in 
relation to their prediction error using linear pre-
diction theory. However, the most effective vari-
ables for calibration are those with a relatively 
high covariance with the unknown variable and 
a simultaneous low error variance.

A typical combination of variables currently 
assessed in Finnish forest management planning 
field work is either i) N, D, and H or ii) G, dgM, 
and hgM. These combinations were used when 
the efficiency of the calibration was focused. 
Generally, the larger the number of known stand 
variables available the better the result given by 
BLUP, at least when the available stand charac-
teristics were accurately determined. It was also 
found that calibration with only one variable 
was not effective for the sum characteristics G 
and N. Quite naturally, if we know e.g. only the 
mean dbh, then we do not have very much infor-
mation about the corresponding stem number. 
However, if we also know the basal area, then 
the variation in the reasonable stem number is 
greatly reduced. 

In the present study, dominant diameter and 
dominant height were the most accurate charac-
teristics of the stand characteristics of the basic 
model. Planting, which proved to affect the lower 
dimensions (D, H, dgM, hgM), did not produce any 
significant variation in the dominant tree charac-
teristics (Ddom, Hdom). Of the variables in ques-
tion, the dominant tree characteristics are also 
generally the least related to the thinning intensity. 
This is most probably the reason why they did not 
prove very useful as calibrating variables. Also, 
they were highly correlated with the basal area-
weighted characteristics. Thus, when dgM and hgM 
were used for calibration, Ddom and Hdom could 
not provide any meaningful additional informa-
tion. They did, however, improve the precision 
in the basal-area weighted variables because they 
were less correlated with the arithmetic means.

The basic models presented in this paper were 
not the most accurate ones, but they did provide 
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a reasonable base for the stand variables by stand 
age. In the study of Eid (2001), the RMSE of the 
models was 0.11 and 0.22 when H and G were 
available, together with age, for predicting Dq 
and N, respectively, and 0.16 and 0.36 without 
these variables. The present models, with stand 
age as the only independent variable of the stock-
ing, resulted in a RMSE of between 0.16−0.20 
in the mean characteristics and of 0.34−0.41 in 
the sum characteristics. When Nissinen (2002) 
modelled basal area G directly with T, N and D, 
the accuracy was naturally better (RMSE 0.103). 
However, when the prediction of G (RMSE 0.35) 
was calibrated with N and D, the BLUP model 
gave a relatively satisfactory RMSE of 0.18. 

In the study of Nuutinen (1986), the RMSE of 
dgM was 0.14 and hgM 0.17 for Norway spruce 
on mineral soils in the whole of Finland. Nis-
sinen (2002) reported a slightly worse result for 
dgM when using D and T as predictors (RMSE 
0.17). Thus, the accuracy in the above-mentioned 
hgM was relatively comparable with that of the 
present basic model (also the structure of the 
model was about the same), while dgM using hgM 
(Nuutinen, 1986) or D (Nissinen, 2002) as a pre-
dictor was more accurate than the present basic 
model (0.184), but slightly less accurate than the 
calibrated BLUP models; calibrating with D (or 
D and N together) resulted in a RMSE of 0.11 in 
dgM and 0.13 in hgM. (In fact, if hgM could be used 
for predicting/calibrating dgM, as in the model 
by Nuutinen (1986), then the resulting RMSE 
for dgM would be only 0.084). Finally, apply-
ing dominant height as an additional calibrating 
variable resulted in a RMSE of 0.075 and 0.056 
for dgM or hgM, respectively. The results are not 
fully comparable because the modelling data were 
not the same. Nissinen (2002) restricted the cor-
responding data (NFI based permanent sample 
plots) to concern T < 70 yrs, G > 1.0 m2ha–1 and 
5 cm < D < 15 cm, while Nuutinen (1986) applied 
7th NFI data that consisted of much older stands 
on Norway spruce dominated mineral soils (mean 
age 77 yrs). 

Heikkinen (2002), Ojansuu et al. (2002) and 
Haara and Korhonen (2004) recently reported 
considerable measurement errors in the different 
stand variables. Of the commonly assessed stand 
variables, the most inaccurate variables were stem 
number (50−80% RMSE) and basal area (about 

20−40% RMSE), while the most accurate of the 
variables in question were hgM (8−17% RMSE) 
and dgM (11−18% RMSE). However, considerable 
more accurate stand characteristics have been 
found when using laser scanning data – according 
to Suvanto et al. (2005) and Næsset (2002) RMSE 
in stem number and basal area was 18–35% and 
8–21%, respectively. The errors in stand charac-
teristics have an effect on forest scenarios and 
decision making (e.g. Eid 2000, Ojansuu et al. 
2002). In the present study, the variances were 
used such as they were estimated from the data, 
and therefore the presented calibration efficiency 
was related to accurately defined stand character-
istics. If one wants to emphasize differences in the 
accuracy between stand variables, then average 
measurement errors could be added to the diago-
nal variances, resulting in a diminishing calibra-
tion effect. This might have some advantages if 
the input data consist of uncertain (e.g. visually 
assessed) variables. However, this topic was not 
included in this study. Nevertheless, it was briefly 
checked and we found that adding measurement 
errors to the diagonal variances, while the avail-
able stand characteristics were correctly defined, 
resulted in a considerably less accurate calibration 
and, in some cases, also in irrelevant combina-
tions of predicted variables.

Stand age was used as an independent vari-
able for all the models because it is essential in 
forest management planning – it is needed for site 
index determination and for future simulations. 
According to Poso (1983), Eid (1992), Eid and 
Nersten (1996), and Haara and Korhonen (2004), 
the standard error of stand age, determined in 
field inventories, has been 16–33%. In Finland, 
Haara and Korhonen (2004) found smaller stand-
ard deviation in age in pine dominated stands 
(22%) than in spruce (27%) or birch dominated 
stands (33%). We performed a sensitive analysis, 
in which we assumed alternatively 25% under- or 
overestimation in stand age when predicting the 
stand characteristics of the modelling data. The 
resulting biases in the predicted stand variables 
of the basic models were 11–22%. Finally, the 
effect of erroneous age substantially diminished 
when the model could be calibrated with accurate 
stand characteristics. After model calibration with 
three stand characteristics, the bias in the remain-
ing variables was highest in stem number, 4–5%. 
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Generally, the bias was about 2–3% for the mean 
characteristics. At its best, the basal area was only 
0.2% biased when N, D, and H were used for 
calibration, while stand age was underestimated 
by 25%, whereas the dominant tree characteris-
tics were less than 0.3% biased when G, dgM and 
hgM were used for calibration regardless of 25% 
under- or overestimation of age.

The models presented in this study are appli-
cable in simulation systems for completing a 
given set of variables if none or only some of 
the variables are measured. In the latter case, the 
models are calibrated by applying linear predic-
tion theory. In practice, the corresponding models 
for Norway spruce, Scots pine, silver and downy 
birch are already included in Finnish MOTTI 
simulation system. In addition to providing infor-
mation about missing stand variables, they are 
used for generation of the user-defined, initial 
stand structure (see MOTTI-ohjelmisto s.a.). They 
are especially helpful when generating stands of 
given age without any prior knowledge of the 
values of the stand variables, especially a reason-
able combination of them, e.g. with respect to 
stem number and basal area variation. 
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