
101

www.metla.fi/silvafennica · ISSN 0037-5330
The Finnish Society of Forest Science · The Finnish Forest Research Institute

Inventory of Sparse Forest Populations 
Using Adaptive Cluster Sampling

Mervi Talvitie, Olli Leino and Markus Holopainen

Talvitie, M., Leino, O. & Holopainen, M. 2006. Inventory of sparse forest populations using adap-
tive cluster sampling. Silva Fennica 40(1): 101–108.

In many studies, adaptive cluster sampling (ACS) proved to be a powerful tool for assessing 
rare clustered populations that are difficult to estimate by means of conventional sampling 
methods. During 2002 and 2003, severe drought-caused damage was observed in the park 
forests of the City of Helsinki, Finland, especially in barren site pine and spruce stands. The 
aim of the present study was to examine sampling and measurement methods for assessing 
drought damage by analysing the effectiveness of ACS compared with simple random sam-
pling (SRS). Horvitz-Thompson and Hansen-Hurwitz estimators of the ACS method were 
used for estimating the population mean and variance of the variable of interest. ACS was 
considerably more effective than SRS in assessing rare clustered populations such as those 
resulting from drought damage. The variances in the ACS methods were significantly smaller 
and the inventory efficiency in the field better than in SRS. 
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1 Introduction

Since the late 1980s in Finland, increasing con-
cern has been shown for how forest planning and 
management influence the amount of dead tree 
(coarse woody debris, CWD) volume and number 
of species (Mielikäinen and Hynynen 2003). The 
significance of global carbon dynamics and pre-
serving biodiversity has led to growing interest in 

the quantity and quality of deadwood (e.g. Huston 
and Marland 2003). CWD has many functions in 
the ecological processes of forests; e.g. it is the 
source of organic material and carbon dioxide in 
the atmosphere and the habitat for a wide variety 
of organisms (Siitonen 1998). In southern Fin-
land, the amount of CWD per hectare in fresh 
mineral soils of old spruce-dominant forests can 
be as much as 90–120 m3 ha–1 (Siitonen et al. 
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2000). In managed forests, however, the amount 
of CWD is only about 10 m3 ha–1, due to the 
management methods used in the forests. Dead 
trees are important indicators of biodiversity in 
forests, and therefore methods for assessing CWD 
are becoming more significant.

Traditionally, forest inventories have been car-
ried out with the aim of collecting data related to 
timber production planning. If preserving biodi-
versity is an additional objective, forest manage-
ment planning becomes more complex than when 
timber production is the only purpose (Ringvall 
2000). The natural distribution of ecosystems is 
fragmented, mainly due to human intervention. 
Ecological distributions are very rarely randomly 
distributed (Levin 1992). With conventional forest 
inventory methods, large areas must be covered 
to achieve acceptable precision of biodiversity 
objects (Green and Young 1993).

It is possible to detect valuable biodiversity 
objects with methods different from those used 
in conventional forest planning. For example, line 
transect sampling (Buckland et al. 1993), transect 
relascope sampling (e.g. Ståhl et al. 2001) and line 
intersect sampling (Warren and Olsen 1964) are 
methods that are based on an intersect network 
developed in the study area. Line inventory meth-
ods can be more effective in estimating CWD than 
plot-based methods (e.g. Warren and Olsen 1964, 
Bailey 1970, Ringvall and Ståhl 1999). In a two-
stage guided transect sampling design, subsam-
pling within strips is guided by prior information 
in the second stage after selecting wide strips in 
the first stage (Ståhl et al. 2000).

Adaptive cluster sampling (ACS) has been 
suggested as a method for estimating rare and 
clustered populations that are difficult to estimate 
precisely using conventional sampling methods 
(e.g. Thompson 1990, 1991, Roesch 1993). When 
the object of interest is found, further measure-
ments are carried out in the vicinity of the ini-
tial plot. New plots are measured until no more 
objects of interest are found. In this way, sampling 
is allocated to local areas with large amounts of 
the variable. However, the efficiency of the ACS 
method is dependent on the density and cluster-
ing degree that are not known before the initial 
sampling. In addition, the total sample size is not 
known beforehand, which increases the uncer-
tainty in deciding which study method to use. 

One main positive aspect in cluster sampling 
is the cost-efficiency. With the same costs, it is 
possible to measure additional plots (Cochran 
1977). On the other hand, if the sampling size is 
not larger than that of simple random sampling 
(SRS) the reliability is lower, due to increased 
numbers of similar units in the clusters (Kangas 
and Päivinen 2003).

Few studies have addressed the problem of sam-
pling forest phenomena using ACS. Roesch (1993) 
was the first to combine the probability-propor-
tional-to-size sampling schemes that are commonly 
used in forestry with an ACS scheme to develop 
a system that could be applied to many inventory 
systems. Acharya et al. (2000) sampled rare tree 
species using systematic ACS and determined that 
for a clustered species the efficiency for density 
estimation increased by as much as 500%; however, 
for an unclustered species it decreased by 40%. 
They also suggested that an optimal group size 
would relate to design efficiency, because when 
groups become too large ACS becomes comparable 
to complete enumeration.

The aim of the present study was to examine 
sampling and measurement methods for assess-
ing CWD by analysing the effectiveness of ACS 
compared with SRS. SRS offers a basis for com-
parison with the adaptive and nonadaptive sample 
designs because it is an unbiased estimator of the 
population mean. In the ACS method, the Hor-
vitz-Thompson (HT) and Hansen-Hurwitz (HH) 
estimators were used for estimating the popula-
tion mean and variance of CWD.

2 Methods: Adaptive Cluster 
Sampling

In sampling rare clustered phenomena, ACS has 
the advantage compared with other, more con-
ventional, sampling methods (e.g. Thompson 
1990, Roesch 1993). The initial set of units is 
selected using a probability sampling procedure 
and additional units are added to the sample from 
the neighbourhood of unit i in case the variable of 
interest (yi) satisfies a given criterion, i.e. if yi ∈ C, 
C = {x : x ≥ c} prior to sampling. The procedure 
is repeated until no new additional plots can be 
found whose variable exceeds the given value. 
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Thus, sampling effort is focused on local areas 
with large amounts of the variable. 

The population consists of N units {1, 2, …, N} 
and has variables of interest y = {y1, y2, … , yN}. 
In forest applications, a tree or sample plot is 
normally taken as a basic unit. For every unit i in 
the population, a physical neighbourhood Ai will 
be defined that consists of a collection of units that 
includes unit i. If unit j is in the neighbourhood 
of unit i, then unit i is also in the neighbourhood 
of unit j (Thompson 1990).

A network is defined as a group of units whose 
values are all at least as large as the critical value 
C. A unit that does not satisfy this condition, but 
is in the neighbourhood of the unit that does, is 
referred to as an edge unit (Thompson 1990). The 
difference from conventional sampling designs 
is that the procedure for selecting an adaptive 
sample is dependent on the population values 
observed in the field. It is a characteristic of ACS 
that the sample size is not known beforehand. 

Two ACS estimators, HT (Horvitz and Thomp-
son 1952) and HH (Hansen and Hurwitz 1943) 
estimators, have been widely examined. Thomp-
son (1990) presented modified HT and HH type 
estimators that are designed for unbiased use 
in the ACS method (Table 1). The difference 
between the HT and HH estimators is that the 
HT estimator is based on the inclusion probabil-

ity of each unit i in the population (Thompson 
1990), while the HH estimator is calculated by 
taking an SRS of size n1 from a population of wi 
values (Salehi 2003). In general, the modified HT 
estimator usually has smaller variance estimates 
(s2), but is more difficult to calculate than the HH 
estimator. However, Salehi (2003) advised ecolo-
gists to use the HT estimator in calculations.

The probability (ak) that the initial sample 
intersects network Ak is defined in Table 1 as
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where mj is the number of units in the network that 
includes unit j. In comparison, the mean value of 
the SRS estimator is dependent only on the units 

Table 1. Simple random sampling, modified Horvitz-Thompson and Hansen-Hurwitz estimators according to 
Salehi (2003) used in the study.
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N = number of units in the population, n1 = number of units in the initial sample, k = number of distinct networks represented in the initial 
sample, yi = observation in unit i, y*

k = sum of observations in network k, wi = mean of the observations in the network that includes the ith unit 
of the initial sample, ak = the probability of the initial sample intersect network Ak, ajk = the probability that the initial sample includes at least 
one unit in each of networks j and k.
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in the initial sample and does not take into account 
the units added in the second phase. 

The efficiency of the method is dependent on 
the number of plots that are adaptively added to 
the sample. An adaptive sampling design is effec-
tive when the final size is similar to the initial 
sample size, which is the case in rare populations 
(Smith et al. 2003). If the critical value is too low, 
the final sample size will be excessively large. 
Similarly, if the critical value is too large there 
may be no or only a very small adaptive sample 
in cases where there is no unit in the initial sample 
with a value that exceeds the critical value (Brown 
2003). Brown (2003) pointed out that the HH 
estimator of ACS is more efficient than the SRS 
estimator when
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where y  = the sample mean, v = the final sample 
size, µ̂  = the estimate of the population mean and 
n = the initial sample size. In other words, ACS 
is more efficient if the within network variance 
s2

wn of the population is larger than the variance 
s2 of the total population. 

Furthermore, comparison between ACS and 
SRS can be based on the cost-efficiency of the 
method. The costs of an inventory method can be 
described as the time taken in a plot (including the 
time spent on moving to the next plot). It is often 
cheaper to sample plots within a cluster than to 
select a new cluster. When healthy forest areas are 
inventoried, most of the time is spent on moving 
from one plot to another and measurements in 
a plot can be done quickly. If more plots near 
each other are inventoried the inventory efficiency 
grows significantly. 

3 Material

3.1 Study Data

The study area included the park forests of the 
Helsinki City area in southern Finland, consisting 

of 3700 ha. Park forests are recreational areas of 
Helsinki, whose forests are managed to preserve 
biodiversity despite the presence of environmen-
tal stress and heavy recreational use. The forest 
of the area is predominantly old-growth stands 
dominated mostly by Norway spruce (Picea abies 
(L.) Karst.), Scots pine (Pinus sylvestris L.) or 
silver birch (Betula pendula Roth).

During 2002 and 2003, severe drought-caused 
damage was observed in the park forests of the 
City of Helsinki. In the park forests, CWD diverts 
people’s opinions from the positive aspects of 
biodiversity to the negative aspects of unattrac-
tive appearance and the danger of falling trees. 
Thus, the need for inventorying drought damage is 
high. The damaged areas were situated especially 
in barren site pine and spruce stands. However, 
there were large healthy areas that showed little or 
no drought damage. Damage was located within 
clusters in certain forest types and the damage 
proportion from the total area was rather small. 
As a result, the ACS method seemed an ideal 
alternative for sampling the damage.

3.2 Fieldwork

Only forest areas ≥ 5 ha were selected for the 
study. All dead trees were counted from a circular 
sample plot with a 19.95-m radius located in the 
centre of a 0.25-ha square cell defined from aerial 
photographs. The circular sample plots were situ-
ated 50 m from each other in the north-south 
and east-west directions. A total of n1 = 61 initial 
sample plots, representing 0.5% of the total area, 
were selected randomly from the systematic grid 
for field measurements.

The diameters of dead standing trees that were 
situated in the circular sample plots were meas-
ured in 2-cm diameter classes. Information on 
the basal area per hectare of the sample plots was 
taken from a compartmentwise inventory. The 
basal area per hectare correlates strongly with the 
volume per hectare and can therefore be used in 
estimating the proportion of dead volume per hec-
tare (e.g. Nyyssönen 1954). Moreover, basal area 
per hectare is easier to measure than volume per 
hectare in the field and was used here. Tree spe-
cies distribution was not determined, since only 
the amount of dead tree volume was studied.
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The degree of damage was described on a 
scale of 0 to 9. The damage classes were defined 
according to the proportion of dead tree volume 
compared with total volume. The critical value C 
was defined as damage class 1, i.e. 10–19% of the 
basal area consisted of dead trees. If the damage 
class of a sample plot was larger than zero, 4 addi-
tional sample plots were measured north, south, 
west and east of the plot (Fig. 1). The plots were 
added repeatedly until all additional plots were 
classified as damage class zero.

In comparison, the estimators were calculated 
with damage class 2 as the critical value. We 
examined how the effect of smaller sample and 
cluster size due to larger critical value would 
influence the estimates of population mean and 
variance and the efficiency of an ACS method in 
the case of drought damage.

4 Results

4.1 Critical Value C = 1

The number of initial sample plots was 61. Most 
of the initial units fell into damage class zero and 
no adaptive units were taken in their neighbour-

hood; however, a total of 96 units were added to 
the sample. The mean size of adaptively sampled 
networks was 11 units, of which the largest net-
work was a total of 35 units. 

The damage class distribution differed between 
SRS and ACS (Table 2). Larger proportions of 
damaged units were detected with the ACS than 
the SRS methods and the damage class distribu-
tion was wider in the ACS method, since plots 
in damage classes 4–7 were not found in the 
initial sample (Table 2). Moreover, proportionally 
increased numbers of plots in damage classes 2 
and 3 were observed with the ACS than with the 
SRS methods, while 84% and 73% of the plots 
were classified as damage class zero using SRS 
and ACS, respectively. In comparison to SRS, 
ACS had an over 2.5 times larger sample size; 
however, Smith et al. (2003) and Brown (2003) 
suggested that an adaptive method would be more 
efficient if the final sample size were not much 
larger than the initial sample size. 

The SRS, HT and HH estimators for the popu-
lation mean and variance were calculated. The 
sample means and variances of the 3 sample 
designs are shown in Table 3. The mean values 
for all the estimators were very similar. The HH 
estimator showed the smallest variance, while 
that of the HT estimator was slightly larger. The 
largest variance estimate was obtained with SRS 
(initial sample). 

In the present study, the inventory efficiency 
was calculated and compared with the data 
obtained during working days, thus making it 

Fig. 1. Arrangement of the sample. Initial random sam-
ple plots are seen in grey. Additional neighbouring 
units (black) are added to the network until all the 
cells that include damage in the neighbourhood are 
found. Additional units, called edge units, that do 
not have damage are marked with white.

Table 2. Distribution of initial sample plots into damage 
classes.

Class Simple random sampling Adaptive cluster sampling

 Frequency % Frequency %

0 51 84 116 73
1 6 10 26 16
2 2 3 9 6
3 2 3 4 3
4 0 0 1 1
5 0 0 1 1
6 0 0 1 1
7 0 0 1 1

Total 61 100 159 100
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possible to include travelling times between plots 
that were specific for each area. The daily measur-
ing times were divided by the number of sample 
plots inventoried that day. As seen in Fig. 2, the 
inventory efficiency was doubled when a separate 
plot inventory was compared with the clustered 
plot inventory. The mean time spent in a single 
sample plot was 40 min, corresponding to the 
inventory efficiency obtained with SRS; with ACS 
the mean time spent in clustered sample plots 
was 18 min. 

If the size of SRS were the same as that of ACS 
with critical value 1, the time spent on measur-
ing the cells in SRS would be twice as much as 
in ACS. The variance of SRS would decrease to 
0.2443 which, however, is still considerably larger 
than the HT and HH variances. 

4.2 Critical Value C = 2 Compared with  
C = 1

When damage class 2 was taken as the critical 
value, the total sample size was 81 units. The 
sample means of the different estimators did not 
differ from the mean values achieved with a criti-
cal value of 1. However, there was considerable 
difference in the HH variance, indicating the 
superiority of damage class 1 as a critical value. 
The estimates of the HT estimator differed from 
those of the HH estimator by having slightly 
smaller variance estimates when the larger criti-
cal value was used. It is also worth noting that, 
using damage class 2, both ACS estimators had 
smaller variance estimates than the HT estimator 
with damage class 1 as the critical value.

In the present study, s2 was unknown and Eq. 3 
could not be solved. Thus, only the left-hand 
side of the equation was used to compare criti-
cal values 1 and 2 (comparison value). Damage 
class 1 proved to be more effective than damage 

Table 3. Number of units in the initial sample (n1), 
number of units in the final sample (v), estimates 
(µ̂), variance estimates (s2) and coefficients of 
variation (CV) of simple random sampling (SRS), 
Horvitz-Thompson (HT) and Hansen-Hurwitz 
(HH) estimators.

 SRS HT, C = 1 HH, C = 1 HT, C = 2 HH, C = 2

n1 61 61 61 61 61
v 61 159 159 81 81
µ̂ 0.2623 0.2550 0.2525 0.2542 0.2541
s2 0.4558 0.0074 0.0052 0.0073 0.0069
CV 2.5739 0.3368 0.2857 0.3370 0.3265

Table 4. Efficiency of HH estimator with critical values 
1 and 2. Comparison value is calculated from 
the left-hand side of Eq. 3. s2

wn = within-network 
variance.

 s2
wn Comparison value

C = 1 0.00616 0.0099
C = 2 0.00004 0.0002

Fig. 2. Inventory efficiency. The mean time used in an initial sample 
unit (single plot), in a unit belonging to a network and in an aver-
age ACS plot.
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class 2 as the critical value when the HH estima-
tor was used (Table 4). The equation could not be 
solved with the HT estimator.

5 Discussion

When clustered forest phenomena are invento-
ried, e.g. CWD in managed forests, there is more 
uncertainty than in inventorying conventional forest 
variables. In the present study, ACS was more effec-
tive than SRS in cases of drought damage, which 
occurred in clustered populations (see also Thomp-
son 1990, Roesch 1993, Acharya et al. 2000). 

If population groups are larger than sample 
plots, it is more efficient to measure and estimate 
the variables of interest using the ACS method 
(Acharya et al. 2000). In many situations, the 
costs of a unit that do not satisfy the critical 
value C are lower than those of a plot that do. 
Furthermore, moving from one sample plot to 
another takes time; if the plots are situated near 
each other the time spent on walking is decreased 
rapidly (Table 4). 

Brown (2003) suggested that the final sample size 
in ACS should not be excessively larger than the 
initial sample size. The sample size can be reduced 
by increasing the critical value. On the other hand, 
if the networks are very small the disadvantage of 
the relatively small s2

wn compared with s2 will 
become more important than the advantage of having 
the final sample size near the initial sample size. 
Moreover, Brown (2003) pointed out that the size 
of a network should be large enough such that s2

wn 
is similar to s2. In the present study, comparison 
between alternative critical values showed that a 
smaller critical value resulted in a smaller variance 
estimate with the HH estimator, but made no dif-
ference with the HT estimator.

Possible sources of error in the fieldwork 
included measurement and positioning errors in 
locating the centre of a circular sample plot. 
However, the effects of these errors could not be 
analytically observed in the results. The diam-
eters were measured as 2-cm diameter classes, 
which can cause random error in calculating the 
damage class value of a sample plot. The highest 
probability of having a false damage classifica-
tion was with those plots in which the dead tree 

proportion was at the border between 2 damage 
classes; this influence was greater if only a few 
trees were measured. 

Furthermore, one source of error is the smaller 
circular plot size (0.125 ha) compared with the 
cell size (0.25 ha). If the damaged trees were not 
situated at regular intervals in the 0.25-ha area 
but rather in the corner of it, the damage class 
value detected from a circular sample plot could 
differ from that of a square plot. However, the 
error resulting from a smaller-sized circular plot 
would be random error. 

Both the above-mentioned sources of error can 
lead to the risk of misidentifying the variable of 
interest. Misidentifications in conventional sam-
pling may compensate for each other, but this is 
not the case in adaptive sampling. Therefore, an 
adaptive sampling method should be employed 
only for variables that can be identified with full 
confidence. In the present study, the misidentifica-
tions of dead trees could cause erroneous results, 
i.e. either over- or underestimations.

The data used in the study were obtained 
from the city forests; most of the time was spent 
moving by car in the city traffic rather than in the 
forests. With the data obtained, it was not possible 
to make a total survey cost budget, which would 
have given more information on the efficiency 
of ACS and how the inventory scheme can be 
designed to be most effective.

By tradition, biodiversity conservation has 
focused on protecting individual threatened 
species, but this species-by-species approach is 
expensive and inefficient. Due to the complex 
relationships between species and their biotopes, 
a biotope approach to biodiversity conservation 
is often preferable. There are many means of 
describing vegetation diversity, the most common 
of which include the extent, structure, composi-
tion, biomass or production and condition of the 
vegetation or species. Each aspect can be assessed 
on the ground, but may be assessed more effec-
tively from various forms of remote-sensing data. 
In future research on drought damage, a method 
based on two-phase sampling will be developed. 
In the first phase, auxiliary data derived from 
digital aerial photographs or laser scanning will 
be used to locate potential drought damage. In 
the second phase, ACS will be utilized in field 
measurements and accuracy assessment. 
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