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Generating a Raster Map  
Presentation of a Forest Resource by 
Solving a Transportation Problem
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Muinonen, E. 2005. Generating a raster map presentation of a forest resource by solving a 
transportation problem. Silva Fennica 39(4): 585–598.

Necessary tools for raster map generation, for the approach based on the calibration 
estimator, were developed and implemented. The allocation of the area weight of each 
pixel to sample plots was formulated as a transportation problem, using a spectral distance 
measure as a transportation cost, and solved using the transportation simplex algorithm. 
Pixel level accuracy was calculated for the methods based on the calibration estimator so 
that the results could be compared with the results of the nearest neighbour estimation, the 
reference sample plot method (RSP) at pixel level. Local averaging in a 3 × 3 window was 
performed for each generated raster map as a postprocessing phase to smooth the map. 
Test plot results were calculated both for the unfiltered raster map and the filtered raster 
map. RSP produced the smallest RMSE in the pooled test data. Local averaging with a 
3 × 3 filter decreased the pixel level error – and the bias – and the differences between 
the methods are smaller. Without local averaging, the pixel level errors of the methods 
based on solving the transportation problem were high. Raster map generation using the 
methods of this study forms an optional part – followed possibly by the classification of 
the pixel level results – of the whole computation task, when the area weight computation 
is based on the calibration estimation. For larger areas than in the present study, such as 
municipalities, the efficiency of the method based on the transportation model must be 
improved before it is a usable tool, in practice, for raster map generation. For nearest 
neighbour methods, the area size is not such a problem, because the inventory area is 
processed pixel by pixel.
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1 Introduction
Forest inventory applications using satellite 
remote sensing data are needed to achieve nec-
essary input data for forest planning calculations 
for large areas. Tokola (2000) reviewed and cat-
egorised the main methods for forest inventory 
applications as stratification (or classification) 
and regression analysis. Further, the applications 
of nearest neighbour regression have been of 
great interest – the reference sample plot method 
(RSP) (Kilkki and Päivinen 1987, Kilkki 1988, 
Muinonen and Tokola 1990, Tokola et al. 1996, 
Tokola 2000) and the Finnish multisource forest 
inventory method (k-NN) (Tomppo 1996, Katila 
and Tomppo 2001, Katila and Tomppo 2002, 
Tomppo et al. 2002). McRoberts et al. (2002), 
who used nearest neighbour approach as a part 
of stratified estimation, gave a comprehensive 
analysis, with precautions, for applications based 
on the nearest neighbour technique.

The concept of area weight, or sample plot 
weight, refers to interpreting weight as the amount 
of similar forest the plot represents in the inven-
tory area (i.e., the region for which the inventory 
results are calculated). A method, denoted with 
SAE in this study, for computing the sample 
plot weights for small area estimation of forest 
parameters has been presented by Lappi (2001). 
Small areas, in this context, refer to areas of a 
size comparable to a municipality, which is usu-
ally 200–1000 km2 in land area, or smaller ones 
(see also Lappi 2001). This method is based on 
the calibration estimation, where satellite data 
form a basis for the weight calibration acting as 
calibration variables, because the satellite data 
are known for every pixel. The initial sample plot 
weights (later also referred to as prior weights) are 
calibrated to satisfy the known area level totals 
or mean values, when computed from the satel-
lite data and weights of the sample plot pixels 
(i.e., pixels each of which cover a field sample 
plot). This is performed by formulating calibra-
tion equations including the weights of the sample 
plot pixels and the known totals, or mean values 
of the calibration variables (see Lappi 2001). 
The known totals of the calibration variables 
are computed by analysing all the pixels in the 
inventory area.

When the sum of the calibrated weights equals 

the number of pixels, the estimated mean value of 
a forest parameter can be calculated as a weighted 
average of the forest variables obtained from 
the sample plots. Besides the original satellite 
data, channel transformations, that is, volume 
estimates for each pixel based on the sample plot 
pixels, can be incorporated into the calibration as 
auxiliary calibration variables. A variance estima-
tor, based on a spatial model, is also presented 
(Lappi 2001).

The SAE method, based on calibration estima-
tion, includes the computation of the area level 
totals of the calibration variables (satellite data) 
for the inventory area, designing a set of ini-
tial weights for the sample plots and calculating 
the calibrated weights. In the methods, based on 
nearest neighbour approach, the weights for the 
sample plots are the cumulative weights from all 
the pixel level estimates of the inventory area. 

According to Lappi (2001), there is no guaran-
tee in RSP that the chosen nearest neighbours add 
up to unbiased or statistically optimal estimates 
for the whole region. In the SAE approach, the 
total area that the sample plot represents (the 
weight of the plot) is estimated, first, starting 
from a set of initial weights. The initial weights 
cannot be set according to the inclusion prob-
abilities if the plots outside the inventory area 
are to be used, hence the set of initial weights 
becomes a user-defined parameter (Lappi 2001). 
As a conclusion, the RSP-based weighting of 
the sample plots is one alternative for having the 
initial weights for SAE. 

Both of the methods, RSP and calibration esti-
mation, offer means to utilise the plot weights in 
forest planning systems. For forest planning, the 
input data should be accurate and localised. The 
methods, based on nearest neighbour analysis, 
have the capability to produce results for a forest 
variable of interest in a raster map form. This 
cannot be carried out directly in the case of SAE 
which offers only a set of sample plot weights as a 
computational result. Thus, for generating a raster 
map of the estimates, the origin of the weight, 
allocated to each sample plot pixel, should be 
known at a single pixel level (RSP), or, if only the 
estimated weights are known (SAE), the allocated 
weights should be distributed to the pixels of the 
inventory area in a separate process. Lappi (2001) 
suggests a formulation of a linear programming 
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transportation problem to find such a weight allo-
cation, where an overall spectral distance between 
plot pixels and destination pixels is as small as 
possible. In the case of using the calibration 
estimation-based approach, this would combine 
the small-area calibration estimator and the basic 
principle of the nearest neighbour method in map 
production.

In the RSP method, the estimation of forest 
variables is carried out separately for each pixel 
in the inventory area, and the raster map can 
be generated as a by-product, if needed. In the 
SAE-based methods, the map must be generated 
in a separate analysis, because the calibration is 
based on area level means or totals. In the raster 
map generation, each pixel, in the inventory area, 
receives weight in such a way that an overall 
distance is minimised in the whole inventory 
area. Area level accuracy is not changed in a map 
generation as the sample plot weighting does not 
change in distributing the weight over the area. 
However, the accuracy at pixel level can then be 
estimated if there is located information on the 
forest variables available. However, due to the 
nature of the SAE method, the pixel level results 
are, then, dependent on the inventory area in 
which it belongs, and this has to be taken into 
account when comparing the pixel level results of 
the method, after map generation, with the results 
of the RSP method.

The objective of this study is to present and test 
the feasibility of the approach of solving a trans-
portation problem for the raster map generation, 
as a part of a forest inventory system based on 
calibration estimation. For comparison, the results 
are calculated using a method (RSP) based purely 
on the nearest neighbour approach. The accuracy 
of results, at pixel level, is calculated to evaluate 
the raster map. The calibration estimator-based 
method, together with initial weights from RSP 
(i.e., a combined method) is also applied. The 
framework of the study is to present a map pro-
duction tool for the SAE-based technique (Lappi 
2001), and to present a methodology of using the 
RSP in the prior weight production.

2 Material
The satellite data consist of a Landsat 7 ETM 
image (WRS 187/17; a floated scene) from east-
ern Finland, acquired on August 2, 1999. The 
image was rectified to the Finnish National Coor-
dinate system using first order regression models 
and 43 control points which were located from 
the base maps of the area. A 25-m pixel size was 
produced using nearest neighbour resampling in 
which the root mean square error in the rectifica-
tion was 0.4086 pixels.

Digital map data were used both in the rectifica-
tion of the image and also in the selection of the 
field plots to the analysis. A numerical map data 
mask, processed in the NFI remote sensing labo-
ratory, included the following categories: forestry 
land, agricultural areas, water areas, and other 
non-forestry land (e.g., roads, buildings). For 
details of the map data see, for instance, Katila 
et al. (2000). The map data were used to mask out 
categories other than forestry land. The selection 
of the sample plots was based on this map data to 
mimic the true inventory situation.

Field data consist of the sample plots measured 
in 1999 for the 9th National Forest Inventory in 
the forest district of Etelä-Savo, which fall in 
the forestry land category based on the map data 
and are located in the satellite image window. 
The field sample is a systematic cluster sample, 
where a cluster consists of 14 temporary relascope 
plots, or 10 permanent plots (every 4th cluster). 
The distance between the clusters is 6 km in 
both North-South and East-West directions (Val-
takunnan metsien… 1999). The resulting data set 
comprised 2863 sample plots. The main forest 
variable of interest is the mean volume of the 
growing stock (m3/ha) (Table 1). 

For the pixel level checking and evaluation 
of the techniques, two 15 km × 10 km rectan-
gular inventory areas (test areas TPA and TPB) 
were generated. The sample plot data were used 
inside a 12-km inclusion zone around TPA and 
TPB, respectively. The pixel level accuracy of 
the estimation was computed for each raster map 
generation method using randomly selected test 
data sets of the sample plot pixels. The propor-
tion of the sample plot pixels in TPA and TPB 
selected to the test data was 75%. The number 
of outside plots (plots in the inclusion zone) of 
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the areas TPA and TPB was 271 and 287, respec-
tively. Thus, the number of plots available in the 
estimation for TPA is 287, and there are 298 plots 
available for TPB. The pixels and sample plots, 
for the analysis, were selected from the category 
‘forestry land’, based on the digital map data. In 
TPA, there were 191 895 pixels, and TPB included 
193 498 pixels.

The relascope sample trees (tally trees), located 
on the land use classes, forest land or other 
wooded land, are measured in the sample plot. 
In this study, the sample plots on the forestry land 
map stratum with no trees measured, were given 
a 0.0 m3/ha value of mean volume in the analysis. 
These plots most usually fall into other land use 
classes in a field inventory, and, thus, no trees are 
sampled (Table 2).

3 Methods

3.1 Nearest Neighbour Estimator

The method applied in the estimation of the forest 
variable, at pixel level, is the reference sample 
plot method (RSP) (Kilkki and Päivinen 1987, 
Kilkki 1988, Muinonen and Tokola 1990, Tokola 
et al. 1996, Tokola 2000). The spectral distance 
(dij) between pixels i and j is calculated using a 
distance function 

d p b bij h ih jh
h

nc

= −
=

∑ ( ( )) ( )2

1

1

where nc = number of bands, i,j  = pixels, bih = the 

Table 1. Mean volume of the growing stock (m3/ha) in the sample plot data: a) 
1999 data (test data not included); b) test area TPA; and c) test area TPB. (n: 
number of plots; TPAtest, TPBtest: test plots only; TPA&zone, TPB&zone: 
plots in the test area and in the 12-km zone).

Data set n Mean S.D. Min Max

a) 1999 data 2760 130.9 108.1 0.0 657.6
b) TPA 16 141.3 156.1 0.0 657.6
 TPAtest 49 109.1 112.8 0.0 483.0
 TPA&zone 287 118.9 109.8 0.0 657.6
c) TPB 11 87.1 81.4 0.0 293.6
 TPBtest 54 124.0 102.2 0.0 381.0
 TPB&zone 298 117.4 101.1 0.0 470.4

Table 2. Land use class distribution (number of plots) among the field plots belong-
ing to the map stratum forestry land over 1999 data and the test areas. (Land 
use class Forestry includes forest land, other wooded land, waste land and 
other forestry land). a) 1999 data (without test data; n = 2760); b) test area 
TPA; and c) test area TPB. (TPAtest, TPBtest: test plots only; TPA&zone, 
TPB&zone: plots in the test area and in the 12-km zone).

Data set Forestry Arable Built-up Traffic, etc. Water Total

a) 1999 data 2626 38 49 29 18 2760
b) TPA 16 0 0 0 0 16
 TPAtest 46 0 1 2 0 49
 TPA&zone 275 3 5 2 2 287
c) TPB 11 0 0 0 0 11
 TPBtest 51 2 0 0 1 54
 TPB&zone 286 5 2 2 3 298
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spectral value of a pixel i at band h; ph = empirical 
constant for band h.

After computing the distance function values 
from the target pixel i (i.e., the pixel for which the 
forest variables are estimated) to each sample plot 
pixel j, m spectrally nearest sample plot pixels are 
sought and the weight (wij) for each neighbour 
pixel j = 1,…,m of the pixel i is calculated as

w dij ij= +1 1 2/ ( ) ( )

After computing the weights wij, the estimator of 
a forest variable y, for a pixel i, can be formulated 
as in Eq. 3. For a pixel i, it is a weighted average 
of the field measured forest variable values for the 
spectrally m nearest sample plot pixels:

ˆ ( )y

w y

w
i

ij ij
j

m

ij
j

m= =

=

∑

∑
1

1

3

where yij denotes the forest variable value of the 
jth nearest neighbour of the target pixel i.

The empirical coefficients ph, in the distance 
function, describe the relative importance of 
the variables. They were selected by testing all 
the combinations of the values ph ∈{0.1, 5.0, 
10.0} for the variables in the distance function. 
The pixel under estimation was left out from the 
analysis when selecting the m spectrally nearest 
neighbours for the pixel. The analysis was carried 
out using the so-called leave one out method, 
that is, a forest variable estimate for each sample 
plot pixel i in turn was computed using the other 
sample plot pixels j as reference. 

 
3.2 Calibration Estimation

Calibration estimation (Eqs. 4 and 5), (see Lappi 
2001), can be applied in the estimation of the 
sample plot weights (wk, in Eq. 5),

ˆ ( )Y d yd k
k

n

k=
=

∑
1
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k

n

k=
=
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1
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In Eqs. 4 and 5, yk denotes a forest variable for 
a sample unit k, drawn from a finite population, 
where each unit is associated with a vector xk of 
spectral variables or auxiliary variables; n is the 
number of sample plots in the analysis. In the case 
of this study, the sample units are pixels associated 
with y variables – forest variables. Eq. 4 describes 
an estimator (denoted using subscript d) for forest 
variable y, based on the prior weights dk. Eq. 5 is 
the calibration estimator for the forest variable y 
(see Lappi 2001). The calibrated weights wk are 
obtained by calibrating the prior weights (see 
Eq. 4), respecting the calibration equation:

wk
k

n

k x
=

∑ =
1

6x t ( )

where tx is the known population total vector 
of the known x variables (i.e., satellite image 
pixel spectral values, or other known auxiliary 
variables for each pixel). In the SAE application, 
sample plot pixels, outside the inventory area, are 
included in the estimation (Lappi 2001). This 
means that the prior weights – originally based 
on the inclusion probabilities – had to be defined 
in another way in this study. They were defined 
using a geographical inclusion zone, where the 
prior weight is constant, inside the inventory area, 
and decreases linearly, in the inclusion zone, as 
the distance increases. The other method applied, 
in the present study, is to use the RSP sample plot 
weights as prior weights in the calibration.

The computation of the area weight estimation 
was carried out as in the study of Lappi (2001), 
(see also Deville and Särndal 1992), incorporating 
the following distance function:

G w d x L
x L

L

U x
U
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where x = wk / dk. 
Parameters L and U define the range of the 

weights, Ldk < wk < Udk. To have nonnegative 
weights, L and U were given values 0 and 6.5, 
respectively (see Lappi 2001). The nonlinear 
optimisation problem, needed in the search for 
the weights, was solved by using the routines 
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for the Newton method presented by Press et al. 
(1992). 

In the estimations for this study, the calibration 
was based on the mean value vector (instead of 
total values) and tx was computed using satellite 
pixel data in the test area under examination. Pixel 
values were scaled, by dividing them by their 
mean value in the data, to obtain a more stable 
convergence (see Lappi 2001). 

3.3 Transportation Problem

Pixel level accuracy is calculated for the methods 
based on the calibration estimator to allow these 
results to be compared with the results of the near-
est neighbour estimator (RSP) at pixel level, also 
taking into consideration that in SAE, the pixel 
level results depend on the properties of the whole 
inventory area it belongs to. The prerequisite for 
the pixel level accuracy estimation is that the 
weight allocated to each sample plot has to be 
assigned to the pixels in the inventory area. This 
means that a raster map generation technique has 
to be implemented.

The weight allocation was formulated as a 
transportation problem which, in general, con-
cerns transporting goods or services from supply 
centres to multiple demand centres in an optimal 
manner (see Dykstra 1984). The problem can be 
viewed as a network problem, where supply and 
demand centres are represented by nodes, and the 
transportation system joining them is represented 
by a set of directed links. Each link has a value 
of any relevant unit of measure, representing, 
for example, transportation cost or travel time. 
(Dykstra 1984). When the problem is presented 
in a tableau form, the rows illustrate the sources 
(supply centres), and the columns are the destina-
tions (demand centres). 

A usual way to present the problem is to for-
mulate it as a linear programming problem (see 
also Dykstra 1984): 

Minimize
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where M is the number of supply centres, N is 
the number of demand centres, Cij is the relevant 
link distance, and xij is the number of units to 
be transported from the supply centre i to the 
demand centre j. Total cost of transporting (z) is 
minimised. It follows that in feasible solutions for 
this kind of a problem: 

S Di j
j

N

i

M

=
==
∑∑

11

9( )

Thus, in the transportation model, all con-
straints are equalities, and the sum of supplies 
and demands must be equal (Dykstra 1984). For 
solving this kind of problems, an algorithm that 
takes advantage of the special structure of the 
transportation model has been developed. The 
algorithm, used in this study, has been described 
in detail with an example case by Dykstra (1984), 
(see also Taha 1992). 

To generate the initial solution for solving the 
transportation problem, feasible methods, such as 
the least cost method (LCM) and Vogel’s approxi-
mation method (VAM), exist (see Taha 1992). In 
the least cost method, as much weight as possible 
is iteratively allocated to a variable (tableau cell) 
with the smallest unit cost in the entire tableau. 
After each allocation, supply and demand are 
adjusted accordingly and the satisfied row, or 
column, is crossed out. VAM is a heuristic method 
and usually provides a better starting solution 
than the least cost method and generally yields an 
optimum, or close to an optimum, starting solu-
tion (Taha 1992). For this study, VAM serves an 
interesting method for map generation in the case 
that it could produce a suitable map presentation 
even without solving the transportation problem. 
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The VAM method is an iterative method, based 
on computing the penalties – of not choosing the 
cheapest alternative – for each row and column in 
a transportation tableau (see Taha 1992). The ini-
tial solution is generated by choosing iteratively 
the row, or column, with the largest penalty and, 
then, allocating as much weight as possible to the 
variable (cell) having the least cost.

3.4 Applying the Methods in Raster Map 
Generation

Four different combinations of methods, to pro-
duce the raster map of mean volume, were tested 
and they are summarised in Table 3. For each 
method, the pixel level accuracy is computed 
for test sample plot pixels where a true value is 
known. Test sample plot data are used only in 
the evaluation part of the analysis. Thus, the test 
sample plot pixels have not been used as demand 
centres in the transportation problem either. 

Local averaging in a 3 × 3 window was per-
formed for each generated raster map as a post-
processing phase to smooth the map. Test plot 
results were calculated both for the unfiltered 
raster map and the filtered raster map. Only the 
pixels belonging to the forestry land stratum, 
in the digital map data, were used in the local 
averaging. 

The first area weight estimation was com-
puted using the RSP method. An inventory area 
A that contains nA pixels in the satellite image is 
assumed. For each of these nA pixels, i = 1,…,nA, 
a pixel level estimate is computed using Eq. 3; 
the weight WkA which a sample plot k obtains in 
the area level estimate for area A is the sum of the 

weights it receives in the pixel level estimates in 
the inventory area 

W wkA ik
i

nA

=
=
∑

1

10( )

The weights WkA, k = 1,…,n, for the area level 
estimate for area A, sum up to nA, and are the area 
weights. If inventory area A includes only a single 
pixel, the area level estimate is equal to a single 
pixel level RSP estimate. Thus, the estimates 
for an area A, containing several pixels, would 
be computed as weighted averages of the plot 
pixel field measurements, similarly as in Eq. 5. 
Instead of computing RSP area level estimates, 
the weights, from this nearest neighbour method, 
were stored and further used as initial weights for 
one of the SAE-based methods (Table 3). 

In both of the methods, C1 and C2, for the 
area weight estimates by plots, the calibration 
estimator was applied, (see Lappi 2001, Kangas 
and Maltamo 2000). The methods differ only 
in the mode the initial weights are produced 
(Table 3). In the C1 method, the initial weights 
dk in Eq. 4 were computed using an approach of 
a 12-km geographical inclusion zone around the 
inventory area. Inside the inventory area, the prior 
weight was set to a constant value, and the weight 
decreases linearly with respect to the geographical 
distance to the inventory area. In the C2 method, 
the sums of weights by plots from the RSP esti-
mation by pixels, were used as prior weights. 
Thus, the third (C2) area weight estimation was 
computed using the weights WkA , k = 1,…,n from 
the RSP as prior weights dk in Eq. 4. A sample 
plot is used in the estimation if it has been given 
a positive prior weight, in the pixel level estima-

Table 3. Techniques applied in the raster map generation. Local averaging was tested in postprocessing the gener-
ated raster map after each method. 

Method Initial area weights Area weights Raster map generation

RSP Nearest neighbour estimation  Initial area weights Pixel by pixel estimation 
 (5 nearest neighbours)  
C1 Geographical weighting Calibration estimation LCM & transportation problem
C2 Nearest neighbour estimation  Calibration estimation LCM & transportation problem
 (5 nearest neighbours)  
C3 Geographical weighting Calibration estimation VAM
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tion, for the pixels in the inventory area and, at 
area level, the prior weight dk for sample plot k (in 
Eq. 4) is, then, the sum of these weights.

In the methods C1 and C2, quite a large geo-
graphical search radius – 60 km from each target 
pixel, where the spectrally nearest neighbours are 
sought – was used so as not to limit the usage of 
the sample plot data, in the surrounding zone of 
the area, in creating the raster map. The raster map 
generation was performed using the transporta-
tion problem model. For the analysis of this study 
(see Eqs. 8 and 9), the supply centres are the M 
pixels of the area and each pixel i has a supply Si 
equal to 1. The demand centres are the N sample 
plot pixels in the data, each plot pixel j having 
a demand Dj equal to the area weight (noted 
with wk for plot k in Eq. 5) it has received in the 
area weight estimation. A transportation cost Cij, 
between source i and destination j, is a distance 
function value (Eq. 1) which was calculated from 
the satellite data, the number of neighbours being 
1. As a result, total spectral distance is minimised 
when transporting the area weight of the pixels to 
the plots up to a given demand. In the RSP estima-
tion, the raster map is generated as a by-product 
and no separate computation is needed for this 
part, as the inventory area is processed pixel by 
pixel, the number of neighbours being 5. 

In the C3 method, VAM was applied in the 
raster map generation. The spectral distance func-
tion value, with 1 nearest neighbour, was used as 
a transportation cost (Table 3). 

3.5 Pixel Level Accuracy

Pixel level accuracy was analysed using a cross 
validation technique. When defining the coeffi-
cients for the distance function, the mean volume 
for each sample plot pixel was estimated using 
the other plot pixels as a reference. The pixel 
level accuracy of the estimation was evaluated, 
first, with

RMSE =
−

=
∑( ˆ )

( )

y y

n

i i
i

n
2

1 11

where n = number of sample plot pixels in the 

estimation; and, second, (see Tokola et al. 1996, 
Tokola 2000), with

R
y

2
2

1 12= − RMSE

var( )
( )

In R2, the original variation, in the test data under 
analysis, is taken into account, not only the RMSE 
of the estimation.

The possible bias of the estimation, at pixel 
level, was evaluated using

bias =
−

=
∑( ˆ )

( )

y y

n

i i
i

n

1 13

Relative RMSE and bias were computed by divid-
ing the RMSE and bias by the mean value of the y 
variable in the data set. The statistical significance 
of bias, at pixel level, was tested by computing

t
s n

bias
bias=
/

( )14

where s = standard deviation of the differences 
( ˆ )y yi i− .

In the evaluation phase, using the test sample 
plot pixels, the measured value and the estimate 
from the method under analysis, were drawn for 
the pixels, and the Eqs. 11–13 were applied.

4 Results

The coefficients of the distance function, result-
ing in a minimum RMSE and an insignificant 
bias (tbias < 1.96) at pixel level, were sought by 
performing a grid search. The grid search was 
made separately for the cases by using 1 nearest 
neighbour – to be applied in the raster map gener-
ation using a transportation model – and 5 nearest 
neighbours – to be applied in the RSP estimation 
generating the raster map pixel by pixel. 

It can be noted that using one nearest neighbour 
(m = 1 in Eq. 3), in the estimation, produces an 
RMSE value which is greater than the original 
standard deviation (Table 4). This means that the 
overall mean could give a better estimate than 
using the one nearest neighbour does. Thus, if the 
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number of nearest neighbours can be chosen for 
the estimation, as in the RSP, a value greater than 
1 would be selected. In the raster map generation 
using RSP, 5 nearest neighbours were used to 
produce a more proper basis for the comparisons 
of the usability of the methods. 

Pooled pixel level results, in the test areas TPA 
and TPB, from the raster map generation tech-
niques which were applied, show that the problem 
of using 1 nearest neighbour in the allocation of 

weights causes a poor pixel level quality (Table 5). 
RSP estimation produced the smallest RMSE in 
the pooled test data (Table 5). Local averaging 
with a 3 × 3 filter decreased the pixel level error 
– and the bias – in all cases, and the differences 
between methods are smaller (Table 5). Bias was 
not found to be significant (tbias < 1.96).

In the test area TPA, the test plot results show 
a larger relative pixel level error than in TPB, 
for the tested methods. Local averaging caused 
a decrease of RMSE in both areas, and all tested 
methods. For RSP, local averaging decreased bias 
in both areas, but for the other techniques, the 
effect of the local averaging on bias is not so 
clear in TPA and TPB (Fig. 1). After local averag-
ing, C2 has the smallest bias in the pooled data 
(Table 5) – as a result of opposite bias values in 
TPA and TPB test data, but C1 is more stable 
(Fig. 1). The computationally simple method, 
C3, has largest bias, after local averaging, in the 
pooled data, resulting from the bias in TPB test 
area (Table 5, Fig. 1).  

As an example of the raster map presenta-
tion of the estimated mean volume, generated by 
using the C1 and RSP methods, Fig. 2 illustrates 
the classified output of the applied methods in 
a selected 1.5 km × 1.5 km sample in the TPA 
area. The effect of local averaging can be seen, 
as expected, as a smoother output raster map 
appearance. 

5 Discussion

In this study, necessary tools, concerning raster 
map generation, for the approach based on the 

Table 4. Coefficients for the distance function, produced by the grid search, and the pixel level accuracy of the 
nearest neighbour estimates for mean volume (m3/ha). Data: sample plots of 1999, test data excluded; n = 2760; 
Mean = 130.9 m3/ha; S.D. = 108.1 m3/ha; geographical reference zone = 60 km; m is the number of nearest 
neighbours; TM1…TM5 and TM7 are the satellite image channels 1…5 and 7.

m TM1 TM2 TM3 TM4 TM5 TM7 RMSE RMSE/mean Bias R2

       (m3/ha) (%) (m3/ha) 

1 5 10 5 5 5 10 116.5 88.97 –1.16 –0.16
5 10 10 5 5 10 5 93.6 71.48 0.38 0.25

Negative R2 implies that the RMSE is greater than the original standard deviation.

Table 5. Pixel level estimation results in the pooled TPA 
and TPB test data for mean volume; a) without 
local averaging, and, b) with 3 × 3 local average 
filter. Bias is computed in the test data. (Mean 
116.89 m3/ha; S.D. 107.60 m3/ha; n = 103).

a)

Method RMSE RMSE/mean  Bias R2 
 (m3/ha) (%) (m3/ha)

RSP 86.0 73.59 –1.9 0.36
C1 108.0 92.37 –1.8 –0.01
C2 109.4 93.60 –2.3 –0.03
C3 94.6 80.95 4.4 0.23

Negative R2 implies that the RMSE is greater than the original 
standard deviation

b)

Method RMSE RMSE/mean  Bias R2 
 (m3/ha) (%) (m3/ha)

RSP 79.2 67.74 –1.7 0.46
C1 84.8 72.58 –0.2 0.38
C2 84.5 72.30 0.1 0.38
C3 79.7 68.19 3.7 0.45
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calibration estimator have been implemented. 
The allocation of the area weight of each pixel 
to sample plots was formulated as a transporta-
tion problem, using a spectral distance measure 
as a transportation cost, and solved using the 
transportation simplex algorithm (Dykstra 1984, 
Taha 1992). 

The raster map generation is necessary for 
presenting results in a map form in the case of 
using the method presented by Lappi (2001) – that 
is, a method based on the calibration estimator 
– which does not directly produce a map. Another 
simple way to deal with the sub-area level report-
ing might be to compute the area weights for 
each sub-area separately, without a raster map 
generation, but it may suffer from the possibility 
of having quite a small number of sample plots 
available, even if including the plots from a larger 
geographical inclusion zone. It is clear, however, 
that the small number of neighbours is problem-

atic in the sense of having accurate pixel level 
results (Tokola et al. 1996, Tomppo et al. 1998, 
Katila and Tomppo 2001).

In the raster map generation, the transportation 
cost was expressed by means of a spectral distance 
measure. To find a most suitable demand centre 
(sample plot) for each pixel, the spectral distance 
was minimised. This leads to an approach similar 
to a nearest neighbour estimation with the number 
of neighbours being 1 (C1, C2, C3) or 5 (RSP) 
and with no constraints for the weights allocated 
to each plot. Here, the weight to be allocated to 
a sample plot is constrained to have a maximum 
value which equals the area weight of the sample 
plot. This plot level area weighting is obtained 
from the calibration estimation procedure, where 
the calibration equations have to be fulfilled. 

The selection of the channel weights, in the dis-
tance functions, was made by using a grid search 
method to have a minimum RMSE and an insignif-

Fig. 1. RMSE (%), a, and bias (%), b, in test data of areas TPA and 
TPB.
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icant bias for the mean volume estimation. Other 
methods, for channel weight search, would be the 
use of multiobjective optimisation (Haara 2002), 
or canonical analysis (Moeur and Stage 1995). 
In these methods, the channel weights could be 
calculated by taking several forest variables into 
account. These forest variables could include both 
age and volume, for example. Another approach, 
for taking into account several forest variables at 
area level – and simultaneously also at pixel level 
– could be incorporating pixel level forest vari-

able estimates into the estimation as calibration 
variables, as suggested by Lappi (2001). 

In the selection of the channel weights, the 
whole 1999 data were used. However, the models 
calibrated in the large area, produced bias in the 
smaller test areas. A larger number of sample 
plots might be needed, in the smaller test areas, 
than used in this study; as in the study of Lappi 
(2001), the zone size could be computed to have 
a fixed number of sample plots. In this study, also 
using a part of the plots in the test areas as test 

Fig. 2. Raster map presentations of estimated mean volume (m3/ha) classified 
into 7 classes, in a selected area (1.5 km × 1.5 km). a) C1 estimation, b) C1 
estimation and local averaging, c) RSP estimation, d) RSP estimation and 
local averaging.

a) C1 b) C1, avg 3 x 3

c) RSP d) RSP, avg 3 x 3

0–10 30–60 100–150 200–

10–30 60–100 150–200 Other land use

Estimated mean volume (m3/ha)

 0 250 500 meters
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plots decreased the number of the plots available 
in the estimation. 

Channel weights, for the distance function used 
in the transportation problem, produced large 
RMSE also in the whole 1999-year data set. The 
number of nearest neighbours, for this distance 
function, had to be this small, because the weight 
of a pixel is transported to one sample plot, in 
most of the cases. This is the price, in raster map 
generation, of using the SAE approach – that 
is, calibration estimation, as used in this study 
– in computing the area weights. The precaution, 
reported by McRoberts et al. (2002), that a small 
number of nearest neighbours may result in an 
RMSE value greater than the standard deviation 
of the observations, came true in this study. It 
is known that with a smaller number of nearest 
neighbours RMSE increases (Tokola et al. 1996, 
McRoberts et al. 2002). Increasing the number 
of neighbours, to a greater value than 5, was not 
carried out, in order to preserve the estimation 
variance. When increasing the size of the neigh-
bourhood, the estimation variance decreases and 
the bias increases (Altman 1992). Hence, the pixel 
level error of the methods C1–C3, in the study, 
without averaging was considerable, as could be 
expected. 

Lappi (2001) has suggested local averaging to 
improve the raster map generation by smoothing 
the map. This was performed in the present study 
to see whether this kind of postprocessing would 
be necessary to improve the pixel level accuracy 
of the results in the generated raster map. The 
filtering appeared to be necessary, especially for 
the methods based on the calibration estimation 
(C1 and C2), giving a better pixel level accuracy 
and a smaller bias to the results calculated over 
the test plots.

The results of RSP, in the test areas TPA and 
TPB together, show a bias of –1.7 m3/ha (–1.45%) 
also after local averaging (Table 5). The results 
from RSP, obtained for test plots in TPA and TPB, 
are biased (ca. 5% in TPA and –7% in TPB), 
although the level of bias in the grid search of 
the channel weights is not so high (Table 4). The 
RMSE level of RSP is a result of similar nature 
as reported when using the Euclidean distance 
function and RSP (Muinonen and Tokola 1990, 
Tokola et al. 1996). The estimation may suffer 
from too few observations in the spectral space, 

and the number of sample plots, in the analyses 
for test areas, was too small, in the study, to 
have a satisfactory pixel level accuracy. As a 
result, the calibration of the RSP technique was 
not good in the test areas, that is, at local level. 
Further analyses concerning, for instance, the 
zone size, weights of the covariates, number of 
neighbours, are not in the scope of this study. A 
larger inclusion zone could have been a usable 
choice, especially for RSP estimation.

The transportation simplex algorithm appeared 
to work as planned in the problem solving. For the 
purpose, a computer programme was developed 
due to the size of the problem being large. The 
problem solving took approximately 5 days with 
a computer equipped with a 2.4 GHz processor 
and 992 MB of RAM. Thus, it is clear that for 
larger areas, there is a need to compress the size 
of the problem and improve the problem solv-
ing, for example, by allowing only a limited set 
of possible target plots for each pixel. The large 
number of rows (pixels) is a problem, which 
also needs to be solved so that the approach 
could be used in larger scale and in practice. 
For these reasons, the nonparametric approach 
has a straightforward capability to produce the 
raster map output, because the inventory area 
is processed pixel by pixel. Furthermore, it has 
to be taken into account that the pixel level esti-
mates of the methods C1–C3 are dependent on 
the properties of the inventory area. If a different 
area is selected over a pixel, this pixel can obtain a 
different estimate, as the area level transportation 
problem has changed.

In C1 and C2, calibration estimation, after 
having necessary initial weights, and the trans-
portation model were applied. Geographical ini-
tial weighting was the basis of C1, and the initial 
weighting from the nearest neighbour analysis 
was the basis of the C2 method. The differences 
between C1 and C2 are quite small, but local 
averaging was necessary to lower the pixel level 
RMSE. (Table 5). The bias level, in the test areas 
TPA and TPB, is lower in C1 than in C2. Actu-
ally, the level of bias calculated over test plots is 
lowest in C1 than in any other methods tested. 
For C2, the pooled test results show a small bias, 
but C2 did not perform well in TPA and TPB test 
areas, and the average filter increased the bias of 
C2 (Fig. 1). 
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The usability of VAM in the map generation 
can also be discussed by comparing the pixel 
level results from the VAM solution and trans-
portation model. Satisfactory results from using 
VAM, especially for larger applications, would 
offer a way to avoid the computation in solving 
the transportation problem. For this reason, a 
raster map was generated and the estimates for the 
test sample plot pixels were calculated by using 
the VAM approach, too. It was computationally 
easier, as the time demand, in the test areas, was 
only approximately 2 hours for each test area. 
However, the C3 method had largest bias calcu-
lated over test plots. The results, however, indicate 
that it is still an interesting alternative, when the 
inventory area increases. It has to be noted that 
the results, concerning pixel level accuracy and 
bias, can be the outcome of the non-optimal 
calibration of the nonparametric estimation. More 
detailed search of the distance function param-
eters and variables, might improve the results of 
each method. 

To perform calculations over a larger inventory 
area, as a municipality, by using the approach of 
solving the transportation problem, the computa-
tional efficiency of the method has to be improved 
before it is an available tool for raster map genera-
tion. This kind of work was not possible in the 
present research project. For nearest neighbour 
methods, the area size is not such a problem, as 
the inventory area is processed pixel by pixel. 
As a result, the raster map generation approach 
applied in the study, can be seen as an optional 
part – followed possibly by the classification of 
the pixel level results – of the whole computation 
task, especially when it is based on the calibra-
tion estimation, also taking into consideration the 
properties of the method, and capabilities of satel-
lite data in the estimation of forest variables. 
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