
37

Silva Fennica 39(1) research articles

Multilevel Linear Mixed Model for 
Tree Diameter Increment in Stone Pine 
(Pinus pinea): a Calibrating Approach

Rafael Calama and Gregorio Montero

Calama, R. & Montero, G. 2005. Multilevel linear mixed model for tree diameter increment 
in stone pine (Pinus pinea): a calibrating approach. Silva Fennica 39(1): 37–54.

Diameter increment for stone pine (Pinus pinea L.) is described using a multilevel linear 
mixed model, where stochastic variability is broken down among period, plot, tree and 
within-tree components. Covariates acting at tree and stand level, as breast height diameter, 
density, dominant height or site index are included in the model as fixed effects in order 
to explain residual random variability. The effect of competition on diameter increment 
is expressed by including distance independent competition indices. The entrance of 
regional effects within the model is tested to determine whether a single model is suf-
ficient to explain stone pine diameter increment in Spain, or if, on the contrary, regional 
models are needed.

Diameter increment model can be calibrated by predicting random components using 
data from past growth measurements taken in a complementary sample of trees. Cali-
bration is carried out by using the best linear unbiased predictor (BLUP) theory. Both 
the fixed effects model and the calibrated model mean a substantial improvement when 
compared with the classical approach, widely used in forest management, of assuming 
constancy in diameter increment for a short projection period.
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1 Introduction

Tree diameter growth has usually been described 
using deterministic linear or non-linear equa-
tions. In these functions diameter increment is 
expressed as a function of measured or estimated 
variables related to tree size, stand attributes, 
competition, site quality and regional effects. 

Ordinary linear (OLS) and non-linear (ONLS) 
least squares regression techniques have been 
widely used to fit these functions.

Tree diameter increment data are gener-
ally taken, for a single period or on repeated 
occasions, from trees growing in plots located 
in different stands or regions. This hierarchi-
cal structure results in a lack of independence 
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between observations, since data coming from 
the same sampling unit (tree, plot, region) tend 
to resemble each other more than average (West 
1981, West et al. 1984, Fox et al. 2001). Lack 
of independence between observations results 
in biased estimates for the confidence interval of 
the parameters if ordinary least squares regres-
sion techniques are used (Searle et al. 1992). To 
deal with this problem, a multi-level linear mixed 
approach that includes random parameters has 
been widely proposed in forest research since the 
seminal works by Biging (1985), Lappi (1986) 
and Gregoire (1987). Mixed models are composed 
of a fixed functional part, common to the com-
plete population, and random components acting 
at each sampling level. Mixed models take into 
account the correlation detected among observa-
tions coming from the same sampling unit by 
defining non-diagonal variance-covariance struc-
ture matrices, which are used to obtain best linear 
unbiased estimates for the fixed parameters of 
the model. Mixed models also permit the defini-
tion of a covariance structure for random effects 
and residual terms, and the best linear unbiased 
prediction for the random components specific 
to each unit.

The fixed effects model that includes explana-
tory variables explains in part, though not com-
pletely, total variation in tree growth. There is a 
residual variability component, probably repre-
senting differences in attributes acting at plot or 
tree level that are not easily observable, such as 
microsite, genetics, climate, or even measurement 
errors, defining a stochastic level of variability in 
tree growth. The use of mixed models allows us 
to identify the different sources of stochastic vari-
ability that are not explained by the fixed part of 
the model by dividing the residual variance into 
different components.

Mixed models allow calibration of growth 
models for a specific location and growth period. 
Prediction of the random components using best 
linear unbiased predictors (BLUP) can be carried 
out if a sample of complementary observations 
of the dependent variable is available. Since it is 
not possible to measure complementary future 
observations of growth, past growth data can be 
used to calibrate growth models.

Growth attained by a single tree in the past is 
a powerful predictor for the future increment of 

that tree. Past increment has been used in growth 
models in different manners, starting with the tra-
ditional assumption of constancy in the increment 
for a given period. Pukkala (1989) and Pukkala 
and Kolstrom (1991) include the value of the past 
five year growth increment as a predictor covari-
ate for the future increment, showing that this 
variable improves prediction more than spatial 
information. Henttonen (1990), Mabvurira and 
Miina (2002) and Palahí et al. (2003) included 
the ratio between breast height diameter and total 
tree age, a value indicating the mean diameter 
increment attained during the life of the tree, as 
a predictor in diameter increment models. Stage 
and Wykoff (1993) used the serial correlation 
between diameter increment in two successive 
periods of arbitrary length to calibrate the future 
increment of the trees. More recently, Traso-
bares and Pukkala (2004) developed an index for 
site evaluation based on the mean ratio between 
predicted and observed past diameter increment 
for the trees in a given stand. This index was 
then used as a predictor variable to model future 
diameter increment.

Mixed model calibration of diameter increment 
is based on the fact that the stochastic component 
of growth variability is a consequence of different 
factors acting simultaneously. If it is considered 
that the effect of some of these unobservable fac-
tors remains constant for a given period (Miina 
1993), then it is possible to calibrate future incre-
ment by introducing into the model the stochastic 
effects predicted for a prior period.

Stone pine (Pinus pinea L.) is a typical Mediter-
ranean species, occupying more than 450,000 ha. 
in Spain. This area represents more than 50 % of 
the total area covered by the species world-wide. 
The main productions of stone pine stands are 
pinyons (edible nut), timber, fuelwood, grazing, 
landscape and recreational use. Stone pine stands 
also play an important role as soil protectors, as 
they grow in sandy areas. Since the beginning of 
the 90´s, a research line in the CIFOR-INIA has 
been devoted to the sustainable management and 
multiple use of the stands of stone pine in Spain. 
Different regional growth and yield models for 
the species (García Güemes 1999, Cañadas 2000, 
Piqué 2003) have recently been developed within 
this line. Of these, only the model by Cañadas 
(2000) is a single tree model, including a diameter 
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increment function for the trees of the species 
growing in Spain’s Central Range. This model 
is deterministic, and parameters were estimated 
using ONLS regression techniques.

The main objective of the present work is to 
construct a model to predict diameter increment 
for stone pine trees growing in even-aged stands 
across Spain. The model would include explana-
tory tree, stand and regional variables. Since data 
come from a hierarchical structure, the model pro-
posed would be a multilevel linear mixed model, 
including both fixed and random components. 
In order to improve predictive accuracy, the use 
of past growth data to calibrate the model was 
evaluated, and different calibration alternatives 
were compared.

2 Data

Between 1992 and 1999 a network of 470 sample 
plots was installed in even-aged stands of stone 
pine to develop growth and yield models for 
the species. These plots were placed in the four 
regions with the largest presence of the species in 

Spain: The Northern Plateau, The Central Range, 
Catalonia and West Andalusia. Plots are circular, 
with variable size, and include 20 trees (except 50 
ten-tree plots located in the Central Range). The 
design to select the plots attempted to include a 
balanced representation of the possible range of 
age, density, and site quality for each region. Only 
plots that had evidently not been thinned, pruned 
or harvested for a 10 year period were included. 
A buffer area with similar conditions was also 
defined around the plot.

For every tree, breast height diameter over bark 
(dbh0) and bark thickness (b0), both measured 
at 1.30 m above ground, total height of the tree, 
height to crown base, and crown diameter were 
measured. Position of each tree with respect to 
the centre of the plot was recorded. In the three 
to five trees nearest to the centre, total age and 
radial growth without bark for the last five years 
(ir–5) were also measured. Five years after plot 
installation, a second inventory was carried out, 
and radial growth without bark attained during 
that second period (ir+5) was then measured in 
the same trees (Fig. 1). In both inventories, radial 
increments were obtained as the average growth 
from two perpendicular measurements taken at 

Fig. 1. Schedule representing the variables used to estimate diameter increment from 
the measurements taken on T0 and T+5.
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1.30 m above ground using a Pressler increment 
borer. Bark thickness was only measured at plot 
installation using a bark gauge.

When plot installation was carried out, radial 
growth for the last five years was recorded in 2252 
trees from the 470 plots. A second inventory was 
only performed on those plots that had not been 
thinned, pruned, harvested or burned during the 
period. Since plots in Catalonia were installed in 
1999 the second inventory was not available in the 
analysis. Consequently, data for the previous ten 
year increment period, taken at plot installation 
were used to define increment value for two suc-
cessive five-year growth periods (ir–5 and ir+5).

The total number of trees with two consecu-
tive radial growth measurements was 2034 from 
448 plots, including 4068 diameter increment 
observations. From this dataset, 57 plots includ-
ing 260 trees were selected randomly within the 
four regions studied as validation dataset, while 
the rest were used as fitting dataset to develop 
the model. Summary statistics for both fitting 
and validation datasets at the moment of plot 
installation are shown in Table 1. Regional dis-
tribution for the analysed plots and trees, as well 
as the growth interval periods studied are shown 
in Table 2.

2.1 Calculation of dbh–5 and dbh+5

The dependent variable in the growth model is 
future diameter increment over bark reached by 
the tree during a five year period. To obtain tree 
diameter over bark five years before (dbh–5) and 
after (dbh+5) plot installation from the increments 
measured in a core (ir–5 and ir+5) and bark thick-
ness (b0), adjustment for bark growth is needed. 
To compute dbh–5 and dbh+5, the first step was 
to calculate the original breast height diameter 
under bark dbh0,ub by subtracting b0 twice from 
dbh0. Next, breast height diameter under bark for 
five years before (dbh–5,ub) and after plot instal-
lation (dbh+5,ub) was computed by subtracting 
or adding the value of the diameter increment 
without bark (2.ir–5 or 2.ir+5), obtained from the 
cores. Bark thickness for these instances (b–5 and 
b+5) was estimated assuming that the proportion 
of bark thickness with respect to total diameter 
remains constant during the studied 10 year period 
(Pukkala 1989, Hökkä and Groot 1999). Finally, 
dbh–5 and dbh+5 were computed by adding two 
times b–5 or b+5 to the corresponding value of 
breast height diameter under bark. Diameter 
increments for both periods, id–5 and id+5, were 
computed by subtracting the estimated values for 

Table 1. Summary statistics for fitting and validation datasets.

 Fitting dataset (n = 1774 trees) Validation dataset (n = 260 trees)
 Mean Min Max STD Mean Min Max STD

dbh (cm) 26.73 4.20 74.25 10.78 27.95 4 62.8 11.85
H (m) 9.08 1.75 22.50 3.61 10.15 2.40 24.00 4.22
id5 (cm) 2.55 0.29 10.96 1.58 2.47 0.32 8.47 1.62
Age (years) 56 10 219 31 59 10 150 32
H0 (m) 9.75 2.75 21.50 3.53 10.71 2.70 22.7 4.14
N (stem/ha) 341 27 1614 259 480 27 2800 592
G (m2/ha) 16.33 1.04 59.72 10.83 21.67 0.65 70.92 18.03
SI (m) 14.90 7.95 24.68 3.26 16.07 9.01 29.36 3.90

Where dbh: breast height diameter, H: total height, id5: diameter increment for five years, H0: dominant height, N: stand density, G: basal 
area, SI: site index. STD: standard deviation.

Table 2. Regional distribution for analysed trees, plots and studied periods.

Region Fitting dataset Validation data set Installation 1st growth 2nd growth
 Nº plots Nº trees Nº plots Nº trees year period period

Central Range 59 197 6 21 1996 1992–1996 1997–2001
West Andalusia 164 746 26 117 1992 1988–1992 1993–1997
Northern Plateau 110 539 14 67 1995 1991–1995 1996–2000
Catalonia 60 292 11 55 1999 1990–1994 1995–1999
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breast height diameter over bark at the beginning 
and end of each period. Fig. 1 shows the whole 
calculation process in schematic form.

The model for diameter growth would consider 
diameter increment over bark for a future five year 
period, id5, a single variable that joins both id–5 
and id+5, as the response variable. In the same 
way, dbh would be a single explanatory variable 
that considers both dbh–5 and dbh0.

2.2 Reconstruction of Tree and Stand 
Characteristics Five Years Prior to and 
Five Years after Plot Establishment

Tree height was computed for each instance using 
the fixed effects part of the height diameter mixed 
model developed by Calama and Montero (2004). 
Difference in the predicted height between two 
successive inventories was added to or subtracted 
from the real height measured at plot installation 
to obtain the height in the instances ±5 years, 
respectively. Crown dimensions were supposed 
to remain constant during the studied period.

Stand density, in terms of stem number per ha, 
was computed from plot data using the method 
proposed by Duplat and Perrotte (1981). Esti-
mated stand density was considered constant 
throughout the studied period, since thinned or 
harvested plots were rejected during the second 
inventory. Plot age was computed as the average 
of those trees where it was measured, adding 
or subtracting five years, respectively. We knew 
the value for basal area at installation time, G0, 
and the individual basal area increment (com-
puted from dbh’s) for a subsample of three to 
five trees per plot. To obtain plot basal areas 
five years earlier (G–5) and later (G+5), the ratio 
between the basal area of the sampled trees and 
plot basal area was supposed to remain constant 
for the studied period. Mean squared diameters 
dg’s were computed directly from basal area esti-
mates. Dominant height for the stand at different 
ages was computed using site index differential 
equations developed for the species by Calama 
et al. (2003).

2.3 Transformation of the Dependent 
Variable

To attain normal distribution for the residuals and 
reduce heteroscedasticity, a natural logarithmic 
transformation of the original dependent variable 
id5 was performed. A term + 1 was added to id5 
before transformation, in order to stabilize vari-
ance behaviour and avoid high unstable values 
when diameter increment for the five year period 
was close to zero. The use of this transformation 
also resulted in a linear relationship between the 
dependent variable and those variables used as 
predictors.

3 Methods

3.1 Modelling Approach

Available data were based on a sample of repeated 
growth measurements taken from trees located in 
different plots. Plots were neither installed nor 
remeasured in the same year, indicating that there 
is also a level of variability associated with the 
different five-year calendar periods. This means 
that observations coming from the same tree, plot 
and period could be largely correlated.

To alleviate this, a multilevel linear mixed 
model, including both fixed and random compo-
nents, was proposed. Between period, between 
plot, between tree and within tree differences 
were counted by including random parameters 
specific at those levels. General expression for the 
multilevel linear mixed model proposed was:

y = Xβ + Zb + ε (1)

Where y is a n-dimensional vector including 
the n observations for the response variable 
log(id5ijk + 1) taken from nv trees within nu plots 
during nw periods; X is a n × p design matrix, 
including covariates and terms associated with 
fixed parameters of the model; β is a p-dimen-
sional vector of fixed parameters of the model; 
Z is a n × q design matrix for the random compo-
nents of the model; b is a q-dimensional vector of 
random components acting at tree, plot and period 
levels; ε is a n-dimensional vector of conditional 
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residual terms (Gregoire et al. 1995).
Vector b can be divided into n subvectors bijk, 

each of them including random components at 
tree (vij), plot (ui) and period (wk) level, specific 
to the observation taken from the jth tree within 
the ith plot during period k; ui, vij and wk are 
multivariate normally distributed vectors, with 
mean zero and variance matrices Du, Dv and Dw, 
respectively. Du, Dv and Dw explains between 
plot, between tree and between period random 
variability, and are considered common to every 
plot, tree and period analysed. Under these con-
ditions, b is a multivariate normally distributed 
vector, with mean zero and variance matrix D. 
Assuming independence between random com-
ponents corresponding to different hierarchical 
levels and independence between random com-
ponents specific to different sampling units (plots, 
tree, periods), D is a q × q block diagonal matrix, 
composed by nu submatrices Du, nv submatrices 
Dv and nw submatrices Dw. Finally, ε includes n 
conditional residual terms, and it is assumed to 
be distributed with mean zero and residual within 
tree variance matrix R.

The usual aim in an analysis of this type is the 
estimation of the components of β, Du, Dv, Dw and 
R. To make inference over the fixed parameters 
vector β, generalized least squares techniques 
were used. A simultaneous estimation for the 
components of Du, Dv, Dw and σ2

ε was carried 
out following maximum likelihood (ML) and 
restricted maximum likelihood (REML) methods 
using MLwiN software (Rasbash et al. 2002). 
MlwiN allow us to obtain individual predictions 
of the best linear unbiased predictors (BLUP`s) 
of the random parameters for each tree, plot and 
period.

3.2 Residual Variance

Vector ε includes n conditional within tree residu-
als εijk, generally assumed to be i.i.d with mean 
zero and constant variance σ2

ε. In that general 
case, R equals σ2

ε In, where In is the identity 
matrix with range the number of observations. 
To detect a possible pattern of non-constant vari-
ance in the residuals (heteroskedasticity), mean 
variance for the conditional original and stand-
ardized residuals was plotted against categorized 

explanatory variables. If residual variance is not 
constant, a variance function must be developed 
and included in the model, obtaining a specific 
value of the residual variance σ2

ε ijk for each 
observation.

3.3 Model Construction

A linear and additive functional form was used 
as a growth model. In a first step, a model includ-
ing only a single-tree size fixed effect covariate 
and the intercept of the model varying randomly 
between units for the three hierarchical levels con-
sidered (tree, plot and period) was estimated from 
the fitting dataset. In subsequent steps, explana-
tory variables were included in order to explain 
systematic variability in the mean response, and 
the rest of the coefficients in the model were 
tested to vary randomly at different hierarchical 
levels. Order of inclusion was: single-tree size 
variables, stand variables, competition indices, 
and regional effects.

Criteria for including explanatory variables 
were the level of significance for the parameters, 
reduction in the values of the components of 
the variance-covariance matrices, and significant 
decrease for the statistic –2 times logarithm of the 
likelihood function (–2LL). Models were fitted 
and compared using maximum likelihood meth-
ods, and the final model was then fitted using 
the REML method. In order to avoid multicol-
linearity, evaluated models were fitted using OLS 
techniques and the value for the variance inflation 
factor was computed. Those alternatives where 
this factor was larger than 5 were then rejected.

Evaluated explanatory variables were:

Single tree size variables:
Breast height diameter dbh (cm); total height 
h (m); crown diameter cw (m); height to crown 
base hcb (m); crown ratio CR. Logarithmic and 
inverse transformations of these variables were 
also tested.

Stand variables:
Density N (stems/ha); dominant height H0 (m), 
computed as the average value of the 20% thick-
est trees within the plot; basal area G for the plot 
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(m2/ha); mean squared diameter dg (cm); site 
index SI (m) (Calama et al. 2003). Logarithmic 
and inverse transformations of these variables 
were also tested.

Competition indices:
Distance independent indices used were ratio 
between subject tree breast height diameter and 
mean squared diameter didg; ratio between sub-
ject tree basal area and plot basal area gigm; basal 
area of the trees larger than the subject tree BAL. 
Distance dependent competition indices were not 
evaluated since we did not have enough data to 
reconstruct the state of all the trees in the plot 
five years before (necessary to develop spatial 
models).

Regional variables:
A higher level of variability, not assumed to be 
random, can be explained including categorical 
regional parameters as fixed effects. Several alter-
natives grouping different regions under a single 
regional effect were compared on the basis of the 
log likelihood ratio test.

3.4 Prediction

The fixed effects part of a mixed model can 
be used to predict the value for the response 
variable if all covariates required are measured or 
estimated. In this case, if no additional informa-
tion is available, expected value of the BLUP’s 
for the random components are zeroes, and we 
would obtain the fixed effects marginal prediction 
E(y) = Xβ. A main advantage of mixed models 
when used to predict the value for a response vari-
able is that the value for the random parameters 
vector b, specific for a given unit, can be predicted 
if a complementary sample of observations taken 
from that sampling unit is available. In this case 
we obtain the calibrated conditional prediction 
E(y | b) = Xβ + Zb.

It is possible to predict the random components 
associated with between-plot, between-tree and 
between-period variability using past increment 
data, which is easily obtained using an incre-
ment borer or consecutive measurements of the 
tree diameter taken on permanent plots. Random 
components obtained in this way can be used 

to calibrate tree diameter increment under the 
hypothesis that both plot and tree random com-
ponents are constant over time, at least for a five 
year period. To make predictions of the BLUP´s 
for the random components using past increments 
the following expression was used:

ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ ) ˆb D Z R Z D Z eT T= + −1  (2)

Where
b̂  is a vector of BLUP´s for the random components, 

acting either at tree, plot or period level.
D̂  is a block diagonal matrix whose dimension is 

given by the number of random effects to be pre-
dicted. Blocks of D̂  are the matrices Du, Dv, Dw, 
repeated as many times as the number of different 
units detected at each level.

Ẑ  is the design matrix for the random components 
specific to the additional observations.

R̂  is the estimated matrix for the residual variance.
Finally, ê is a vector whose dimension is the number 

of observations, and whose components are the 
values for the marginal unconditional residuals of 
the model (difference between the observed incre-
ment and the predicted increment using the fixed 
effects marginal model).

To solve b̂  from Eq. 2, a SAS program was 
developed using IML language. Since BLUP for 
the period random component is not constant 
over time, to carry out future predictions with 
the model, expected value for this effect, which 
is zero, should be included.

To evaluate the accuracy of the calibration, 
two alternatives were compared. In the single 
tree calibration, increment measurements cor-
responding to the first growth period of the trees 
included in validation dataset (260 trees from 57 
plots) were used to predict random tree and plot 
components, obtaining the calibrated conditional 
diameter increment attained for those trees during 
the second period. Results were compared with 
the measured increments for that second five year 
period. Comparison statistics were modelling effi-
ciency (EF, defined as 1 minus the ratio between 
the sum of squares of the error and the corrected 
sum of squares for the variable), mean residual 
error and root mean square error (RMSE), for 
both residual error (id5 – id

∧

5 ) and relative error 
(id5 – id

∧

5 )/ id
∧

5, with reference to the original 
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non transformed variable. Calibrated predictions 
were also compared with the marginal predictions 
obtained using the model including only fixed 
effects, and with the classical approach assuming 
tree diameter increment to remain constant for a 
ten year period (id–5 = id+5).

Another possibility tested was the standwise 
calibration (Lappi 1986), where random plot 
components predicted from the prior measure-
ment of a small sample of trees per plot were 
used to predict the increment of the trees within 
the plot not utilized in calibration. In this case the 
45 plots from validation dataset containing five 
trees with increment measurements available for 
the two growth periods were utilized (225 trees). 
Random plot components were predicted using 
prior measurements from 1, 2 or 3 trees per plot, 
and these components were then used to predict 
future increment for the remaining 4, 3 or 2 trees. 
For each option and plot, 500 random realizations 
were performed, including a different sub-sample 
of trees at each one.

Errors computed within each realization were 
divided into a mean value, a between plot compo-
nent (with variance SdB

2) and a within plot com-
ponent (with variance Sdw

2), including residual, 
tree and period components. Average values for 
each component were computed over the 500 
realizations. Root mean square error was then 
computed as the root of the sum of the squared 
mean error and the variance components of the 
error averaged for each option (Lappi 1986). 
Modelling efficiency for the different options 
was computed as the average over the realiza-
tions. When analysing modelling efficiency, it 
is necessary to consider that the number of trees 
involved in each calibration option is different. 
Statistics were computed for both the residual 
and the relative errors.

4 Results

4.1 Diameter Increment Modelling

After testing different single tree size variables, 
the basic increment model included the logarithm 
of the breast height diameter, logd, as a single 
explanatory variable. The intercept for the model 

was then divided into a fixed part, specific to the 
population, and random between-tree, between-
plot and between-period components, specific to 
each unit. The coefficient associated with logd 
also varied randomly between plots. The expres-
sion for the basic increment model is therefore:

log (id5 ijk + 1) = 
μ + u1i + vij + wk + (η + u2i) log dijk + εijk (3)

Where μ and η are fixed parameters, common 
to the population; vij is a random tree parameter, 
specific to the jth tree within the ith plot, with 
mean zero and variance Dv = σ2

ij; wk is a random 
period parameter, specific to the observations 
taken during the kth period, with mean zero and 
variance Dw = σ2

k; (u1i u2i)T is a vector of random 
plot parameters, specific to the ith plot, with mean 
(0 0)T and variance matrix

Du
i i

i i

=






σ σ
σ σ

1
2

12

12 2
2

;

εijk are within tree residual error terms. Sim-
pler structures for Du were tested, but they did 
not allow convergence of the model. Results 
obtained after fitting model in Eq. 3 are included 
in Table 3.

Although independence between random com-
ponents specific to different sampling units has 
been assumed previously, independence between 
random period components is a matter for discus-
sion. As is shown in Table 2, there are several 
years overlapping between periods correspond-
ing to different regions, and we should evaluate 
whether there is any level of dependence associ-
ated with common growth years.

To do this, in a first approach, random period 
components were not considered independent 
between regions. In this case, components in D 
expressing covariance between random compo-
nents associated with overlapping periods were 
supposed to be proportional to the number of 
overlapping years. Results from fitting the basic 
model (3) under this variance structure were com-
pared to those obtained by solving the simpler 
structure assuming independence between period 
effects (Table 3). Since covariation terms were 
identified as non-significant, and model fit was not 
improved, the simpler structure was selected.
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4.2 Residual Variance Function

Mean value for the variance of the εijk conditional 
residual terms obtained after fitting model (3) 
was computed per different classes of dbh and 
logd and plotted against them. Despite logarith-
mic transformation, a clear pattern of decreasing 
variance associated with increasing diameters was 
still detected. This is an expected behaviour prob-
ably explained because the growth of small trees 
is still influenced by establishment and initial 
conditions not considered in the model. Several 
functions of model variance were tested, and the 
structure finally selected for the variance func-
tion was:

σ2
ε ijk = λ1 + λ2 logdijk (4)

Where λ1 and λ2 are fixed parameters jointly 
estimated with the rest of the components of 
the model. A large decrease in –2LL (Table 3) 
compared to the model with constant residual 
variance indicated that the inclusion of the vari-
ance function improved model fit.

4.3 Covariates Inclusion

Several models, including different subsets of 
explanatory variables, were evaluated. Table 3 
only shows fitting statistics for those models 
showing the best performance for each proposal 
of variables type inclusion. Parameter estimates 
for the diameter increment models have biological 
sense and are significant at 0.05 level.

Inclusion of a specific effect for each region was 
not considered necessary, since the parameters for 
these effects were non-significant. Better results 
were obtained when including a single regional 
effect specific to Catalonia, influencing the inter-
cept and site index.

The definite diameter increment model for 
stone pine trees growing in the four analysed 
regions was:

log (id5 + 1)ijk = 
2.2451 – (0.2615 + u2i) logdij – 0.0369 H0i – 
0.1368 log(Ni) + 0.0448 SIi + 0.1984 didgij – (5) 
0.5542 cat + 0.0277 cat SIi + u1i + vij + wk + εijk

Units: id5, d (cm); H0, SI (m); N (stems/ha). 
Rest of variables are non-dimensional.

Table 3. Comparison of fitting statistics and estimated variance components of the models with different alterna-
tives of covariates inclusion, residual variance function and variance components estimation method.

Model 1 2 3 4 5 6 7

Intercept μ μ μ μ μ μ μ
Single tree log d log d log d log d log d log d log d
Stand – – – H0, SI, log(N) H0, SI, log(N) H0, SI, log(N) H0, SI, log(N)
Competition – – – – didg didg didg
Region – – – – – cat, cat*SI cat, cat*SI
Residual λ1 λ1 λ1+ λ2logd λ1+λ2logd λ1+λ2logd λ1+λ2logd λ1+λ2logd
–2LL 419.50 428.92 283.392 20.0489 5.8058 –10.4184 –10.1283
Method ML ML ML ML ML ML REML
σ2

ij (tree) 0.0141 0.0141 0.0143 0.0135 0.0131 0.0132 0.0132
σ1

2
i (plot) 0.4689 0.4713 0.3920 0.2101 0.1861 0.1607 0.1681

σ2
2
i (plot) 0.0336 0.0337 0.0235 0.0161 0.0142 0.0123 0.0131

σ12i (plot) –0.1181 –0.1187 –0.0904 –0.0550 –0.0483 –0.0415 –0.0437
σ2

k (period) 0.0081 0.0522 0.0083 0.0072 0.0073 0.0052 0.0068
σ12k (period) – NS – – – – –
λ1 (residual) 0.0379 0.0379 0.1140 0.1140 0.1154 0.1156 0.1153
λ2 (residual) – – –0.0244 –0.0242 –0.0246 –0.0246 –0.0244

Where log d: log breast height diameter, H0: dominant height, SI: site index, N: stand density, cat: dummy variable which values 1 if the tree 
comes from Catalonia, and 0 if not, didg: ratio between breast height diameter and plot mean square diameter, ML: maximum likelihood, 
REML: restricted maximum likelihood, –2LL: –2 times logarithm of likelihood, σ2= variance terms, σ12 = covariance parameters,  
NS: all covariance terms associated with random period parameters are non-significant, – = not included
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Where
cat = 1 if the observation comes from Catalonia; 
cat = 0 if not
vij ~ N(0, 0.0132); wk ~ N(0, 0.0068); 
εijk ~ N(0, σ2

e ijk = 0.1153 – 0.0244 logdijk);
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Fig. 2 shows how between-plot, between-tree, 
between-period and residual within-tree effects 
account for total variation in both the basic model 
including only logd as an explanatory variable and 
the final model including the rest of covariates. 
In both cases, variance is expressed as a function 
of tree diameter. In the basic model, between-plot 
random effect accounted for most of the total vari-
ation. After inclusion of explanatory variables, 
total variability decreased, associated with a large 
decrease in between plot variability. A higher 
level of variability is therefore associated with 
within-tree residual variance. Variances associ-
ated with tree and period effects were smaller than 
those estimated for between plot and within tree 
residual random effects in both cases.

The bias of the model was analysed by plotting 
the mean value and the standard error for the 
residuals of the fixed part of the model (Hynynen 
1995, Hökkä et al. 1997, Mabvurira and Miina 
2002), in logarithmic scale and real scale, as a 
function of the predicted and the predictor vari-
ables included in the model (Figs. 3a and 3b).

No noticeable trend between the residuals and 
the explanatory variables was detected. Signifi-
cant bias was only shown for those trees with the 
largest predicted diameter increment, i.e. those 
trees with the smallest values of original breast 
height diameter and dominant height.

4.4 Anti-Logarithmic Transformation for 
the Dependent Variable

To revert the logarithm of the predicted incre-
ment into the arithmetic scale, it is necessary to 
include the bias correction multiplicative factor 
[exp(s2/2)] proposed by Flewelling and Pieenar 
(1981), where s2 is the total variance for the 
prediction. If we are transforming a fixed effects 
marginal prediction, total variance is the residual 
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Fig. 2. Effect of between-plot, between-trees, between-
period and residual within-tree variability over total 
variation for the basic model (Eq. 3) (above) and 
the final model (Eq. 5) (below).

variance plus the variance components associated 
with the random effects:

s2
ijk = σ2

ij + σ2
1i + σ2

2i (logdijk)2 + 2 σ12i logdijk + 
σ2

k + λ1 + λ2 logdijk (6)

If values to transform are calibrated conditional 
predictions, prediction variance is computed using 
the following expression:

s b b

z Z R Z D

ijk e ijk

ijk
T

2 2

1 1

= − + =

+− −

var( ˆ)

[ ˆ ˆ ˆ ˆ

σ

]] log− + +1
1 2z dijk

T
ijkλ λ  (7)

where the first term on the right hand side 
expresses the prediction variance for the random 
components, and zijk is the row of Ẑ  associated 
with the observation. On several occasions, some 
of the predicted random components are excluded 
from the model, e.g. random period effects predic-
ted from past measurements should not be inclu-
ded in future predictions. In this case, prediction 
variance s2

ijk is computed using Eq. 7 again, but 
removing from z, Ẑ  and D̂  all the components 
and terms associated with the excluded random 
effects, and adding to the equation the values for 
the variance components associated with these 
omitted effects.
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4.5 Prediction

4.5.1 A Case Study of Calibration

To demonstrate the calibration task we will 
describe the simplest case, where the previous 
five year increment for a tree is available, and it 
is used to calibrate the future increment. Let us 
use tree number 12 from plot 21116, located in 
West Andalusia. Tree and plot characteristics, 
measured on two occasions, are shown in Table 
4. In this example we want to obtain the predicted 
values of dbh+5, id5 and log(id5+1) for the second 
growth period, using the rest of variables included 
in the table.

Fixed effects marginal prediction:
In this case, measurements from the first period 
are not considered. Since all the variables included 
in the model are known for the second period, the 
value for log (id5+1) was computed from Eq. 5, 
taking as values for random components their 
expected mean values, i.e., zero. Predicted value 
for log(id5+1) is 1.3954. Standard error for this 
individual prediction is computed as the square 
root of the total variance, given by Eq. 6:

var ( ˆ ) .y y sijk ijk ijk− = =2 0 07378  (8)

Where y and ŷ  are observed and predicted value 
for log(id5+1) respectively. The value for standard 
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Fig. 3a. Mean residual in log scale (solid line) for the fixed effects model as a function of predicted value and 
explanatory stand and tree level variables. Dotted lines indicate standard error for the mean, and dashed lines 
indicate standard deviation.
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Fig. 3b. Mean residual in real scale (solid line) for the fixed effects model as a function of predicted value and 
explanatory stand and tree level variables. Dotted lines indicate standard error for the mean, and dashed lines 
indicate standard deviation.
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Table 4. Main characteristics for tree 12 from plot 21116, used in the case study of calibration, measured at the 
beginning of the growth periods.

Period dbh0 dbh+5 id5 log(id5+1) Age Density SI H0 didg
 (cm) (cm) (cm)  (years) (stem/ha) (m) (m)

1988–1992 24.990 31.250 6.259 1.9823 37 48 17.63 9.58 0.7746
1993–1997 31.250 35.162 3.912 1.5916 42 48 17.63 10.50 0.9011

Where dbh0 and dbh+5:breast height diameter at the beginning and the end of the period, id5: diameter increment attained during the period, 
SI: site index, H0: dominant height, didg: ratio between breast height diameter at the beginning of the period and mean square diameter for the 
plot.

error is 0.2716, and the 95% confidence interval 
for prediction is [0.8521, 1.9386]. To transform 
this prediction into real predicted diameter incre-
ment id

∧

5 :

id s yijk ijk

∧
= −5

20 5 1[exp( . ) . exp( ˆ )]  (9)

In real scale, predicted value is 3.1882 cm, with 
confidence interval [1.4327, 6.2105].
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Calibration using prior measurements  
– Conditional prediction:
Using data from a single prior measurement it 
is possible to obtain predictions for the vector b̂  
containing random plot, tree and period compo-
nents specific to this tree. To do this Eq. 2 was 
used, where in this case:

ˆ [ , , log( . ), ]Z = 1 1 24 990 1  (10)

ˆ

.

. .

. .
D =

−
−

0 0132 0 0 0

0 0 1681 0 0437 0

0 0 0437 0 0131 0

0 00 0 0 0068.





















 (11)

R̂  = 0.1153 – 0.0244 log (24.990) = 0.0367 (12)

ê = 1.9823 – 1.4627 = 0.5196 (13)

The BLUP for the vector of random parame-
ters so obtained is [u1i = 0.1799, u2i = –0.0101,  
vij = 0.0865, wk = 0.04457]. To predict calibrated 
increment for the future, random period compo-
nent wk was not included in Eq. 5. Predicted value 
for log(id5 + 1) is therefore 1.6272. Total variance 
for the prediction is given by Eq. 7:

s2
ijk = 0.05479

Standard error for the prediction is 0.2340, with 
a 95% confidence interval [1.1590 , 2.0953]. 
Real value for predicted diameter increment 
is 4.2309 cm, with a 95% confidence interval 
[2.2754 , 7.3539].

As shown, calibration has decreased both the 
absolute value for prediction error (0.7235 cm in 
fixed effects response against 0.3190 cm in cali-
brated) and the standard error (0.2716 to 0.2340), 
narrowing the confidence interval for the pre-
diction. Mean predicted values are not centred 
within its confidence interval as a consequence 
of anti-logarithmic transformation.

4.5.2 Calibration Alternatives

Single Tree Calibration

Table 5 compares the results from the marginal 
fixed effects prediction with the calibrated pre-
dictions including both tree and plot random 
components, and with the method that assumes 
the past five year increment equalling future five 
year increment.

Results from calibrated conditional predictions 
are significantly better then those attained with 
the fixed effects model, with modelling efficiency 
being increased from 27.2 to 48.7%, and RMSE 
being reduced from 1.39 to 1.16 cm. On the other 
hand, calibration results in a slight bias in mean 
error when compared with the fixed effects model, 
probably derived from omitting random period 
components. In any case, the calibrated and fixed 
effects predictions lead to a substantial improve-
ment in predictive accuracy when compared to 
assumed constancy of the diameter increment 
during the two five-year periods analysed.

Table 5. Comparison between calibrated model, fixed effects model and classical approach of constancy in incre-
ment, for the calibration approach including random plot and tree components over the 260 trees in validation 
data set (single tree calibration).

Variable Statistic Fixed effects Calibrated response: Constancy in increment
   tree and plot effects (id–5 = id+5)

id5 – id
∧

5  SSE 500.03 352.49 565.55
 EF % 27.26 48.72 17.73
 RMSE (cm) 1.389 1.166 1.477
 Mean error 0.085 0.208 0.177
(id5 – id

∧

5 ) / id
∧

5  SSE 73.57 50.89 99.23
 RMSE (%) 53.2 44.3 61.9
 Mean error 0.044 0.061 0.188

Where SSE: sum of squares of the error; EF: modelling efficiency; RMSE: root mean square error
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Standwise Calibration

Table 6 shows the results of the second calibra-
tion approach. In this case, prior measurements 
of a sample of trees from each plot were used 
to predict random plot component and calibrate 
future predictions for the rest of the trees within 
the plot. As Fig. 4 shows, standwise calibra-
tion reduces RMSE when compared with the 
fixed effects model, even if only a single tree per 
plot is used for calibration. Standwise calibra-
tion reduces between stand variability, while the 
error associated with the rest of the random levels 
(tree, period and residual) remain practically con-
stant. Mean error value for calibrated prediction 
is slightly increased if compared with the fixed 
effect model, as a consequence of excluding pre-
dicted random period and tree components.

5 Discussion and Conclusions

In the present work, diameter increment for stone 
pine trees in Spain is described as a stochas-
tic process, where a fixed, deterministic model, 
explains the mean value for the increment, while 
unexplained residual variability is described and 
modelled by including random parameters acting 

at period, plot, tree and residual within-tree levels. 
Modelling diameter increment as a stochastic 
process considering random variability has 
already been proposed, among others, by Stage 
(1973), Wykoff et al. (1982), Hilt (1983), Hent-
tonen (1990), Johnson et al. (1991), Miina (1993), 
Vettenranta (1999) and Palahí et al. (2003).

In the fixed part of the model the primary 
explanatory variable was size of the tree, defined 
by the logarithm of breast height diameter. Cur-
rent tree size is a good indicator of future growth, 
since it includes both past competitive interactions 
and genotypic differences in response to environ-
mental variability (Perry 1985). In the proposed 
model it was shown that diameter increment of a 
tree decreased as diameter increased.

Together with tree size, the fixed part of the 
model also included variables commonly used as 
predictors in single tree diameter growth models, 
such as the number of stems per ha. (West 1981), 
site index (Wykoff 1990, Palahí et al. 2003, Soares 
and Tomé 2003) and dominant height (Hynynen 
1995, Mabvurira and Miina 2002). As a result of 
competition, larger stand densities are associated 
with smaller diameter increments. Negative value 
for the parameter associated with dominant height 
is related to the fact that in two stands with the 
same site quality, larger dominant height indicates 
older trees, and, consequently, smaller diameter 

Table 6. Comparison between fixed effect model, and calibrated model using standwise cali-
bration with different number of trees per plot. Each result is obtained as the average 
from 500 random realizations, including different trees in the calibration data set. Data 
from 45 plots in validation data set with 225 trees.

 Number of trees used in calibration
Variable Statistic Fixed effects 1 2 3
 n 225 180 135 90

id5 – id
∧

5  EF (%) 26.50 38.79 42.11 43.48
 RMSE (cm) 1.425 1.329 1.293 1.279
 SdB 1.052 0.887 0.831 0.812
 SdW 0.967 0.973 0.973 0.970
 Mean error 0.087 0.177 0.181 0.179

(id5 – id
∧

5 ) / id
∧

5  RMSE (%) 54.5 52.1 50.1 49.1
 SdB 0.407 0.362 0.336 0.316
 SdW 0.364 0.370 0.369 0.371
 Mean error 0.034 0.055 0.055 0.053

Where n indicates the number of remaining tally trees used to estimate the statistics, RMSE: root mean square error, 
EF: modelling efficiency, SdB and Sdw between plot and within plot standard deviation.
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increments. Site quality is positively related to 
increment, indicating that in better sites trees are 
attaining larger diameter increments. Finally, a 
competition index denoting the social status of 
the tree within the stand is positively correlated 
with increment, which means that trees from the 
dominant stratum are expected to reach larger 
increments than those from other strata (Holda-
way 1984, Pukkala 1989, Miina 1993).

In comparing the present model with the diam-
eter increment model for stone pine growing on 
the Central Range proposed by Cañadas (2000), it 
is possible to see that the latter one also includes 
variables indicating stand density, such as crown 
competition factor (Krajicek et al. 1961); site 
quality (dominant height at 100 years); tree size 

(crown ratio) and social status of the tree (BAL). 
As shown, the basic structure of the models is 
similar, although the covariates used to explain 
variability acting at different levels are not the 
same.

Smaller expected diameter increment was 
detected for the stands from Catalonia. In this 
region the presence of an understory layer of cork 
oak (Quercus suber L.) and other Mediterranean 
shrubs is quite common. Inter-specific competi-
tion from this layer, not considered in the model, 
could be a reason for these smaller increments. 
Another possible reason could be the fact that 
Catalonian increment data were obtained in a dif-
ferent manner than those from other regions.

The stochastic part of the model includes both 
nested hierarchical random effects (trees within 
plots), and crossed random effects (periods). The 
structure for the stochastic variability is therefore 
similar to that proposed by Henttonen (1990), 
Hökkä and Groot (1999) and Miina (2000). The 
largest components of residual stochastic variabil-
ity, as stated in Fig. 2, were associated with both 
between-plot and within-tree residual effects. 
Between-plot variability can be due either to not 
considering interactions between plot variables 
and period effects (Henttonen 1990, Hökkä and 
Groot 1999), to ignoring ecological variables 
characterising site quality more adequately than 
site index or to not taking into account silvicul-
tural treatments applied in the past (Hynynen 
1995, Hökkä et al. 1997). Large within-tree 
residual variability can be due to human error in 
diameter increment measurement (Pukkala 1989, 
Palahí and Grau 2003), since increment cores 
cannot be taken on repeated occasions at the same 
height and orientation within the stem.

Inclusion of random period components within 
the model indicated differences in the growing 
pattern of the trees between the five-year calendar 
periods (Henttonen 1990, Miina 2000, Yeh and 
Wensel 2000). Independence between overlap-
ping period effects indicated that growth period 
effects are different for different regions, mean-
ing that climatic conditions for a single five year 
period cannot be considered common for differ-
ent regions. It was not possible to analyse the 
dependence between overlapping observations 
coming from the same region, since this type of 
data were not available.
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Finally, significant random variability among 
trees suggested that some tree variables were 
ignored in the model, e.g. factors related to genet-
ics or microsite. The relatively small level of 
variability detected between trees growing in the 
same plot is in line with the results obtained by 
Mabvurira and Miina (2002), although Henttonen 
(1990), Hökkä and Groot (1999) and Palahí et 
al. (2003) detected a pattern of larger variabil-
ity between trees than between plots. The main 
reason for this behaviour can be related to limita-
tions from the dataset, since only two consecutive 
growth observations are available for the same 
tree, and part of the tree level variability was then 
included in the residual within-tree variance. In 
any case, a small tree level variability of growth 
is in line with the results also obtained by Calama 
(2004) for stem form, indicating that trees within 
the same stand have more similarities with each 
other than with trees growing in other stands.

Application of the fixed part of the model results 
in unbiased estimates of the increment, except for 
those trees whose initial breast height diameter is 
less than 5 cm. The results after applying the fixed 
part of the model to the 260 trees in the validation 
dataset indicated that 27% of the total variability 
was explained. We can therefore conclude that 
the fixed effects model results in a significant 
improvement when compared with the approach 
of assuming past increment as a good estimate for 
the future period, and to apply it, measurements 
from the past are not required.

Calibration results in significant improvement 
when compared with the results attained using 
only the fixed part of the model. Since variability 
explained by tree random components is quite 
small, results from single tree calibration are not 
much better than those from standwise calibra-
tion, although in the latter approach the number 
of trees used in calibration is smaller. With stand-
wise calibration using past increment data from 
only one tree per plot (57 additional increment 
measurements in validation dataset), modelling 
efficiency reaches about 39% with RMSE 1.329 
cm. Using single tree calibration, 260 additional 
measurements are required to obtain an efficiency 
value of 48.7% and RMSE 1.166 cm. Given 
the high costs of measuring past increments, it 
seems reasonable to select standwise calibration, 
although this decision should be based on a util-

ity model that considers both the cost of taking 
additional measurements and the benefits derived 
from improving accuracy.

The model developed in the present work can 
be considered a useful tool to simulate the growth 
of the trees. The ability of the calibrated model to 
be used in long term projections is based on the 
assumption of constancy in time for both random 
plot and tree components. Besides this, the pos-
sible effect of a reduction in stand density, as a 
consequence of natural mortality or silvicultural 
treatments, has not been properly addressed. On 
account of these two considerations, simulations 
with a projection length longer than 10 years 
should be considered cautiously.
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